Genetic Determinants and Clonal Composition of Levofloxacin-Resistant Streptococcus agalactiae Isolates from Bulgaria
Abstract
1. Introduction
2. Results
2.1. Studied Population
2.2. Levofloxacin Susceptibility
2.3. Serotyping
2.4. Mutations in Genes Encoding Topoisomerases
2.5. Multi-Locus Sequence Typing (MLST)
3. Discussion
4. Materials and Methods
4.1. Specimen Collection
4.2. GBS Strains
4.3. DNA Extraction
4.4. Antimicrobial Susceptibility Testing
4.5. Serotyping and PCR Amplification of Quinolone-Resistant Genes
4.6. Automated Sequencing
4.7. Multi-Locus Sequence Typing (MLST)
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayes, K.; O’Halloran, F.; Cotter, L. A review of antibiotic resistance in group B Streptococcus: The story so far. Crit. Rev. Microbiol. 2020, 46, 253–269. [Google Scholar] [CrossRef]
- Miselli, F.; Frabboni, I.; Di Martino, M.; Zinani, I.; Buttera, M.; Insalaco, A.; Stefanelli, F.; Lugli, L.; Berardi, A. Transmission of group B Streptococcus in late-onset neonatal disease: A narrative review of current evidence. Ther. Adv. Infect. Dis. 2022, 9, 20499361221142732. [Google Scholar] [CrossRef]
- Berti, F.; Campisi, E.; Toniolo, C.; Morelli, L.; Crotti, S.; Rosini, R.; Romano, M.R.; Pinto, V.; Brogioni, B.; Torricelli, G.; et al. Structure of the type IX group B Streptococcus capsular polysaccharide and its evolutionary relationship with types V and VII. J. Biol. Chem. 2014, 289, 23437–23448. [Google Scholar] [CrossRef] [PubMed]
- Bianchi-Jassir, F.; Seale, A.C.; Kohli-Lynch, M.; Lawn, J.E.; Baker, C.J.; Bartlett, L.; Cutland, C.; Gravett, M.G.; Heath, P.T.; Ip, M.; et al. Preterm birth associated with group B Streptococcus maternal colonization worldwide: Systematic review and meta-analyses. Clin. Infect. Dis. 2017, 65, 133–142. [Google Scholar] [CrossRef]
- Navarro-Torné, A.; Curcio, D.; Moïsi, J.C.; Jodar, L. Burden of invasive group B Streptococcus disease in non-pregnant adults: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0258030. [Google Scholar] [CrossRef]
- Raabe, V.N.; Shane, A.L. Group B streptococcus (Streptococcus agalactiae). Microbiol. Spectr. 2019, 7, 10-1128. [Google Scholar] [CrossRef]
- Gergova, R.; Boyanov, V.; Muhtarova, A.; Alexandrova, A. A Review of the impact of streptococcal infections and antimicrobial resistance on human health. Antibiotics 2024, 13, 360. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.F.; Lee, W.J.; Chu, S.M.; Wang, Y.S.; Huang, H.R.; Yang, P.H.; Lu, J.J.; Tsai, M.H. The clinical and molecular characteristics of invasive Streptococcus agalactiae diseases in nonpregnant adults in Taiwan. J. Microbiol. Immunol. Infect. 2025, 58, 437–443. [Google Scholar] [CrossRef]
- Millanao, A.R.; Mora, A.Y.; Villagra, N.A.; Bucarey, S.A.; Hidalgo, A.A. Biological effects of quinolones: A family of broad-spectrum antimicrobial agents. Molecules 2021, 26, 7153. [Google Scholar] [CrossRef] [PubMed]
- Maia, A.S.; Tiritan, M.E.; Castro, P.M.L. Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1. Ecotoxicol. Environ. Saf. 2018, 155, 144–151. [Google Scholar] [CrossRef]
- Pradhan, B.L.; Yadav, J.P.; Lodhi, L.; Sen, P.; Dey, K.K.; Ghosh, M. Atomic-scale resolution insights into structural and dynamic differences between ofloxacin and levofloxacin. ACS Omega 2023, 8, 24093–24105. [Google Scholar] [CrossRef]
- Rodrigues, C.F.; Silva, F. The rise, fall, and rethink of (Fluoro)quinolones: A quick rundown. Pathogens 2025, 14, 525. [Google Scholar] [CrossRef]
- Riahifard, N.; Tavakoli, K.; Yamaki, J.; Parang, K.; Tiwari, R. Synthesis and evaluation of antimicrobial activity of [R4W4K]-levofloxacin and [R4W4K]-levofloxacin-Q conjugates. Molecules 2017, 22, 957. [Google Scholar] [CrossRef] [PubMed]
- Geremia, N.; Giovagnorio, F.; Colpani, A.; De Vito, A.; Botan, A.; Stroffolini, G.; Toc, D.-A.; Zerbato, V.; Principe, L.; Madeddu, G.; et al. Fluoroquinolones and biofilm: A narrative review. Pharmaceuticals 2024, 17, 1673. [Google Scholar] [CrossRef]
- Noel, G.J. A review of levofloxacin for the treatment of bacterial infections. Clin. Med. Ther. 2009, 1, CMT-S28. [Google Scholar] [CrossRef]
- Savransky, V.; Ionin, B.; Reece, J. Current status and trends in prophylaxis and management of anthrax disease. Pathogens 2020, 9, 370. [Google Scholar] [CrossRef] [PubMed]
- Wahood, S.; Alani, O.; Draw, I.; Shqair, L.; Wang, D.; Bunick, C.G.; Damiani, G.; Ho, J.D.; Obagi, S.; Akbarialiabad, H.; et al. Fluoroquinolones for dermatologists: A practical guide to clinical use and risk management. Pharmaceuticals 2025, 18, 800. [Google Scholar] [CrossRef] [PubMed]
- Rusu, A.; Munteanu, A.C.; Arbănași, E.M.; Uivarosi, V. Overview of side-effects of antibacterial fluoroquinolones: New drugs versus old drugs, a step forward in the safety profile? Pharmaceutics 2023, 15, 804. [Google Scholar] [CrossRef]
- Jackson, M.A.; Schutze, G.E.; Committee on Infectious Diseases. The use of systemic and topical fluoroquinolones. Pediatrics 2016, 138, e20162706. [Google Scholar] [CrossRef]
- Nguyen, J.; Madonia, V.; Bland, C.M.; Stover, K.R.; Eiland, L.S.; Keating, J.; Lemmon, M.; Bookstaver, P.B. A review of antibiotic safety in pregnancy-2025 update. Pharmacotherapy 2025, 45, 227–237. [Google Scholar] [CrossRef]
- Naeem, A.; Badshah, S.L.; Muska, M.; Ahmad, N.; Khan, K. The current case of quinolones: Synthetic approaches and antibacterial activity. Molecules 2016, 21, 268. [Google Scholar] [CrossRef]
- Spencer, A.C.; Panda, S.S. DNA gyrase as a target for quinolones. Biomedicines 2023, 11, 371. [Google Scholar] [CrossRef]
- Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone antibiotics. Medchemcomm 2019, 10, 1719–1739. [Google Scholar] [CrossRef]
- Dang, T.N.; Srinivasan, U.; Britt, Z.; Marrs, C.F.; Zhang, L.; Ki, M.; Foxman, B. Efflux-mediated resistance identified among norfloxacin resistant clinical strains of group B Streptococcus from South Korea. Epidemiol. Health 2014, 36, e2014022. [Google Scholar] [CrossRef] [PubMed]
- Yokota, S.; Sato, K.; Kuwahara, O.; Habadera, S.; Tsukamoto, N.; Ohuchi, H.; Akizawa, H.; Himi, T.; Fujii, N. Fluoroquinolone-resistant Streptococcus pneumoniae strains occur frequently in elderly patients in Japan. Antimicrob. Agents Chemother. 2002, 46, 3311–3315. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, Y.; Fujiwara, H.; Mishima, N.; Tanaka, Y.; Tanimoto, A.; Ikawa, S.; Itoh, Y.; Ezaki, T. First Streptococcus agalactiae isolates highly resistant to quinolones, with point mutations in gyrA and parC. Antimicrob. Agents Chemother. 2003, 47, 3605–3609. [Google Scholar] [CrossRef] [PubMed]
- Wehbeh, W.; Rojas-Diaz, R.; Li, X.; Mariano, N.; Grenner, L.; Segal-Maurer, S.; Tommasulo, B.; Drlica, K.; Urban, C.; Rahal, J.J. Fluoroquinolone-resistant Streptococcus agalactiae: Epidemiology and mechanism of resistance. Antimicrob. Agents Chemother. 2005, 49, 2495–2497. [Google Scholar] [CrossRef]
- Gao, K.; Gao, C.; Huang, L.; Guan, X.; Ji, W.; Chang, C.Y.; McIver, D.J.; Deng, Q.; Zhong, H.; Xie, Y.; et al. Predominance of III/ST19 and Ib/ST10 lineages with High multidrug resistance in fluoroquinolone-resistant group B Streptococci isolates in which a new integrative and conjugative element was identified. Front. Microbiol. 2021, 11, 609526. [Google Scholar] [CrossRef]
- Neemuchwala, A.; Teatero, S.; Patel, S.N.; Fittipaldi, N. Fluoroquinolone Resistance among Clonal Complex 1 Group B Streptococcus Strains. Can. J. Infect. Dis. Med. Microbiol. 2016, 2016, 6403928. [Google Scholar] [CrossRef]
- Li, C.; Sapugahawatte, D.N.; Yang, Y.; Wong, K.T.; Lo, N.W.S.; Ip, M. Multidrug-Resistant Streptococcus agalactiae Strains Found in Human and Fish with High Penicillin and Cefotaxime Non-Susceptibilities. Microorganisms 2020, 8, 1055. [Google Scholar] [CrossRef]
- Jones, N.; Bohnsack, J.F.; Takahashi, S.; Oliver, K.A.; Chan, M.S.; Kunst, F.; Glaser, P.; Rusniok, C.; Crook, D.W.; Harding, R.M.; et al. Multilocus sequence typing system for group B streptococcus. J. Clin. Microbiol. 2003, 41, 2530–2536. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.L. Genomic insights into the distribution and evolution of group B Streptococcus. Front Microbiol. 2019, 10, 1447. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Liu, J.; Ji, T.; Gao, Y.; Yang, D.; Zhao, M.; Zhai, Y.; Cao, Z. Serotype distribution, antimicrobial resistance, and molecular characterization of group B Streptococcus isolates from Chinese pregnant woman. J. Matern. Fetal. Neonatal. Med. 2024, 37, 2295805. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, W.; Li, Y.; Hua, K.; Zhao, Y.; Wang, T.; Liu, L.; Liu, Y.; Wang, Y.; Liu, W.; et al. The increasing burden of group B Streptococcus from 2013 to 2023: A retrospective cohort study in Beijing, China. Microbiol. Spectr. 2025, 13, e02266-24. [Google Scholar] [CrossRef]
- Stewart, A.G.; Burnard, D.; Sowden, D.; McMillan, D. Whole genome sequencing for antimicrobial resistance mechanisms, virulence factors and clonality in invasive Streptococcus agalactiae blood culture isolates recovered in Australia. Pathology 2020, 52, 694–699. [Google Scholar] [CrossRef]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial susceptibility testing: A comprehensive review of currently used methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, U.B.; Poulsen, K.; Ghezzo, C.; Margarit, I.; Kilian, M. Emergence and global dissemination of host-specific Streptococcus agalactiae clones. mBio 2010, 1, e00178-10. [Google Scholar] [CrossRef]
- Hsu, J.-F.; Lu, J.-J.; Lin, C.; Chu, S.-M.; Lin, L.-C.; Lai, M.-Y.; Huang, H.-R.; Chiang, M.-C.; Tsai, M.-H. Clustered regularly interspaced short palindromic repeat analysis of clonal complex 17 serotype III Group B Streptococcus strains causing neonatal invasive diseases. Int. J. Mol. Sci. 2021, 22, 11626. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, H. Current research update on group B streptococcal infection related to obstetrics and gynecology. Front. Pharmacol. 2024, 15, 1395673. [Google Scholar] [CrossRef]
- McGuire, E.; Ready, D.; Ellaby, N.; Potterill, I.; Pike, R.; Hopkins, K.L.; Guy, R.L.; Lamagni, T.; Mack, D.; Scobie, A. A case of penicillin-resistant group B Streptococcus isolated from a patient in the UK. J. Antimicrob. Chemother. 2024, 80, 399–404. [Google Scholar] [CrossRef]
- Boyanov, V.; Alexandrova, A.; Hristova, P.; Hitkova, H.; Gergova, R. Antibiotic resistance and serotypes distribution in Streptococcus agalactiae Bulgarian clinical isolates during the years of 2021–2024. Pol. J. Microbiol. 2024, 73, 505–514. [Google Scholar] [CrossRef]
- Boyanov, V.; Alexandrova, A.; Gergova, R. Genetic mechanisms of antimicrobial non-susceptibility to novel fluoroquinolone delafloxacin among Bulgarian clinical isolates of Streptococcus agalactiae. Curr. Issues Mol. Biol. 2025, 47, 446. [Google Scholar] [CrossRef]
- Rajput, P.; Nahar, K.S.; Rahman, K.M. Evaluation of antibiotic resistance mechanisms in gram-positive bacteria. Antibiotics 2024, 13, 1197. [Google Scholar] [CrossRef] [PubMed]
- Turban, A.; Guérin, F.; Dinh, A.; Cattoir, V. Updated review on clinically-relevant properties of delafloxacin. Antibiotics 2023, 12, 1241. [Google Scholar] [CrossRef]
- Ruiz, J. Unusual and unconsidered mechanisms of bacterial resilience and resistance to quinolones. Life 2024, 14, 383. [Google Scholar] [CrossRef]
- Matani, C.; Trezzi, M.; Matteini, A.; Catalani, C.; Messeri, D.; Catalani, C. Streptococcus agalactiae: Prevalence of antimicrobial resistance in vaginal and rectal swabs in Italian pregnant women. Infez. Med. 2016, 24, 217–221. [Google Scholar]
- Lopes, E.; Fernandes, T.; Machado, M.P.; Carriço, J.A.; Melo-Cristino, J.; Ramirez, M.; Martins, E.R.; Portuguese Group for the Study of Streptococcal Infections. Increasing macrolide resistance among Streptococcus agalactiae causing invasive disease in non-pregnant adults was driven by a single capsular-transformed lineage, Portugal, 2009 to 2015. Eurosurveillance 2018, 23, 1700473. [Google Scholar] [CrossRef] [PubMed]
- Vuillemin, X.; Hays, C.; Plainvert, C.; Dmytruk, N.; Louis, M.; Touak, G.; Saint-Pierre, B.; Adoux, L.; Letourneur, F.; Frigo, A.; et al. Invasive group B Streptococcus infections in non-pregnant adults: A retrospective study, France, 2007–2019. Clin. Microbiol. Infect. 2021, 27, e1–e129. [Google Scholar] [CrossRef]
- Aygar, İ. Resistance rates of Streptococcus agalactiae strains isolated from urine samples to various antibiotics. Value Health Sci. 2023, 13, 3. [Google Scholar] [CrossRef]
- Marc, C.C.; Susan, M.; Sprintar, S.A.; Licker, M.; Oatis, D.A.; Marti, D.T.; Susan, R.; Nicolescu, L.C.; Mihu, A.G.; Olariu, T.R.; et al. Prevalence and antibiotic resistance of Streptococcus agalactiae in women of childbearing age presenting urinary tract infections from western Romania. Life 2024, 14, 1476. [Google Scholar] [CrossRef] [PubMed]
- Botelho, A.C.N.; Oliveira, J.G.; Damasco, A.P.; Santos, K.T.B.; Ferreira, A.F.M.; Rocha, G.T.; Marinho, P.S.; Bornia, R.B.G.; Pinto, T.C.A.; Américo, M.A.; et al. Streptococcus agalactiae carriage among pregnant women living in Rio de Janeiro, Brazil, over a period of eight years. PLoS ONE 2018, 13, e0196925. [Google Scholar] [CrossRef]
- McGee, L.; Chochua, S.; Li, Z.; Mathis, S.; Rivers, J.; Metcalf, B.; Ryan, A.; Alden, N.; Farley, M.M.; Harrison, L.H.; et al. Multistate, population-based distributions of candidate vaccine targets, clonal complexes, and resistance features of invasive group B Streptococci within the United States, 2015–2017. Clin. Infect. Dis. 2021, 72, 1004–1013. [Google Scholar] [CrossRef]
- Kovacec, V.; Di Gregorio, S.; Pajon, M.; Khan, U.B.; Poklepovich, T.; Campos, J.; Crestani, C.; Bentley, S.; Jamrozy, D.; Mollerach, M.; et al. Genomic characterisation of group B Streptococcus from Argentina: Insights into prophage diversity, virulence factors and antibiotic resistance genes. Microb Genom. 2025, 11, 001399. [Google Scholar] [CrossRef]
- Gizachew, M.; Tiruneh, M.; Moges, F.; Tessema, B. Streptococcus agalactiae maternal colonization, antibiotic resistance and serotype profiles in Africa: A meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Van Du, V.; Dung, P.T.; Toan, N.L.; Van Mao, C.; Bac, N.T.; Van Tong, H.; Son, H.A.; Thuan, N.D.; Viet, N.T. Antimicrobial resistance in colonizing group B Streptococcus among pregnant women from a hospital in Vietnam. Sci. Rep. 2021, 11, 20845. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Y.; Lin, M.; Bao, J.; Wang, G.; Dong, R.; Zou, P.; Chen, Y.; Li, N.; Zhang, T.; et al. Maternal colonization with group B Streptococcus and antibiotic resistance in China: Systematic review and meta-analyses. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 5. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, T.H.; Kim, E.T.; Kim, Y.R.; Lee, H. Molecular epidemiology and virulence factors of group B Streptococcus in South Korea according to the invasiveness. BMC Infect. Dis. 2024, 24, 740. [Google Scholar] [CrossRef]
- Gergova, R.T.; Muhtarova, A.; Tsitou, V.M.; Mitov, I. Emergence of multidrug-resistant and -hypervirulent Streptococcus agalactiae in Bulgarian patients. Balk. Med. J. 2021, 38, 143–144. [Google Scholar] [CrossRef]
- Hooper, D.C.; Jacoby, G.A. Mechanisms of drug resistance: Quinolone resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 12–31. [Google Scholar] [CrossRef] [PubMed]
- Piccinelli, G.; Gargiulo, F.; Corbellini, S.; Ravizzola, G.; Bonfanti, C.; Caruso, A.; De Francesco, M.A. Emergence of the first levofloxacin-resistant strains of Streptococcus agalactiae isolated in Italy. Antimicrob. Agents Chemother. 2015, 59, 2466–2469. [Google Scholar] [CrossRef]
- Shabayek, S.; Spellerberg, B. Group B Streptococcal colonization, molecular characteristics, and epidemiology. Front. Microbiol. 2018, 9, 437. [Google Scholar] [CrossRef]
- Jones, M.E.; Sahm, D.F.; Martin, N.; Scheuring, S.; Heisig, P.; Thornsberry, C.; Köhrer, K.; Schmitz, F.J. Prevalence of gyrA, gyrB, parC, and parE mutations in clinical isolates of Streptococcus pneumoniae with decreased susceptibilities to different fluoroquinolones and originating from Worldwide Surveillance Studies during the 1997–1998 respiratory season. Antimicrob. Agents. Chemother. 2000, 44, 462–466. [Google Scholar] [CrossRef]
- Nagai, K.; Davies, T.A.; Dewasse, B.E.; Jacobs, M.R.; Appelbaum, P.C. Single- and multi-step resistance selection study of gemifloxacin compared with trovafloxacin, ciprofloxacin, gatifloxacin and moxifloxacin in Streptococcus pneumoniae. J. Antimicrob. Chemother. 2001, 48, 365–374. [Google Scholar] [CrossRef]
- Miró, E.; Rebollo, M.; Rivera, A.; Alvarez, M.T.; Navarro, F.; Mirelis, B.; Coll, P. Streptococcus agalactiae highly resistant to fluoroquinolones. Enferm. Infecc. Microbiol. Clin. 2006, 24, 562–563. [Google Scholar] [CrossRef] [PubMed]
- Arai, K.; Hirakata, Y.; Yano, H.; Kanamori, H.; Endo, S.; Hirotani, A.; Abe, Y.; Nagasawa, M.; Kitagawa, M.; Aoyagi, T.; et al. Emergence of fluoroquinolone-resistant Streptococcus pyogenes in Japan by a point mutation leading to a new amino acid substitution. J. Antimicrob. Chemother. 2011, 66, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Khan, U.B.; Dyster, V.; Chaguza, C.; van Sorge, N.M.; van de Beek, D.; Man, W.K.; Bentley, S.D.; Bijlsma, M.W.; Jamrozy, D. Genetic markers associated with host status and clonal expansion of group B Streptococcus in the Netherlands. Front. Microbiol. 2024, 15, 1410651. [Google Scholar] [CrossRef] [PubMed]
- Lohrmann, F.; Efstratiou, A.; Sørensen, U.B.S.; Creti, R.; Decheva, A.; Křížová, P.; Kozáková, J.; Rodriguez-Granger, J.; De La Rosa Fraile, M.; Margarit, I.; et al. Maternal Streptococcus agalactiae colonization in Europe: Data from the multi-center DEVANI study. Infection 2025, 53, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Beauruelle, C.; Treluyer, L.; Pastuszka, A.; Cochard, T.; Lier, C.; Mereghetti, L.; Glaser, P.; Poyart, C.; Lanotte, P. CRISPR typing increases the discriminatory power of Streptococcus agalactiae typing methods. Front. Microbiol. 2021, 12, 675597. [Google Scholar] [CrossRef]
- Lacasse, M.; Valentin, A.S.; Corvec, S.; Bémer, P.; Jolivet-Gougeon, A.; Plouzeau, C.; Tandé, D.; Mereghetti, L.; Bernard, L.; Lartigue, M.F.; et al. Genotypic characterization and biofilm production of group B Streptococcus strains isolated from bone and joint infections. Microbiol. Spectr. 2022, 10, e0232921. [Google Scholar] [CrossRef]
- Jamrozy, D.; Gopal Rao, G.; Feltwell, T.; Lamagni, T.; Khanna, P.; Efstratiou, A.; Parkhill, J.; Bentley, S.D. Population genetics of group B Streptococcus from maternal carriage in an ethnically diverse community in London. Front. Microbiol. 2023, 14, 1185753. [Google Scholar] [CrossRef]
- Creti, R.; Imperi, M.; Khan, U.B.; Berardi, A.; Recchia, S.; Alfarone, G.; Gherardi, G. Emergence of high-level gentamicin resistance in Streptococcus agalactiae hypervirulent serotype IV ST1010 (CC452) strains by acquisition of a novel integrative and conjugative element. Antibiotics 2024, 13, 491. [Google Scholar] [CrossRef]
- Jamrozy, D.; Bijlsma, M.W.; de Goffau, M.C.; van de Beek, D.; Kuijpers, T.W.; Parkhill, J.; van der Ende, A.; Bentley, S.D. Increasing incidence of group B streptococcus neonatal infections in the Netherlands is associated with clonal expansion of CC17 and CC23. Sci. Rep. 2020, 10, 9539. [Google Scholar] [CrossRef]
- Perme, T.; Golparian, D.; Ihan, M.B.; Rojnik, A.; Lučovnik, M.; Kornhauser Cerar, L.; Fister, P.; Krivec, J.L.; Grosek, Š.; Ihan, A.; et al. Genomic and phenotypic characterisation of invasive neonatal and colonising group B Streptococcus isolates from Slovenia, 2001–2018. BMC Infect. Dis. 2020, 20, 958. [Google Scholar] [CrossRef]
- Andersen, M.; Smith, B.; Murra, M.; Nielsen, S.Y.; Slotved, H.C.; Henriksen, T.B. Invasive group B Streptococcus strains and clinical characteristics in Danish infants from 1999 to 2009. Front. Microbiol. 2022, 13, 1001953. [Google Scholar] [CrossRef]
- Hays, C.; Louis, M.; Plainvert, C.; Dmytruk, N.; Touak, G.; Trieu-Cuot, P.; Poyart, C.; Tazi, A. Changing epidemiology of group B Streptococcus susceptibility to fluoroquinolones and aminoglycosides in France. Antimicrob. Agents Chemother. 2016, 60, 7424–7430. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Costa, N.; Simões, L.; Marinho, P.; Fracalanzza, S.; Teixeira, L.; Khan, U.; Jamrozy, D.; Bentley, S.; Pinto, T. Group B Streptococcus genomic epidemiology indicates that the neonatal disease-associated clonal complex 23 is the major lineage found colonizing pregnant women in Brazil. Int. J. Infect. Dis. 2025, 152, 107608. [Google Scholar] [CrossRef]
- Perez, V.P.; Torini, L.R.; Manieri, F.Z.; de Queiroz, S.B.; de Brito Gomes, J.I.A.; Filho, L.S.; Campana, E.H.; de Oliveira, C.J.B.; Sousa, E.S.S.; Camargo, I.L.B.C. Genomic diversity, virulome, and resistome of Streptococcus agalactiae in Northeastern Brazil: Are multi-host adapted strains rising? Pathogens 2025, 14, 292. [Google Scholar] [CrossRef]
- Jones, S.; Newton, P.; Payne, M.; Furfaro, L. Epidemiology, antimicrobial resistance, and virulence determinants of group B Streptococcus in an Australian setting. Front. Microbiol. 2022, 13, 839079. [Google Scholar] [CrossRef]
- Villavicencio, K.L.H.; Job, M.J.; Burghard, A.C.; Taffet, A.; Banda, F.M.; Vurayai, M.; Mokomane, M.; Arscott-Mills, T.; Mazhani, T.; Nchingane, S.; et al. Genomic analysis of group B Streptococcus carriage isolates from Botswana reveals distinct local epidemiology and identifies novel strains. Open Forum Infect. Dis. 2023, 10, ofad496. [Google Scholar] [CrossRef] [PubMed]
- Shabayek, S.; Ferrieri, P.; Spellerberg, B. Group B Streptococcal colonization in African countries: Prevalence, capsular serotypes, and molecular sequence types. Pathogens 2021, 10, 1606. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.H.; Hsu, J.F.; Lai, M.Y.; Lin, L.C.; Chu, S.M.; Huang, H.R.; Chiang, M.C.; Fu, R.H.; Lu, J.J. Molecular characteristics and antimicrobial resistance of group B Streptococcus strains causing invasive disease in neonates and adults. Front. Microbiol. 2019, 10, 264. [Google Scholar] [CrossRef]
- Lee, Y.; Bae, H.G.; Won, D.; Yun, W.; Lee, H.; Choi, J.R.; Uh, Y.; Lee, K. Comparative analysis of the molecular characteristics of group B Streptococcus isolates collected from pregnant Korean women using whole-genome sequencing. Ann. Lab. Med. 2023, 43, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, M.; Haghighi, M.; Mirzaei, Y.; Pourhossein, B.; Dadashi, M.; Nasiri, M.J. Genetic diversity and biofilm formation of invasive and noninvasive Streptococcus agalactiae isolates: Emergence of hypervirulent CC19 strains in Tehran, Iran. Acta Microbiol. Immunol. Hung. 2023, 70, 331–339. [Google Scholar] [CrossRef]
- Alzayer, M.; Alkhulaifi, M.M.; Alyami, A.; Aldosary, M.; Alageel, A.; Garaween, G.; Shibl, A.; Al-Hamad, A.M.; Doumith, M. Genomic insights into the diversity, virulence, and antimicrobial resistance of group B Streptococcus clinical isolates from Saudi Arabia. Front. Cell. Infect. Microbiol. 2024, 14, 1377993. [Google Scholar] [CrossRef]
- Maladan, Y.; Sari, R.F.; Sarassari, R.; Balqis, S.A.; Wahid, G.A.; Ervina, W.F.; Putri, N.D.; Safari, D. Genomic analysis of virulence, antimicrobial resistance, and capsular polysaccharide locus of group B Streptococcus isolated from Indonesia. Microbe 2025, 7, 100367. [Google Scholar] [CrossRef]
- Ryu, H.; Park, Y.J.; Kim, Y.K.; Chang, J.; Yu, J.K. Dominance of clonal complex 10 among the levofloxacin-resistant Streptococcus agalactiae isolated from bacteremic patients in a Korean hospital. J. Infect. Chemother. 2014, 20, 509–511. [Google Scholar] [CrossRef]
- Wu, C.J.; Lai, J.F.; Huang, I.W.; Hsieh, L.Y.; Wang, H.Y.; Shiau, Y.R.; Lauderdale, T.L. Multiclonal emergence of levofloxacin-resistant group B Streptococcus, Taiwan. J. Antimicrob. Chemother. 2017, 72, 3263–3271. [Google Scholar] [CrossRef]
- Kawaguchiya, M.; Urushibara, N.; Aung, M.S.; Shimada, S.; Nakamura, M.; Ito, M.; Habadera, S.; Kobayashi, N. Molecular characterization and antimicrobial resistance of Streptococcus agalactiae isolated from pregnant women in Japan, 2017–2021. IJID Reg. 2022, 4, 143–145. [Google Scholar] [CrossRef]
- Bianchi-Jassir, F.; Paul, P.; To, K.N.; Carreras-Abad, C.; Seale, A.C.; Jauneikaite, E.; Madhi, S.A.; Russell, N.J.; Hall, J.; Madrid, L.; et al. Systematic review of group B Streptococcal capsular types, sequence types and surface proteins as potential vaccine candidates. Vaccine 2020, 38, 6682–6694. [Google Scholar] [CrossRef] [PubMed]
- Watkins, F.L.K.; McGee, L.; Schrag, S.J.; Beall, B.; Jain, J.H.; Pondo, T.; Farley, M.M.; Harrison, L.H.; Zansky, S.M.; Baumbach, J.; et al. Epidemiology of invasive Group B Streptococcal infections among nonpregnant adults in the United States, 2008-2016. JAMA Intern. Med. 2019, 179, 479–488. [Google Scholar] [CrossRef]
- Emaneini, M.; Jabalameli, F.; Mirsalehian, A.; Ghasemi, A.; Beigverdi, R. Characterization of virulence factors, antimicrobial resistance pattern and clonal complexes of group B streptococci isolated from neonates. Microb. Pathog. 2016, 99, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Amini, C.; Bagheri, P.; Salehi, Z.; Goudarzi, M. Unveiling the genetic landscape of Streptococcus agalactiae bacteremia: Emergence of hypervirulent CC1 strains and new CC283 strains in Tehran, Iran. BMC Microbiol. 2024, 24, 365. [Google Scholar] [CrossRef]
- Bellais, S.; Six, A.; Fouet, A.; Longo, M.; Dmytruk, N.; Glaser, P.; Trieu-Cuot, P.; Poyart, C. Capsular switching in group B Streptococcus CC17 hypervirulent clone: A future challenge for polysaccharide vaccine development. J. Infect. Dis. 2012, 206, 1745–1752. [Google Scholar] [CrossRef]
- Teatero, S.; McGeer, A.; Low, D.E.; Li, A.; Demczuk, W.; Martin, I.; Fittipaldi, N. Characterization of invasive group B streptococcus strains from the greater Toronto area, Canada. J. Clin. Microbiol. 2014, 52, 1441–1447. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0. 2025. Available online: http://www.eucast.org (accessed on 2 September 2025).
- Poyart, C.; Tazi, A.; Réglier-Poupet, H.; Billoët, A.; Tavares, N.; Raymond, J.; Trieu-Cuot, P. Multiplex PCR assay for rapid and accurate capsular typing of group B streptococci. J. Clin. Microbiol. 2007, 45, 1985–1988. [Google Scholar] [CrossRef]
- Murayama, S.Y.; Seki, C.; Sakata, H.; Sunaoshi, K.; Nakayama, E.; Iwata, S.; Sunakawa, K.; Ubukata, K. Invasive Streptococcal Disease Working Group. Capsular type and antibiotic resistance in Streptococcus agalactiae isolates from patients, ranging from newborns to the elderly, with invasive infections. Antimicrob. Agents Chemother. 2009, 53, 2650–2653. [Google Scholar] [CrossRef]
- Delannoy, C.M.; Crumlish, M.; Fontaine, M.C.; Pollock, J.; Foster, G.; Dagleish, M.P.; Turnbull, J.F.; Zadoks, R.N. Human Streptococcus agalactiae strains in aquatic mammals and fish. BMC Microbiol. 2013, 13, 41. [Google Scholar] [CrossRef]
- Imperi, M.; Pataracchia, M.; Alfarone, G.; Baldassarri, L.; Orefici, G.; Creti, R. A multiplex PCR assay for the direct identification of the capsular type (Ia to IX) of Streptococcus agalactiae. J. Microbiol. Methods 2010, 80, 212–214. [Google Scholar] [CrossRef] [PubMed]
- Feil, E.J.; Li, B.C.; Aanensen, D.M.; Hanage, W.P.; Spratt, B.G. eBURST: Inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 2004, 186, 1518–1530. [Google Scholar] [CrossRef]
- Aanensen, D.M.; Spratt, B.G. The multilocus sequence typing network: Mlst.net. Nucleic Acids Res. 2005, 33, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]





| Serotypes | Levofloxacin-Resistant (n = 39) | Levofloxacin-Susceptible (n = 289) | Total Number (n = 328) | p-Value * (Levofloxacin-Resistant/Levofloxacin-Susceptible) |
|---|---|---|---|---|
| Ia | 1 (2.6%) | 80 (27.7%) | 81 (24.7%) | 0.0002 |
| Ib | 0 | 4 (1.4%) | 4 (1.2%) | |
| II | 5 (12.8%) | 42 (14.5%) | 47 (14.3%) | 1 |
| III | 10 (25.6%) | 52 (18.0%) | 62 (18.9%) | 0.276 |
| IV | 5 (12.8%) | 21 (7.3%) | 26 (7.9%) | 0.214 |
| V | 12 (30.8%) | 60 (20.8%) | 72 (22.0%) | 0.155 |
| VI | 3 (7.7%) | 0 | 3 (0.9%) | |
| VII | 0 | 1 (0.3%) | 1 (0.3%) | |
| VIII | 0 | 0 | 0 | |
| IX | 0 | 0 | 0 | |
| NT ** | 3 (7.7%) | 29 (10.0%) | 32 (9.8%) | 0.781 |
| CCs * | Vaginal Samples (n = 25) | Extra-Vaginal Samples | Total Number (n = 39) | p-Value ** (Vaginal/Extra-Vaginal Samples) | Mean Age (Years Old) | ||
|---|---|---|---|---|---|---|---|
| Invasive (n = 5) | Non-Invasive (n = 9) | Total Extra-Vaginal (n = 14) | |||||
| CC1 | 2 (8.0%) | 0 | 2 (22.2%) | 2 (14.3%) | 4 (10.3%) | 0.609 | 50.3 |
| CC12 | 0 | 1 (20.0%) | 0 | 1 (7.1%) | 1 (2.6%) | 67.0 | |
| CC19 | 16 (64.0%) | 4 (80.0%) | 5 (55.6%) | 9 (64.3%) | 25 (64.1%) | 1 | 37.1 |
| CC23 | 1 (4.0%) | 0 | 0 | 0 | 1 (2.6%) | 50.0 | |
| CC452 | 3 (12.0%) | 0 | 0 | 0 | 3 (7.7%) | 44.3 | |
| CC459 | 1 (4.0%) | 0 | 1 (11.1%) | 1 (7.1%) | 2 (5.1%) | 1 | 61.0 |
| Singletons | 2 (8.0%) | 0 | 1 (11.1%) | 1 (7.1%) | 3 (7.7%) | 1 | 48.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyanov, V.S.; Alexandrova, A.S.; Gergova, R.T. Genetic Determinants and Clonal Composition of Levofloxacin-Resistant Streptococcus agalactiae Isolates from Bulgaria. Antibiotics 2025, 14, 1121. https://doi.org/10.3390/antibiotics14111121
Boyanov VS, Alexandrova AS, Gergova RT. Genetic Determinants and Clonal Composition of Levofloxacin-Resistant Streptococcus agalactiae Isolates from Bulgaria. Antibiotics. 2025; 14(11):1121. https://doi.org/10.3390/antibiotics14111121
Chicago/Turabian StyleBoyanov, Vasil S., Alexandra S. Alexandrova, and Raina T. Gergova. 2025. "Genetic Determinants and Clonal Composition of Levofloxacin-Resistant Streptococcus agalactiae Isolates from Bulgaria" Antibiotics 14, no. 11: 1121. https://doi.org/10.3390/antibiotics14111121
APA StyleBoyanov, V. S., Alexandrova, A. S., & Gergova, R. T. (2025). Genetic Determinants and Clonal Composition of Levofloxacin-Resistant Streptococcus agalactiae Isolates from Bulgaria. Antibiotics, 14(11), 1121. https://doi.org/10.3390/antibiotics14111121

