No Evidence of Temperature-Driven Antimicrobial Resistance in Salmonella Bacteraemia in Queensland, Australia
Abstract
1. Introduction
2. Results
2.1. Study Population and Antimicrobial Resistance Prevalence
2.2. Main Effects: Temperature and Antimicrobial Resistance
3. Discussion
4. Methods
4.1. Study Design
4.2. Case Data
4.3. Climate Data
4.4. Statistical Analysis
5. Conclusions
Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Robles Aguilar, G.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Wozniak, T.M.; Dyda, A.; Merlo, G.; Hall, L. Disease burden, associated mortality and economic impact of antimicrobial resistant infections in Australia. Lancet Reg. Health-West. Pac. 2022, 27, 100521. [Google Scholar] [CrossRef]
- Kim, C.A.-O.; Frost, I.A.-O.; Naylor, N.A.-O.; Au, H.; Kim, Y.; Lee, Y.; Bzymek, A.; Majgier, K.; Moldoveanu, A.L.; Salman, O.M.; et al. Length of hospital stay and associated treatment costs for patients with susceptible and antibiotic-resistant Salmonella infections: A systematic review and meta-analysis. BMJ Open 2025, 15, e092494. [Google Scholar] [CrossRef] [PubMed]
- Magnano San Lio, R.A.-O.; Favara, G.; Maugeri, A.A.-O.; Barchitta, M.A.-O.; Agodi, A.A.-O. How Antimicrobial Resistance Is Linked to Climate Change: An Overview of Two Intertwined Global Challenges. Int. J. Environ. Res. Public Health 2023, 20, 1681. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Lee, S.A.; Xue, J.; Riordan, S.M.; Zhang, L. Global epidemiology of campylobacteriosis and the impact of COVID-19. Front. Cell. Infect. Microbiol. 2022, 12, 979055. [Google Scholar] [CrossRef] [PubMed]
- Manchal, N.; Young, M.K.; Castellanos, M.E.; Leggat, P.; Adegboye, O. A systematic review and meta-analysis of ambient temperature and precipitation with infections from five food-borne bacterial pathogens. Epidemiol. Infect. 2024, 152, e98. [Google Scholar] [CrossRef]
- Aik, J.; Heywood, A.E.; Newall, A.T.; Ng, L.C.; Kirk, M.D.; Turner, R. Climate variability and salmonellosis in Singapore—A time series analysis. Sci. Total Environ. 2018, 639, 1261–1267. [Google Scholar] [CrossRef]
- Bi, P.; Zhang, Y.; Hiller, J.; Cameron, S. Climate Variability and Salmonella Infection in an Australian Temperate Climate City. Epidemiology 2009, 20, S98. [Google Scholar] [CrossRef]
- Fleury, M.; Charron, D.F.; Holt, J.D.; Allen, O.B.; Maarouf, A.R. A time series analysis of the relationship of ambient temperature and common bacterial enteric infections in two Canadian provinces. Int. J. Biometeorol. 2006, 50, 385–391. [Google Scholar] [CrossRef]
- Grjibovski, A.M.; Bushueva, V.; Boltenkov, V.P.; Buzinov, R.V.; Degteva, G.N.; Yurasova, E.D.; Nurse, J. Climate variations and salmonellosis in northwest Russia: A time-series analysis. Epidemiol. Infect. 2013, 141, 269–276. [Google Scholar] [CrossRef]
- Jiang, C.S.; Shaw, K.S.; Upperman, C.R.; Blythe, D.; Mitchell, C.; Murtugudde, R.; Sapkota, A.R.; Sapkota, A. Climate change, extreme events and increased risk of salmonellosis in Maryland, USA: Evidence for coastal vulnerability. Environ. Int. 2015, 83, 58–62. [Google Scholar] [CrossRef]
- Parisi, A.; Crump, J.A.; Glass, K.; Howden, B.P.; Furuya-Kanamori, L.; Vilkins, S.; Gray, D.J.; Kirk, M.D. Health Outcomes from Multidrug-Resistant Salmonella Infections in High-Income Countries: A Systematic Review and Meta-Analysis. Foodborne Pathog. Dis. 2018, 15, 428–436. [Google Scholar] [CrossRef]
- Bi, P.; Cameron, A.S.; Zhang, Y.; Parton, K.A. Weather and notified Campylobacter infections in temperate and sub-tropical regions of Australia: An ecological study. J. Infect. 2008, 57, 317–323. [Google Scholar] [CrossRef]
- Djennad, A.; Lo Iacono, G.; Sarran, C.; Lane, C.; Elson, R.; Hoser, C.; Lake, I.R.; Colon-Gonzalez, F.J.; Kovats, S.; Semenza, J.C.; et al. Seasonality and the effects of weather on Campylobacter infections. BMC Infect. Dis. 2019, 19, 255. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, K.G.; Nygard, K.M.; Lofdahl, M.; Tronnberg, L.; Rimhanen-Finne, R.; Sunde, L.S.; Guzman-Herrador, B.; Ethelberg, S. Campylobacteriosis in the Nordic countries from 2000 to 2015: Trends in time and space. Scand. J. Public Health 2020, 48, 862–869. [Google Scholar] [CrossRef]
- Park, M.S.; Park, K.H.; Bahk, G.J. Combined influence of multiple climatic factors on the incidence of bacterial foodborne diseases. Sci. Total Environ. 2018, 610–611, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Soneja, S.; Jiang, C.; Romeo Upperman, C.; Murtugudde, R.; Mitchell, C.S.; Blythe, D.; Sapkota, A.R.; Sapkota, A. Extreme precipitation events and increased risk of campylobacteriosis in Maryland, U.S.A. Environ. Res. 2016, 149, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Adegboye, O.; Amarasena, T.; Khan, M.; Ajulo, H.; Pak, P.; Taniar, D.; Emeto, T. Too Hot, Too Wet: Bayesian Spatial Modelling of Climate-Driven Salmonella Risk in New South Wales, Australia, 1991–2022; GeoHealth: Minneapolis, MN, USA, 2025. [Google Scholar]
- Christaki, E.; Giamarellos-Bourboulis, E.J. The complex pathogenesis of bacteremia: From antimicrobial clearance mechanisms to the genetic background of the host. Virulence 2014, 5, 57–65. [Google Scholar] [CrossRef]
- Ghulam Mohyuddin, S.A.-O.; Khan, I.A.-O.; Zada, A.A.-O.; Qamar, A.A.-O.; Arbab, A.A.-O.; Ma, X.A.-O.; Yu, Z.A.-O.; Liu, X.A.-O.; Yong, Y.A.-O.; Ju, X.A.-O.X.; et al. Influence of Heat Stress on Intestinal Epithelial Barrier Function, Tight Junction Protein, and Immune and Reproductive Physiology. BioMed Res. Int. 2022, 2022, 8547379. [Google Scholar] [CrossRef]
- Ibarra, J.A.; Steele-Mortimer, O. Salmonella—the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell. Microbiol. 2009, 11, 1579–1586. [Google Scholar] [CrossRef]
- Worley, M.J. Salmonella Bloodstream Infections. Trop. Med. Infect. Dis. 2023, 8, 487. [Google Scholar] [CrossRef]
- Sasaki, Y.; Ikeda, T.; Yonemitsu, K.; Kuroda, M.; Ogawa, M.; Sakata, R.; Uema, M.; Momose, Y.; Ohya, K.; Watanabe, M.; et al. Antimicrobial resistance profiles of Campylobacter jejuni and Salmonella spp. isolated from enteritis patients in Japan. J. Veter.-Med. Sci. 2023, 85, 463–470. [Google Scholar]
- Wang, Y.; Xu, X.; Jia, S.; Qu, M.; Pei, Y.; Qiu, S.; Zhang, J.; Liu, Y.; Ma, S.; Lyu, N.; et al. A global atlas and drivers of antimicrobial resistance in Salmonella during 1900-2023. Nat. Commun. 2025, 16, 4611. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. 2022, 20, e07209. [Google Scholar] [CrossRef]
- Williamson Deborah, A.; Lane Courtney, R.; Easton, M.; Valcanis, M.; Strachan, J.; Veitch Mark, G.; Kirk Martyn, D.; Howden Benjamin, P. Increasing Antimicrobial Resistance in Nontyphoidal Salmonella Isolates in Australia from 1979 to 2015. Antimicrob. Agents Chemother. 2018, 62, e02012-17. [Google Scholar] [CrossRef]
- Cuypers, W.L.; Jacobs, J.; Wong, V.; Klemm, E.J.; Deborggraeve, S.; Van Puyvelde, S. Fluoroquinolone resistance in Salmonella: Insights by whole-genome sequencing. Microb. Genom. 2018, 4, e000195. [Google Scholar] [CrossRef]
- Alenazy, R. Antibiotic resistance in Salmonella: Targeting multidrug resistance by understanding efflux pumps, regulators and the inhibitors. J. King Saud Univ.—Sci. 2022, 34, 102275. [Google Scholar] [CrossRef]
- Ingle, D.J.; Ambrose, R.L.; Baines, S.L.; Duchene, S.; Gonçalves da Silva, A.; Lee, D.Y.J.; Jones, M.; Valcanis, M.; Taiaroa, G.; Ballard, S.A.; et al. Evolutionary dynamics of multidrug resistant Salmonella enterica serovar 4,[5],12:i:- in Australia. Nat. Commun. 2021, 12, 4786. [Google Scholar] [CrossRef] [PubMed]
- Bock, L.; Aguilar-Bultet, L.; Egli, A.; Battegay, M.; Kronenberg, A.; Vogt, R.; Kaufmann, C.; Tschudin-Sutter, S. Air temperature and incidence of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. Environ. Res. 2022, 215, 114146. [Google Scholar] [CrossRef]
- MacFadden, D.R.; McGough, S.F.; Fisman, D.; Santillana, M.; Brownstein, J.S. Antibiotic Resistance Increases with Local Temperature. Nat. Clim. Change 2018, 8, 510–514. [Google Scholar]
- Billah, M.M.; Rahman, M.S. Salmonella in the environment: A review on ecology, antimicrobial resistance, seafood contaminations, and human health implications. J. Hazard. Mater. Adv. 2024, 13, 100407. [Google Scholar] [CrossRef]
- Despotovic, M.; de Nies, L.; Busi, S.B.; Wilmes, P. Reservoirs of antimicrobial resistance in the context of One Health. Curr. Opin. Microbiol. 2023, 73, 102291. [Google Scholar] [CrossRef] [PubMed]
- Rabiu, A.G.; Fadiji, O.; Adesoji, A.T.; Jimoh, S.O.; Cho, S. A review of the environmental spread of Salmonella enterica serovars through water in Africa. Lett. Appl. Microbiol. 2025, 78, ovaf005. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Ho, H.C.; Shi, L.; Zeng, Y.; Yang, X.; Huang, Q.; Pei, Y.; Huang, C.; Yang, L. Association between antibiotic resistance and increasing ambient temperature in China: An ecological study with nationwide panel data. Lancet Reg. Health-West. Pac. 2022, 30, 100628. [Google Scholar] [CrossRef]
- Grenni, P. Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. Environ. Toxicol. Chem. 2022, 41, 687–714. [Google Scholar] [CrossRef]
- Kusi, J.; Ojewole, C.O.; Ojewole, A.E.; Nwi-Mozu, I. Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Antibiotics 2022, 11, 821. [Google Scholar] [CrossRef]
- Mao, G.; Ji, M.; Jiao, N.; Su, J.; Zhang, Z.; Liu, K.; Chen, Y.; Liu, Y. Monsoon affects the distribution of antibiotic resistome in Tibetan glaciers. Environ. Pollut. 2023, 317, 120809. [Google Scholar] [CrossRef]
- Yu, Q.; Han, Q.; Shi, S.; Sun, X.; Wang, X.; Wang, S.; Yang, J.; Su, W.; Nan, Z.; Li, H. Metagenomics reveals the response of antibiotic resistance genes to elevated temperature in the Yellow River. Sci. Total Environ. 2023, 859, 160324. [Google Scholar] [CrossRef]
- Zheng, D.; Yin, G.; Liu, M.; Hou, L.; Yang, Y.; Liu, X.; Jiang, Y.; Chen, C.; Wu, H. Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China’s estuaries. Environ. Pollut. 2022, 301, 119015. [Google Scholar] [CrossRef]
- Pitti, M.; Garcia-Vozmediano, A.; Tramuta, C.; CeRtiS Clinical Laboratories Group; Maurella, C.; Decastelli, L. Monitoring of Antimicrobial Resistance of Salmonella Serotypes Isolated from Humans in Northwest Italy, 2012–2021. Pathogens 2023, 12, 89. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.B.; Song, B.J.; Shin, M.Y.; Lim, H.C.; Yoon, Y.H.; Jeon, D.Y.; Ha, H.; Yang, S.I.; Kim, J.B. Antibiotic Resistance Patterns and Serotypes of Salmonella spp. Isolated at Jeollanam-do in Korea. Osong Public Health Res. Perspect. 2017, 8, 211. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Socio-Economic Indexes for Areas (SEIFA); Australian Bureau of Statistics: Canberra, Australia, 2021. Available online: https://www.abs.gov.au/statistics/people/people-and-communities/socio-economic-indexes-areas-seifa-australia/latest-release (accessed on 1 July 2025).
- Ferraro, M.J.; National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing: Twelfth Informational Supplement; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2002. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Abbott, A.N.; Hindler, J.A. Understanding and Addressing CLSI Breakpoint Revisions: A Primer for Clinical Laboratories. J. Clin. Microbiol. 2019, 57, e00203-19. [Google Scholar] [CrossRef]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Xu, Z.; Etzel, R.A.; Su, H.; Huang, C.; Guo, Y.; Tong, S. Impact of ambient temperature on children’s health: A systematic review. Environ. Res. 2012, 117, 120–131. [Google Scholar] [CrossRef]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Arend, M.A.-O.; Schäfer, T. Statistical power in two-level models: A tutorial based on Monte Carlo simulation. Psychol. Methods 2019, 24, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, K.; Gasparrini, A.; Hajat, S.; Smeeth, L.; Armstrong, B. Time series regression studies in environmental epidemiology. Int. J. Epidemiol. 2013, 42, 1187–1195. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 1 July 2025).
- Gasparrini, A. Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. J. Stat. Softw. 2011, 43, 1–20. [Google Scholar] [CrossRef]
- Wood, S.N. Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 3–36. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Grolemund, G.; Wickham, H. Dates and Times Made Easy with lubridate. J. Stat. Softw. 2011, 40, 1–25. [Google Scholar] [CrossRef]



| Characteristics | Prevalence (95% CI) | ||||||
|---|---|---|---|---|---|---|---|
| Total Isolates (N) | AMP % | CIP % | GEN % | CEF % | Any Antibiotic % | MDR % | |
| Overall | 1012 | 3.5 (2.4–4.8) | 6.2 (4.8–7.9) | 15.4 (13.2–17.8) | 15 (12.9–17.4) | 25.5 (22.8–28.3) | 1.5 (0.8–2.4) |
| Sex | |||||||
| Female | 461 | 3.5 (2–5.6) | 7.2 (5–9.9) | 16.1 (12.8–19.7) | 15.6 (12.4–19.3) | 27.3 (23.3–31.6) | 2 (0.9–3.7) |
| Male | 551 | 3.4 (2.1–5.3) | 5.4 (3.7–7.7) | 14.9 (12–18.1) | 14.5 (11.7–17.7) | 24 (20.4–27.7) | 1.1 (0.4–2.4) |
| Age group, years | |||||||
| <1 | 173 | 2.9 (0.9–6.6) | 7.5 (4.1–12.5) | 20.2 (14.5–27) | 20.2 (14.5–27) | 31.2 (24.4–38.7) | 2.3 (0.6–5.8) |
| 1–4 | 146 | 1.4 (0.2–4.9) | 4.1 (1.5–8.7) | 15.8 (10.3–22.7) | 15.8 (10.3–22.7) | 23.3 (16.7–31) | 0.7 (0–3.8) |
| 5–17 | 115 | 5.2 (1.9–11) | 7 (3.1–13.2) | 14.8 (8.9–22.6) | 13 (7.5–20.6) | 26.1 (18.3–35.1) | 0.9 (0–4.7) |
| 18–64 | 367 | 3.3 (1.7–5.6) | 6 (3.8–8.9) | 12.5 (9.3–16.4) | 12 (8.8–15.8) | 22.6 (18.4–27.2) | 1.4 (0.4–3.2) |
| ≥65 | 211 | 4.7 (2.3–8.5) | 6.6 (3.7–10.9) | 16.6 (11.8–22.3) | 16.6 (11.8–22.3) | 27 (21.1–33.5) | 1.9 (0.5–4.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manchal, N.; Young, M.K.; Castellanos, M.E.; Adegboye, O.A. No Evidence of Temperature-Driven Antimicrobial Resistance in Salmonella Bacteraemia in Queensland, Australia. Antibiotics 2025, 14, 1274. https://doi.org/10.3390/antibiotics14121274
Manchal N, Young MK, Castellanos ME, Adegboye OA. No Evidence of Temperature-Driven Antimicrobial Resistance in Salmonella Bacteraemia in Queensland, Australia. Antibiotics. 2025; 14(12):1274. https://doi.org/10.3390/antibiotics14121274
Chicago/Turabian StyleManchal, Naveen, Megan K. Young, Maria Eugenia Castellanos, and Oyelola A. Adegboye. 2025. "No Evidence of Temperature-Driven Antimicrobial Resistance in Salmonella Bacteraemia in Queensland, Australia" Antibiotics 14, no. 12: 1274. https://doi.org/10.3390/antibiotics14121274
APA StyleManchal, N., Young, M. K., Castellanos, M. E., & Adegboye, O. A. (2025). No Evidence of Temperature-Driven Antimicrobial Resistance in Salmonella Bacteraemia in Queensland, Australia. Antibiotics, 14(12), 1274. https://doi.org/10.3390/antibiotics14121274

