Epidemiological Situation of Antibiotic-Resistant Microorganisms Identified in Patients Hospitalised at the University Teaching Hospital in Bialystok, Poland, in the 2020–2023 Period
Abstract
1. Introduction
- 1.
- Which species of antibiotic-resistant microorganisms were most frequently identified in patients hospitalised in the Department of Anaesthesiology and Intensive Care (DAIC), surgical wards, and non-surgical wards of the University Clinical Hospital in Bialystok, Poland, between 2020 and 2023?
- 2.
- Are there differences in the frequency of isolation of antibiotic-resistant microorganisms between patients hospitalised in different types of hospital wards (DAIC, surgical, non-surgical)?
2. Results
3. Discussion
- an increase in admissions of patients already colonised or infected with alert microorganisms (e.g., transferred from other long-term care facilities);
- increased vigilance and intensified screening upon admission, partly as a consequence of the experience gained during the SARS-CoV-2 pandemic [19];
- possible underestimation of the exposure time to the microorganism due to delayed onset of symptoms.
- an increase in the number of patients admitted with pre-existing colonisation or infection, e.g., transferred from long-term care facilities or other facilities to the hospital;
- intensified screening following the COVID-19 pandemic and the diagnosis of carrier status/colonisation;
- changes in the structure of admissions—a higher percentage of patients with chronic conditions, previously hospitalised or receiving outpatient treatment;
- changes in the functioning of the healthcare system related to the pandemic (e.g., delays in care, changes in the hospital admission process, staffing limits) may have affected the clinical condition of patients and the hospital environment.
4. Study Limitations
5. Materials and Methods
5.1. Study Design
5.2. Ethical Issues
5.3. Statistical Analysis
6. Conclusions
- At the University Teaching Hospital in Bialystok, Poland, there is a rising threat associated with the spread of multiple-drug-resistant microorganisms, particularly VRE, ESBL (+), and KPC (+).
- The change in the infection profile (increase in early infections) indicates the need for broader patient monitoring upon admission and analysis of the sources of their infections.
- The sharp increase in cases of Klebsiella spp. KPC (+) and Enterobacter spp. ESBL (+) may indicate the emergence of epidemic outbreaks or improved detection as a result of intensified epidemiological surveillance.
- The intensive care unit remains the greatest challenge from the perspective of hospital infection control and requires maintaining high-intensity testing and preventive measures.
- In surgical wards, low infection rates may be the result of effective prevention; however, there is a risk of underdiagnosis—regular evaluation of microbiological testing practices is needed.
- In non-surgical wards, the rising trend in infection detection indicates increased vigilance and improved microbiological surveillance but requires ongoing monitoring and optimisation of anti-epidemic procedures.
- Further measures should include monitoring resistance trends, analysing infection outbreaks, and assessing the effectiveness of implemented anti-epidemic interventions.
- Based on the results, we recommend the following in clinical practise:
- implementing targeted screening for patients admitted from high-risk groups (transfers, long-term care stays);
- strengthening surveillance of Enterobacter spp. ESBL (+) and Klebsiella spp. KPC (+);
- continuing and expanding programmes to combat antibiotic resistance, with particular focus on reducing the use of carbapenems and broad-spectrum cephalosporins;
- maintaining high-intensity monitoring in intensive care units.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef]
- Weiner-Lastinger, L.M.; Abner, S.; Edwards, J.R.; Kallen, A.J.; Karlsson, M.; Magill, S.S.; Pollock, D.; See, I.; Soe, M.M.; Walters, M.S.; et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 2020, 41, 1–18. [Google Scholar] [CrossRef]
- De França Diniz Rocha, V.; Neves da Silva, E.; Azevedo, J.; Ribeiro, M.T.; Galvão Reis, M.; Barros, T.F.; Neves Reis, J. The impact of COVID-19 on microbiological profile and antibiotic consumption in ICU: A retrospective study in an infectious disease hospital in Brazil. Braz. J. Infect. Dis. 2024, 28, 103705. [Google Scholar] [CrossRef]
- Nathwani, D.; Varghese, D.; Stephens, J.; Ansari, W.; Martin, S.; Charbonneau, C. Value of hospital antimicrobial stewardship programs [ASPs]: A systematic review. Antimicrob. Resist. Infect. Control 2019, 8, 35. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals; ECDC: Stockholm, Sweden, 2024. [Google Scholar]
- Centers for Disease Control and Prevention. 2023 National and State Healthcare-Associated Infections Progress Report. Available online: https://www.cdc.gov/healthcare-associated-infections/php/data/progress-report.html (accessed on 8 October 2025).
- Act of 5 December 2008 on preventing and combating infections and infectious diseases in humans (consolidated text of Dz.U./ Journal of Laws/ of 2024, item 924). (In Polish)
- Wojtasińska-Żygadło, A.; Rosińczuk, J. [Frequency of occurrence of nosocomial infections and the role of the State Sanitary Inspection in their monitoring]. Współczesne Pielęgniarstwo I Ochr. Zdrowia 2018, 7, 73–77. (In Polish) [Google Scholar]
- Regulation of the Minister of Health of 23 December 2011 on the list of alarm factors, registers of hospital infections and alarm factors, and reports on the current epidemiological situation in hospitals (consolidated text of Dz.U. /Journal of Laws/ of 2024, item 335). (In Polish)
- Raoofi, S.; Pashazadeh Kan, F.; Rafiei, S.; Hosseinipalangi, Z.; Noorani Mejareh, Z.; Khani, S.; Abdollahi, B.; Seyghalani Talab, F.; Sanaei, M.; Zarabi, F.; et al. Global prevalence of nosocomial infection: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0274248. [Google Scholar] [CrossRef]
- Chief Sanitary Inspectorate. Report on the Activities of the State Sanitary Inspectorate in the Field of Public Health for 2024; Chief Sanitary Inspectorate: Warsaw, Poland, 2025. (In Polish) [Google Scholar]
- Mroczkowska, A.; Pawlik, K.; Bysiek, J.; Hryniewicz, W.; Skoczyńska, A. Monitoring the Use of Antibiotics in Inpatient Care for 2023; National Medicines Institute: Warsaw, Poland, 2024. (In Polish) [Google Scholar]
- Chmielarczyk, A.; Pomorska-Wesołowska, M.; Romaniszyn, D.; Wójkowska-Mach, J. Healthcare-Associated Laboratory-Confirmed Bloodstream Infections—Species Diversity and Resistance Mechanisms, a Four-Year Retrospective Laboratory-Based Study in the South of Poland. Int. J. Environ. Res. Public Health 2021, 18, 2785. [Google Scholar] [CrossRef]
- Al Rubaye, M.; Janice, J.; Bjørnholt, J.V.; Kacelnik, O.; Haldorsen, B.C.; Nygaard, R.M.; Hegstad, J.; Sundsfjord, A.; Hegstad, K.; The Norwegian Vre Study Group. The population structure of vancomycin-resistant and -susceptible Enterococcus faecium in a low-prevalence antimicrobial resistance setting is highly influenced by circulating global hospital-associated clones. Microb. Genome 2023, 9, 001160. [Google Scholar] [CrossRef]
- Brkić, S.; Božić, D.D.; Stojanović, N.; Bulbuk, D.; Jovanović, M.; Ćirković, I. Carbapenemase-producing Klebsiella pneumoniae in community settings: A cross-sectional study in Belgrade, Serbia. Future Microbiol. 2023, 18, 389–397. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, R.F. The interface between COVID-19 and bacterial healthcare-associated infections. Clin. Microbiol. Infect. 2021, 27, 1772–1776. [Google Scholar] [CrossRef]
- Karakosta, P.; Meletis, G.; Kousouli, E.; Protonotariou, E.; Tarpatzi, A.; Vourli, S.; Georgiou, P.C.; Mamali, V.; Skoura, L.; Zarkotou, O.; et al. Rectal colonization with multidrug-resistant organisms and risk for bloodstream infection among high-risk Greek patients. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Thuy, D.B.; Campbell, J.; Nhat, L.T.H.; Hoang, N.V.M.; Hao, N.V.; Baker, S.; Geskus, R.B.; Thwaites, G.E.; Chau, N.V.V.; Thwaites, C.L. Hospital-acquired colonization and infections in a Vietnamese intensive care unit. PLoS ONE 2018, 13, e0203600. [Google Scholar] [CrossRef] [PubMed]
- Erdem, H.; Ankarali, H.; Al-Tawfiq, J.A.; Angamuthu, K.; Piljic, D.; Umihanic, A.; Dayyab, F.; Karamanlioğlu, D.; Pekok, A.U.; Cagla-Sonmezer, M.; et al. Mortality Associated with Surgical Site Infections Following Cardiac Surgery: Insights from the International ID-IRI Study. Ijid Reg. 2025, 14, 100566. [Google Scholar] [CrossRef]
- Wojkowska-Mach, J.; Godman, B.; Glassman, A.; Kurdi, A.; Pilc, A.; Rozanska, A.; Skoczyński, S.; Walaszek, M.; Bochenek, T. Antibiotic consumption and antimicrobial resistance in Poland; findings and implications. Antimicrob. Resist. Infect. Control 2018, 7, 136. [Google Scholar] [CrossRef]
- Durlak, U.; Kapturkiewicz, C.; Różańska, A.; Gajda, M.; Krzyściak, P.; Kania, F.; Wójkowska-Mach, J. Is Antimicrobial Stewardship Policy Effectively Implemented in Polish Hospitals? Results from Antibiotic Consumption Surveillance before and during the COVID-19 Pandemic. Antibiotics 2024, 13, 636. [Google Scholar] [CrossRef]
- Szumska, E.; Czajkowski, P.; Zablocki, M.; Rozkiewicz, D. A Multifaceted Approach to the “Bare below the Elbow” Concept and Hand Hygiene Compliance among Healthcare Professionals—Multicenter Population-Based Study. Int. J. Environ. Res. Public Health 2023, 20, 4435. [Google Scholar] [CrossRef]
- Kajova, M.; Khawaja, T.; Kangas, J.; Mäkinen, H.; Kantele, A. Import of multidrug-resistant bacteria from abroad through interhospital transfers, Finland, 2010–2019. Eurosurveillance 2021, 26, 2001360. [Google Scholar] [CrossRef]
- Abubakar, U.; Awaisu, A.; Hayat Khan, A.; Alam, K. Impact of COVID-19 Pandemic on Healthcare-Associated Infections: A Systematic Review and Meta-Analysis. Antibiotics 2023, 12, 1600. [Google Scholar] [CrossRef] [PubMed]
- Campos-Madueno, E.I.; Moradi, M.; Eddoubaji, Y.; Shahi, F.; Moradi, S.; Bernasconi, O.J.; Moser, A.I.; Endimiani, A. Intestinal colonization with multidrug-resistant Enterobacterales: Screening, epidemiology, clinical impact, and strategies to decolonize carriers. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 229–254. [Google Scholar] [CrossRef] [PubMed]
- Han, K.T.; Kim, S. Impact of COVID-19 on nurse staffing levels and healthcare-associated infections in medical institutions: A retrospective cohort study. Sci. Rep. 2025, 15, 13351. [Google Scholar] [CrossRef] [PubMed]
- Golli, A.L.; Popa, S.G.; Ghenea, A.E.; Turcu, F.L. The Impact of the COVID-19 Pandemic on the Antibiotic Resistance of Gram-Negative Pathogens Causing Bloodstream Infections in an Intensive Care Unit. Biomedicines 2025, 13, 379. [Google Scholar] [CrossRef]


| Year 2020 | Year 2021 | Year 2022 | Year 2023 | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Number of Infected Patients | Incidence *** | 95% CI **** | Number of Infected Patients | Incidence *** | 95% CI **** | Number of Infected Patients | Incidence *** | 95% CI **** | Number of Infected Patients | Incidence *** | 95% CI **** | |||||||||
| Total | <72 h * | >72 h ** | Total | <72 h * | >72 h ** | Total | <72 h * | >72 h ** | Total | <72 h * | >72 h ** | |||||||||
| MRSA | 89 | 56 | 33 | 2.07 | (1.68, 2.55) | 84 | 54 | 30 | 1.64 | (1.32, 2.03) | 140 | 92 | 48 | 2.56 | (2.17, 3.02) | 124 | 86 | 38 | 2.02 | (1.69, 2.41) |
| Enterococcus faecalis VRE | 2 | 2 | 0 | 0.05 | (0.01, 0.18) | 0 | 0 | 0 | 0.00 | NA | 7 | 7 | 0 | 0.13 | (0.06, 0.26) | 19 | 10 | 9 | 0.31 | (0.19, 0.48) |
| Enterococcus faecium VRE | 324 | 175 | 149 | 7.55 | (6.77, 8.41) | 455 | 222 | 233 | 8.90 | (8.12, 9.75) | 624 | 374 | 250 | 11.43 | (10.57, 12.35) | 671 | 357 | 314 | 10.95 | (10.16, 11.81) |
| Escherichia coli ESBL (+) | 100 | 48 | 52 | 2.33 | (1.91, 2.83) | 123 | 68 | 55 | 2.40 | (2.01, 2.87) | 204 | 125 | 79 | 3.74 | (3.25, 4.28) | 139 | 91 | 48 | 2.27 | (1.92, 2.67) |
| Escherichia coli KPC (+) | 0 | 0 | 0 | 0.00 | NA | 0 | 0 | 0 | 0.00 | NA | 0 | 0 | 0 | 0.00 | NA | 3 | 1 | 2 | 0.05 | (0.01, 0.15) |
| Escherichia coli MBL/NDM (+) | 1 | 0 | 1 | 0.02 | (0.003, 0.16) | 6 | 5 | 1 | 0.12 | (0.05, 0.26) | 11 | 4 | 7 | 0.20 | (0.11, 0.36) | 4 | 2 | 2 | 0.06 | (0.02, 0.17) |
| Klebsiella spp. ESBL (+) | 169 | 52 | 117 | 3.94 | (3.38, 4.57) | 174 | 59 | 115 | 3.40 | (2.93, 3.94) | 219 | 112 | 107 | 4.01 | (3.51, 4.57) | 236 | 98 | 138 | 3.85 | (3.39, 4.37) |
| Klebsiella spp. KPC (+) | 0 | 0 | 0 | 0.00 | NA | 4 | 1 | 3 | 0.08 | (0.02, 0.20) | 48 | 19 | 29 | 0.88 | (0.66, 1.16) | 34 | 22 | 12 | 0.55 | (0.39, 0.77) |
| Klebsiella pneumoniae MBL/NDM infection | 91 | 36 | 55 | 2.12 | (1.72, 2.60) | 138 | 30 | 108 | 2.70 | (2.28, 3.18) | 150 | 59 | 91 | 2.75 | (2.34, 3.22) | 83 | 27 | 56 | 1.35 | (1.09, 1.68) |
| Klebsiella pneumoniae MBL/NDM colonisation | 131 | 54 | 77 | 3.05 | (2.57, 3.62) | 141 | 67 | 74 | 2.76 | (2.33, 3.25) | 103 | 55 | 48 | 1.89 | (1.55, 2.28) | 109 | 67 | 42 | 1.78 | (1.47, 2.14) |
| Enterobacter spp. ESBL (+) | 3 | 3 | 0 | 0.07 | (0.02, 0.21) | 1 | 1 | 0 | 0.02 | (0.002, 0.13) | 32 | 24 | 8 | 0.59 | (0.41, 0.82) | 30 | 12 | 18 | 0.49 | (0.34, 0.70) |
| Enterobacter spp. KPC (+) | 0 | 0 | 0 | 0.00 | NA | 0 | 0 | 0 | 0.00 | NA | 1 | 0 | 1 | 0.02 | (0.002, 0.13) | 9 | 5 | 4 | 0.15 | (0.07, 0.28) |
| Pseudomonas aeruginosa | 41 | 6 | 35 | 0.95 | (0.70, 1.29) | 44 | 12 | 32 | 0.86 | (0.64, 1.15) | 63 | 14 | 49 | 1.15 | (0.90, 1.47) | 72 | 23 | 49 | 1.17 | (0.93, 1.48) |
| Acinetobacter spp. | 47 | 14 | 33 | 1.09 | (0.82, 1.45) | 73 | 14 | 59 | 1.43 | (1.13, 1.79) | 77 | 16 | 61 | 1.41 | (1.12, 1.76) | 119 | 23 | 96 | 1.94 | (1.62, 2.32) |
| Clostridium difficile | 56 | 20 | 36 | 1.30 | (1.00, 1.69) | 90 | 45 | 45 | 1.76 | (1.43, 2.16) | 167 | 116 | 51 | 3.06 | (2.62, 3.55) | 161 | 118 | 43 | 2.63 | (2.25, 3.06) |
| Clostridium perfringens | 3 | 3 | 0 | 0.07 | (0.02, 0.21) | 5 | 5 | 0 | 0.10 | (0.04, 0.23) | 8 | 6 | 2 | 0.15 | (0.07, 0.29) | 4 | 3 | 1 | 0.06 | (0.02, 0.17) |
| Total | 1057 | 469 | 588 | 24.64 | (23.21, 26.15) | 1338 | 583 | 755 | 26.17 | (24.82, 27.59) | 1854 | 1023 | 831 | 33.96 | (32.47, 35.51) | 1817 | 945 | 872 | 29.67 | (28.35, 31.04) |
| Type of Hospital Ward | Year | ||||
|---|---|---|---|---|---|
| Parameters | 2020 | 2021 | 2022 | 2023 | |
| Anaesthesiology and intensive care | Number of person-days | 7493 | 8127 | 5984 | 6007 |
| Number of microbiological tests | 9765 | 10,794 | 7432 | 7615 | |
| Testing rate per 1000 person-days | 1303.22 | 1328.17 | 1241.98 | 1267.69 | |
| Number of infections detected | 212 | 305 | 206 | 216 | |
| Infection rate per 1000 person-days | 28.29 | 37.53 | 34.43 | 35.96 | |
| Surgical | Number of person-days | 45,413 | 49,493 | 56,847 | 59,410 |
| Number of microbiological tests | 9246 | 8244 | 11,861 | 13,534 | |
| Testing rate per 1000 person-days | 203.59 | 166.57 | 208.65 | 227.81 | |
| Number of infections detected | 207 | 178 | 261 | 217 | |
| Infection rate per 1000 person-days | 4.56 | 3.60 | 4.59 | 3.65 | |
| Non-surgical | Number of person-days | 86,616 | 96,783 | 102,951 | 101,711 |
| Number of microbiological tests | 31,038 | 38,435 | 41,779 | 35,335 | |
| Testing rate per 1000 person-days | 358.34 | 397.13 | 405.81 | 347.41 | |
| Number of infections detected | 481 | 698 | 945 | 883 | |
| Infection rate per 1000 person-days | 5.55 | 7.21 | 9.18 | 8.68 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filipkowska, M.; Orzechowska, M.; Zarychta, M.; Cybulski, M. Epidemiological Situation of Antibiotic-Resistant Microorganisms Identified in Patients Hospitalised at the University Teaching Hospital in Bialystok, Poland, in the 2020–2023 Period. Antibiotics 2025, 14, 1128. https://doi.org/10.3390/antibiotics14111128
Filipkowska M, Orzechowska M, Zarychta M, Cybulski M. Epidemiological Situation of Antibiotic-Resistant Microorganisms Identified in Patients Hospitalised at the University Teaching Hospital in Bialystok, Poland, in the 2020–2023 Period. Antibiotics. 2025; 14(11):1128. https://doi.org/10.3390/antibiotics14111128
Chicago/Turabian StyleFilipkowska, Monika, Magda Orzechowska, Mateusz Zarychta, and Mateusz Cybulski. 2025. "Epidemiological Situation of Antibiotic-Resistant Microorganisms Identified in Patients Hospitalised at the University Teaching Hospital in Bialystok, Poland, in the 2020–2023 Period" Antibiotics 14, no. 11: 1128. https://doi.org/10.3390/antibiotics14111128
APA StyleFilipkowska, M., Orzechowska, M., Zarychta, M., & Cybulski, M. (2025). Epidemiological Situation of Antibiotic-Resistant Microorganisms Identified in Patients Hospitalised at the University Teaching Hospital in Bialystok, Poland, in the 2020–2023 Period. Antibiotics, 14(11), 1128. https://doi.org/10.3390/antibiotics14111128

