Use of Aztreonam–Avibactam with Rapid Eravacycline Step-Down Therapy for a Tibial Septic Non-Union by NDM-Producing Enterobacter cloacae
Abstract
1. Introduction
2. Patient Case
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Rankin, D.A.; Stahl, A.; Sabour, S.; Khan, M.A.; Armstrong, T.; Huang, J.Y.; Baggs, J.; Walters, M.S. Changes in Carbapenemase-Producing Carbapenem-Resistant Enterobacterales, 2019 to 2023. Ann. Intern. Med. 2025. Epub ahead of print. [Google Scholar] [CrossRef]
- Fomda, B.A.; Khan, A.; Zahoor, D. NDM-1 (New Delhi metallo beta lactamase-1) producing Gram-negative bacilli: Emergence & clinical implications. Indian. J. Med. Res. 2014, 140, 672–678. [Google Scholar]
- Nordmann, P.; Poirel, L.; Toleman, M.A.; Walsh, T.R. Does broad-spectrum β-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? J. Antimicrob. Chemother. 2011, 66, 689–692. [Google Scholar] [CrossRef]
- Haidar, G.; Kline, E.G.; Kitsios, G.D.; Wang, X.; Kwak, E.J.; Newbrough, A.; Friday, K.; Kramer, K.H.; Shields, R.K. Emergence of high-level aztreonam–avibactam and cefiderocol resistance following treatment of an NDM-producing Escherichia coli bloodstream isolate exhibiting reduced susceptibility to both agents at baseline. JAC-Antimicrob. Resist. 2024, 6, dlae141. [Google Scholar] [CrossRef] [PubMed]
- Nikbin, V.S.; Khiavi, E.H.A.G.; Dehghani-Latani, M.; Hosseinzadeh, M.; Shirzadi, M.; Pourajam, S.; Nouri, S.; Solgi, H. Failure of ceftazidime/avibactam experimental therapy in the treatment of Klebsiella pneumoniae ST11 co-producing NDM-1 and OXA-48 carbapenemases infection. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 2023–2027. [Google Scholar] [CrossRef]
- Meini, S.; Del Cesta, R.; Sbrana, F.; Rosada, J.; Carrara, D.; Mura, M.; Longo, B.; Andreini, R.; Linsalata, G.; Fedele, A.; et al. Clinical outcomes of patients hospitalized in internal medicine wards adequately treated for bloodstream infections caused by NDM-producing Klebsiella pneumoniae. Results from a real-life retrospective multi-center study in an endemic area. Infection 2025, 53, 1737–1744. [Google Scholar] [CrossRef]
- Lee, Y.-P.; Liao, Y.-C.; Chen, F.-J.; Lin, T.-W.; Huang, H.-P.; Pan, H.-H.; Liu, P.-Y. Prevalence, Clinical Characteristics, and Mortality Impact of Metallo-β-Lactamase-Producing Enterobacter Cloacae Complex Infections: A Retrospective Cohort Study. J. Glob. Antimicrob. Resist. 2025, 45, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Junyent, J.; Lora-Tamayo, J.; Sorlí, L.; Murillo, O. Challenges and strategies in the treatment of periprosthetic joint infection caused by multidrug-resistant Gram-negative bacteria: A narrative review. Clin. Microbiol. Infect. 2025, 31, 1458–1466. [Google Scholar] [CrossRef]
- Lakhani, A.; Jindal, K.; Khatri, K. Antimicrobial resistance (AMR) in Orthopaedic surgeries: A Complex issue and global threat. J. Orthop. Rep. 2025, 4, 100466. [Google Scholar] [CrossRef]
- Lyu, J.; Huang, J.; Huang, J.; Hu, H.; Wang, Q.; Ding, H.; Li, H.; Fang, X.; Zhang, W. Rising challenges in periprosthetic joint infections: A focus on rare pathogens and their clinical implications. Front. Cell Infect. Microbiol. 2024, 14, 1451398. [Google Scholar] [CrossRef] [PubMed]
- Sires, J.D.; Pham, K.; Daniel, S.; Inglis, M.; Wilson, C.J. A Multi-Disciplinary Approach for the Management of Prosthetic Joint Infections: An Australian Perspective. Malays. Orthop. J. 2022, 16, 41–45. [Google Scholar] [CrossRef]
- Sandiford, N.A.; Wronka, K. The multidisciplinary approach to managing prosthetic joint infection: Could this lead to improved outcomes? Ann. Jt. 2020, 7, 8. [Google Scholar] [CrossRef]
- Hanssen, J.L.J.; van der Linden, H.M.J.; van der Beek, M.T.; van der Wal, R.J.P.; Termaat, M.F.; de Boer, M.G.J.; Scheper, H. Implementation of multidisciplinary team decisions on the management of complex bone and joint infections: An observational study. BMC Musculoskelet. Disord. 2025, 26, 64. [Google Scholar] [CrossRef]
- Wu, K.; Seidelman, J.L.; Gettler, E.B.; Hendershot, E.F.; A Jiranek, W.; Seyler, T.M. Clinic of Hope: Bridging infectious disease and orthopaedic surgery in prosthetic joint infection management. BMJ Open Qual. 2024, 13, e002921. [Google Scholar] [CrossRef]
- Tsilika, M.; Ntziora, F.; Giannitsioti, E. Antimicrobial Treatment Options for Multidrug Resistant Gram-Negative Pathogens in Bone and Joint Infections. Pathogens 2025, 14, 130. [Google Scholar] [CrossRef]
- Cespedes Santana, M.; Wong, T.T.; Urban, C.; Mariano, N.; Burns, J.; Rodriguez, G.D.; Goldwyn, E.; Prasad, N.; Segal-Maurer, S. Combination antibiotic therapy for treatment of a patient with infected prosthesis and peri-prosthetic abscess due to Klebsiella pneumoniae harboring New Delhi Metallo (NDM) beta-lactamase. IDCases 2022, 27, e01385. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.B.; Pinkney, J.A.; Chen, A.F.; Tande, A.J. Periprosthetic Joint Infection: Current Clinical Challenges. Clin. Infect. Dis. 2023, 77, e34–e45. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Wang, J.; Chen, M.; Cai, Y. Cefiderocol: An Overview of Its in-vitro and in-vivo Activity and Underlying Resistant Mechanisms. Front. Med. 2021, 8, 741940. [Google Scholar] [CrossRef]
- Kaye, K.S.; Naas, T.; Pogue, J.M.; Rossolini, G.M. Cefiderocol, a Siderophore Cephalosporin, as a Treatment Option for Infections Caused by Carbapenem-Resistant Enterobacterales. Infect. Dis. Ther. 2023, 12, 777–806. [Google Scholar] [CrossRef]
- Warecki, B.A.; Tamma, P.D.; Bonomo, R.A.; Vila, A.J. NDM-driven cefiderocol resistance: Effect and therapeutic considerations. Lancet Infect. Dis. 2025, 25, 1068–1069. [Google Scholar] [CrossRef] [PubMed]
- Warecki, B.A.; Tomatis, P.E.; Mojica, M.-F.; Bethel, C.R.; Saravia, M.R.; Drusin, S.I.; Ono, D.; Bahr, G.; Papp-Wallace, K.; Tamma, P.D.; et al. Cefiderocol “under siege”? Understanding the rise of NDM-mediated resistance to novel agents. Chem. Sci. 2025, 16, 12519–12533. [Google Scholar] [CrossRef] [PubMed]
- Deroche, L.; Rozenholc, A.; Arrivé, F.; Martellosio, J.-P.; Le Moal, G.; Thille, A.W.; Barraud, O.; Marchand, S.; Buyck, J.M. Emergence of cefiderocol resistance during therapy in NDM-5-producing Klebsiella pneumoniae isolates harboring siderophore receptors mutations. Int. J. Infect. Dis. 2025, 151, 107321. [Google Scholar] [CrossRef]
- Potter, M.H.; Askar, W.; Gomez-Abundis, G.F.; Carpenter, K.; Kobic, E. NDM-5 and siderophore receptor mutations drive high-level cefiderocol resistance in Klebsiella pneumoniae: A case series. Infection 2025, 1–6. [Google Scholar] [CrossRef]
- Faxén, L.; Müller, V.; Chatzopoulou, M.; Lindsjö, O.K.; Lagerbäck, P.; Westmo, K.; Åkerlund, A.; Tängdén, T.; Fröding, I. Susceptibility to new antibiotics and genetic characterisation of carbapenemase-producing Enterobacterales: Low activity of cefiderocol against NDM-producing isolates. Int. J. Antimicrob. Agents 2025, 66, 107553. [Google Scholar]
- Salleh, M.Z. Addressing antimicrobial resistance: Structural insights into cefiderocol’s mode of action and emerging resistance mechanisms. J. Infect. Public Health 2025, 18, 102871. [Google Scholar] [CrossRef]
- Simner, P.J.; Mostafa, H.H.; Bergman, Y.; Ante, M.; Tekle, T.; Adebayo, A.; Beisken, S.; Dzintars, K.; Tamma, P.D. Progressive Development of Cefiderocol Resistance in Escherichia coli During Therapy is Associated With an Increase in blaNDM-5 Copy Number and Gene Expression. Clin. Infect. Dis. 2022, 75, 47–54. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Cricca, M.; Diella, L.; Gatti, M.; Rossi, L.; Bartoletti, M.; Sambri, V.; Signoretto, C.; Fonnesu, R.; et al. Updates on the Activity, Efficacy and Emerging Mechanisms of Resistance to Cefiderocol. Curr. Issues Mol. Biol. 2024, 46, 14132–14153. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Luo, T.L.; Kovalchuk, V.; Kondratiuk, V.; Dao, H.D.; Kovalenko, I.; Plaza, B.J.; Kettlewell, J.M.; Anderson, C.P.; Smedberg, J.R.; et al. Detection of cefiderocol and aztreonam/avibactam resistance in epidemic Escherichia coli ST-361 carrying bla(NDM-5) and bla(KPC-3) from foreign fighters evacuated from Ukraine. Antimicrob. Agents Chemother. 2024, 68, e0109024. [Google Scholar]
- Al Musawa, M.; Bleick, C.R.; Herbin, S.R.; Caniff, K.E.; Van Helden, S.R.; Rybak, M.J. Aztreonam-avibactam: The dynamic duo against multidrug-resistant gram-negative pathogens. Pharmacotherapy 2024, 44, 927–938. [Google Scholar]
- Sangiorgio, G.; Calvo, M.; Stefani, S. Aztreonam and avibactam combination therapy for metallo-β-lactamase-producing gram-negative bacteria: A Narrative Review. Clin. Microbiol. Infect. 2025, 31, 971–978. [Google Scholar]
- Daikos, G.L.; Cisneros, J.M.; Carmeli, Y.; Wang, M.; Leong, C.L.; Pontikis, K.; Anderzhanova, A.; Florescu, S.; Kozlov, R.; Rodriguez-Noriega, E.; et al. Aztreonam-avibactam for the treatment of serious infections caused by metallo-β-lactamase-producing Gram-negative pathogens: A Phase 3 randomized trial (ASSEMBLE). JAC Antimicrob Resist 2025, 7, dlaf131. [Google Scholar] [CrossRef]
- Chew, K.L.; Tay, M.K.L.; Cheng, B.; Lin, R.T.P.; Octavia, S.; Teo, J.W.P. Aztreonam-Avibactam Combination Restores Susceptibility of Aztreonam in Dual-Carbapenemase-Producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62, e00414-18. [Google Scholar] [CrossRef] [PubMed]
- Carmeli, Y.; Cisneros, J.M.; Paul, M.; Daikos, G.L.; Wang, M.; Torre-Cisneros, J.; Singer, G.; Titov, I.; Gumenchuk, I.; Zhao, Y.; et al. Aztreonam–avibactam versus meropenem for the treatment of serious infections caused by Gram-negative bacteria (REVISIT): A descriptive, multinational, open-label, phase 3, randomised trial. Lancet Infect. Dis. 2025, 25, 218–230. [Google Scholar] [CrossRef]
- Rubnitz, Z.A.; Kunkel, V.N.; Baselski, V.S.; Summers, N.A. A Case of New Delhi Metallo-β-Lactamases (NDM) Citrobacter sedlakii Osteomyelitis Successfully Treated With Ceftazidime-Avibactam and Aztreonam. Cureus 2022, 14, e28855. [Google Scholar] [CrossRef]
- Simner, P.J.; Bergman, Y.; Conzemius, R.; Jacobs, E.; Tekle, T.; Beisken, S.; Tamma, P.D. An NDM-Producing Escherichia coli Clinical Isolate Exhibiting Resistance to Cefiderocol and the Combination of Ceftazidime-Avibactam and Aztreonam: Another Step Toward Pan-β-Lactam Resistance. Open Forum Infect Dis 2023, 10, ofad276. [Google Scholar] [CrossRef] [PubMed]
- Posteraro, B.; De Maio, F.; Spanu, T.; Vidal Pereira, M.A.; Fasano, F.R.; Sanguinetti, M. Characterization of Metallo β-Lactamase Producing Enterobacterales Isolates with Susceptibility to the Aztreonam/Avibactam Combination. Antibiotics 2024, 13, 1221. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Kimbrough, J.H.; Winkler, M.L.; Castanheira, M.; Mendes, R.E. Aztreonam/avibactam activity against Enterobacterales from European medical centres: Summary of 5 years of surveillance prior to approval for clinical use (2019–2023). J. Antimicrob. Chemother. 2025, 80, 2070–2079. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Sader, H.S.; Maher, J.M.; Kimbrough, J.H.; Castanheira, M. Aztreonam-avibactam Demonstrates Potent Activity Against Carbapenem-resistant Enterobacterales Collected From US Medical Centers Over a 6-year Period (2017–2022). Open Forum Infectious Diseases 2025, 12, ofaf250. [Google Scholar] [CrossRef]
- Das, S.; Riccobene, T.; Carrothers, T.J.; Wright, J.G.; MacPherson, M.; Cristinacce, A.; McFadyen, L.; Xie, R.; Luckey, A.; Raber, S. Dose selection for aztreonam-avibactam, including adjustments for renal impairment, for Phase IIa and Phase III evaluation. Eur. J. Clin. Pharmacol. 2024, 80, 529–543. [Google Scholar] [CrossRef]
- Rolston, K.; Gerges, B.; Nesher, L.; Shelburne, S.A.; Prince, R.; Raad, I. In vitro activity of eravacycline and comparator agents against bacterial pathogens isolated from patients with cancer. JAC Antimicrob Resist 2023, 5, dlad020. [Google Scholar] [CrossRef]
- Morrissey, I.; Olesky, M.; Hawser, S.; Lob, S.H.; Karlowsky, J.A.; Corey, G.R.; Bassetti, M.; Fyfe, C. In Vitro Activity of Eravacycline against Gram-Negative Bacilli Isolated in Clinical Laboratories Worldwide from 2013 to 2017. Antimicrob. Agents Chemother. 2020, 64, e01699-19. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.-Y.; Hsu, C.-K.; Tang, H.-J.; Lai, C.-C. Eravacycline: A comprehensive review of in vitro activity, clinical efficacy, and real-world applications. Expert. Rev. Anti-Infect. Ther. 2024, 22, 387–398. [Google Scholar] [CrossRef]
- El-Ashry, A.H.; Abdrabou, A.M.; El-Tantawy, N.; Mahmoud, R.; El-Mahdy, R. In vitro activity of meropenem-vaborbactam combinations and eravacycline against carbapenem-resistant Acinetobacter baumannii. Sci. Rep. 2025, 15, 34109. [Google Scholar] [CrossRef]
- Clark, J.A.; Kulengowski, B.; Burgess, D.S. In vitro activity of eravacycline compared with tigecycline against carbapenem-resistant Enterobacteriaceae. Int. J. Antimicrob. Agents 2020, 56, 106178. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, X.; Bush, K. In vitro susceptibility of β-lactamase-producing carbapenem-resistant Enterobacteriaceae (CRE) to eravacycline. J. Antibiot. 2016, 69, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, P.; Chen, M.; Li, B.; Xu, X. In vitro activity of Eravacycline against carbapenem-resistant gram-negative bacilli and associated risk factors for non-susceptible infections from a tertiary hospital in fujian, China from 2021 to 2024. BMC Microbiol. 2025, 25, 551. [Google Scholar] [CrossRef]
- Mimram, L.; Timsit, J.-F.; Rondinaud, E.; Le, M.; Thy, M. Eravacycline as a last resort for difficult-to-treat resistant Acinetobacter baumannii infections in critically ill patients: Three case reports with pharmacokinetic insights. JAC-Antimicrob. Resist. 2025, 7, dlaf095. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Guo, D.D.; Wang, M.X.; Li, Y.Z.; Li, H.; Liu, S.B.; Yang, R.L.; Zhang, D.H. Efficacy and safety of eravacycline versus tigecycline for complicated intra-abdominal infections in the ICU: A multicenter, single-blind, parallel randomized controlled trial study protocol. Front. Med. 2024, 11, 1496402. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Chen, A.; Dong, N.; Zhou, H.; Li, K. Comparative efficacy of eravacycline and tigecycline in addressing multidrug-resistant Gram-negative bacteria. One Health Adv. 2025, 3, 4. [Google Scholar] [CrossRef]
- Hobbs, A.L.V.; Gelfand, M.S.; Cleveland, K.O.; Saddler, K.; Sierra-Hoffman, M.A. A retrospective, multicentre evaluation of eravacycline utilisation in community and academic hospitals. J. Glob. Antimicrob. Resist. 2022, 29, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Alosaimy, S.; Molina, K.C.; Claeys, K.C.; Andrade, J.; Truong, J.; A King, M.; Pullinger, B.M.; Huang, G.; Morrisette, T.; Lagnf, A.M.; et al. Early Experience With Eravacycline for Complicated Infections. Open Forum Infect. Dis. 2020, 7, ofaa071. [Google Scholar] [CrossRef]
- Newman, J.V.; Zhou, J.; Izmailyan, S.; Tsai, L. Randomized, Double-Blind, Placebo-Controlled Studies of the Safety and Pharmacokinetics of Single and Multiple Ascending Doses of Eravacycline. Antimicrob. Agents Chemother. 2018, 62, e01174-18. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef] [PubMed]
| Drug | MIC (mcg/mL) | Interpretation (CLSI/FDA Breakpoints) |
|---|---|---|
| Ceftazidime | >32 | Resistant (CLSI) |
| Cefepime | >32 | Resistant (CLSI) |
| Piperacillin-tazobactam | >128 | Resistant (CLSI) |
| Meropenem | >16 | Resistant (CLSI) |
| Levofloxacin | >8 | Resistant (CLSI) |
| Gentamicin | 8 | Resistant (CLSI) |
| Ceftazidime-avibactam | >16 | Resistant (CLSI) |
| Meropenem-vaborbactam | >16/8 | Resistant (CLSI) |
| Tigecycline | <0.5 | Susceptible (FDA) |
| Eravacycline | 0.25 | Susceptible (FDA) |
| Omadacycline | 4 | Susceptible (FDA) |
| Cefiderocol | 16 | Resistant (CLSI) |
| Aztreonam-avibactam | 0.125 | Susceptible (FDA) |
| Cepheid Xpert® CARBA-R | ||
| Genotype | Result | Interpretation |
| CTX-M | NEG | Not expressed |
| KPC | NEG | Not expressed |
| OXA-48 | NEG | Not expressed |
| NDM | POS | Expressed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keck, J.M.; Dare, R.K.; Saccente, M.; Vyas, K.S.; Thompson, R.N. Use of Aztreonam–Avibactam with Rapid Eravacycline Step-Down Therapy for a Tibial Septic Non-Union by NDM-Producing Enterobacter cloacae. Antibiotics 2025, 14, 1109. https://doi.org/10.3390/antibiotics14111109
Keck JM, Dare RK, Saccente M, Vyas KS, Thompson RN. Use of Aztreonam–Avibactam with Rapid Eravacycline Step-Down Therapy for a Tibial Septic Non-Union by NDM-Producing Enterobacter cloacae. Antibiotics. 2025; 14(11):1109. https://doi.org/10.3390/antibiotics14111109
Chicago/Turabian StyleKeck, Jacob M., Ryan K. Dare, Michael Saccente, Keyur S. Vyas, and Rebekah N. Thompson. 2025. "Use of Aztreonam–Avibactam with Rapid Eravacycline Step-Down Therapy for a Tibial Septic Non-Union by NDM-Producing Enterobacter cloacae" Antibiotics 14, no. 11: 1109. https://doi.org/10.3390/antibiotics14111109
APA StyleKeck, J. M., Dare, R. K., Saccente, M., Vyas, K. S., & Thompson, R. N. (2025). Use of Aztreonam–Avibactam with Rapid Eravacycline Step-Down Therapy for a Tibial Septic Non-Union by NDM-Producing Enterobacter cloacae. Antibiotics, 14(11), 1109. https://doi.org/10.3390/antibiotics14111109

