Fosfomycin in Complicated Intra-Abdominal Infections in an Intensive Care Setting: Does It Improve the Outcome? A Retrospective Observational Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CDC/NHSN. Surveillance Definition for Specific Types of Infections. January 2025. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf (accessed on 1 April 2025).
 - Sartelli, M. A focus on intra-abdominal infections. World J. Emerg. Surg. 2010, 5, 9. [Google Scholar] [CrossRef]
 - Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
 - Sartelli, M.; Tascini, C.; Coccolini, F.; Dellai, F.; Ansaloni, L.; Antonelli, M.; Bartoletti, M.; Bassetti, M.; Boncagni, F.; Carlini, M.; et al. Management of intra-abdominal infections: Recommendations by the Italian council for the optimization of antimicrobial use. World J. Emerg. Surg. 2024, 19, 23. [Google Scholar] [CrossRef] [PubMed]
 - Paiva, J.A.; Rello, J.; Eckmann, C.; Antonelli, M.; Arvaniti, K.; Koulenti, D.; Papathanakos, G.; Dimopoulos, G.; Deschepper, M.; Blot, S.; et al. Intra-abdominal infection and sepsis in immunocompromised intensive care unit patients: Disease expression, microbial aetiology, and clinical outcomes. Eur. J. Intern. Med. 2024, 129, 100–110. [Google Scholar] [CrossRef]
 - Bonomo, R.A.; Chow, A.W.; Edwards, M.S.; Humphries, R.; Tamma, P.D.; Abrahamian, F.M.; Bessesen, M.; Dellinger, E.P.; Goldstein, E.; Hayden, M.K.; et al. 2024 Clinical practice guideline update by the Infectious Diseases Society of America on complicated intra-abdominal infections: Risk assessment, diagnostic imaging, and microbiological evaluation in adults, children, and pregnant people. Clin. Infect. Dis. 2024, 79, S81–S87. [Google Scholar] [CrossRef]
 - Hendlin, D.; Stapley, E.O.; Jackson, M.; Wallick, H.; Miller, A.K.; Wolf, F.J.; Miller, T.W.; Chaiet, L.; Kahan, F.M.; Foltz, E.L.; et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science 1969, 166, 122–123. [Google Scholar] [CrossRef]
 - Meschiari, M.; Faltoni, M.; Kaleci, S.; Tassoni, G.; Orlando, G.; Franceschini, E.; Burastero, G.; Bedini, A.; Serio, L.; Biagioni, E.; et al. Intravenous fosfomycin in combination regimens as a treatment option for difficult-to-treat infections due to multi-drug-resistant Gram-negative organisms: A real-life experience. Int. J. Antimicrob. Agents. 2024, 63, 107164. [Google Scholar] [CrossRef]
 - Rodríguez-Gascón, A.; Canut-Blasco, A. Deciphering pharmacokinetics and pharmacodynamics of fosfomycin. Rev. Esp. Quimioter. 2019, 32, 19–24. [Google Scholar]
 - Hashemian, S.M.R.; Farhadi, Z.; Farhadi, T. Fosfomycin: The characteristics, activity, and use in critical care. Ther. Clin. Risk Manag. 2019, 15, 525–530. [Google Scholar] [CrossRef]
 - Sartelli, M.; Barie, P.; Agnoletti, V.; Al-Hasan, M.N.; Ansaloni, L.; Biffl, W.; Buonomo, L.; Blot, S.; Cheadle, W.G.; Coimbra, R.; et al. Intra-abdominal infections survival guide: A position statement by the Global Alliance for Infections in Surgery. World J. Emerg. Surg. 2024, 19, 22. [Google Scholar] [CrossRef]
 - Russo, A.; Gullì, S.P.; D’Avino, A.; Borrazzo, C.; Carannante, N.; Dezza, F.C.; Covino, S.; Polistina, G.; Fiorentino, G.; Trecarichi, E.M.; et al. Intravenous fosfomycin for treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii: A multi-centre clinical experience. Int. J. Antimicrob. Agents 2024, 64, 107190. [Google Scholar] [CrossRef]
 - Nussbaumer-proll, A.; Obermuller, M.; Weiss-Tessbach, M.; Eberl, S.; Zeitlinger, M.; Matiba, B.; Mayer, C.; Kussmann, M. Synergistic activity of fosfomycin and flucloxacillin against methicillin-susceptible and methicillin-resistant Staphylococcus aureus: In vitro and in vivo assessment. Med. Microbiol. Immunol. 2025, 214, 32. [Google Scholar] [CrossRef] [PubMed]
 - Pallotto, C.; Benvenuto, M.C.; Francisci, D. Shoulder prosthetic joint infection due to Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii treated with ciprofloxacin, minocycline and continuous infusion fosfomycin as OPAT regimen: A case report. JAC Antimicrob Resist. 2025, 7, dlaf087. [Google Scholar] [CrossRef] [PubMed]
 - De Pascale, G.; Antonelli, M.; Deschepper, M.; Arvaniti, K.; Blot, K.; Brown, B.C.; de lange, D.; De Waele, J.; Dikmen, Y.; Dimopoulos, G.; et al. Poor timing and failure of source control are risk factors for mortality in critically ill patients with secondary peritonitis. Intensive Care Med. 2022, 48, 1593–1606. [Google Scholar] [CrossRef] [PubMed]
 - Bova, R.; Griggio, G.; Vallicelli, C.; Santandrea, G.; Coccolini, F.; Ansaloni, L.; Sartelli, M.; Agnoletti, V.; Bravi, F.; Catena, F. Source control and antibiotics in intra-abdominal infections. Antibiotics 2024, 13, 776. [Google Scholar] [CrossRef]
 - Napolitano, L.M. Intra-abdominal Infections. Semin. Respir. Crit. Care Med. 2022, 43, 10–27. [Google Scholar] [CrossRef] [PubMed]
 - De Pascale, G.; Carelli, S.; Vallecoccia, M.S.; Cutuli, S.L.; Taccheri, T.; Montini, L.; Bello, G.; Spanu, T.; Tumbarello, M.; Cicchetti, A.; et al. Risk factors for mortality and cost implications of complicated intra-abdominal infections in critically ill patients. J. Crit. Care 2019, 50, 169–176. [Google Scholar] [CrossRef]
 - Luo, X.; Li, L.; Ou, S.; Zeng, Z.; Chen, Z. Risk factors for mortality in abdominal infection patients in ICU: A retrospective study from 2011 to 2018. Front. Med. 2022, 9, 839284. [Google Scholar] [CrossRef]
 - Tellor, B.; Skrupky, L.P.; Symons, W.; High, E.; Micek, S.T.; Mazuski, J.E. Inadequate source control and inappropriate antibiotics are key determinants of mortality in patients with intra-abdominal sepsis and associated bacteremia. Surg. Infect. 2015, 16, 785–793. [Google Scholar] [CrossRef]
 - Trautner, B.W.; Cortes-Penfield, N.W.; Gupta, K.; Hirsch, E.B.; Horstmen, M.; Moran, G.J.; Colgan, R.; O’Horo, J.C.; Ashraf, M.S.; Connolly, S.; et al. Clinical Practice Guideline by Infectious Diseases Society of America (IDSA): 2025 Guideline on Management and Treatment of Complicated Urinary Tract Infections. Available online: https://www.idsociety.org/practice-guideline/complicated-urinary-tract-infections/ (accessed on 1 August 2025).
 - Tamma, P.D.; Bonomo, R.A.; Stiefel, U. The role of intravenous fosfomycin: Finding our way out of Dante’s forest dark. JAMA Netw. Open 2022, 5, e2138691. [Google Scholar] [CrossRef]
 - Iarikov, D.; Wassel, R.; Farley, J.; Nambiar, S. Adverse events associated with fosfomycin use: Review of the literature and analyses of the FDA adverse event reporting system database. Infect. Dis. Ther. 2015, 4, 433–458. [Google Scholar] [CrossRef]
 
| Total of Patients (n = 104) | Group A (n = 85) | Group B (n = 19) | p-Value | Effect Size | |
|---|---|---|---|---|---|
| Age, median (IQR) | 72 (61.75–80.25) | 71 (60–80) | 74 (71–81) | 0.258 | |
| Males, n (%) | 61 (58.7) | 48 (56.5) | 13 (68.4) | 0.485 | |
| CCI, median (IQR) | 5 (3–7) | 5 (3–7) | 6 (4.5–8) | 0.347 | |
| APACHE II, median (IQR) | 11 (8–15) | 11 (8–15) | 13.5 (11–18.25) | 0.201 | |
| SOFA, median (IQR) | 3 (2–5) | 3 (2–4) | 3.5 (2–6.75) | 0.267 | |
| Septic shock, n (%) | 59 (56.7) | 45 (52.9) | 14 (73.7) | 0.163 | |
| Hospital-acquired Infections, n (%) | 41 (39.4) | 32 (37.6) | 9 (47.4) | 0.6 | |
| Infections with bacteremia, n (%) | 26/93 (28) | 19/75 (25.3) | 7/18 (38.9) | 0.391 | |
| Polymicrobial infections, n (%) | 50/77 (64.9) | 43/64 (67.2) | 7/13 (53.8) | 0.548 | |
| Infections due to non-wild-type microorganisms, n (%) | 33/77 (42.9) | 27/64 (42.2) | 6/13 (46.1) | 0.965 | |
| Fungal etiology, n (%) | 23 (22.1) | 20 (23.5) | 3 (15.8) | 0.668 | |
| PCT on admission ng/mL, mean (SD) | 29.86 (36.97) | 29.79 (36.94) | 30.17 (38.1) | 0.968 | |
| Source control < 24 h, n (%) | 60/94 (63.8) | 55/79 (69.6) | 5/15 (33.3) | 0.017 | 0.25 | 
| Source control < 48 h, n (%) | 64/94 (68.1) | 55/79 (69.6) | 9/15 (60) | 0.667 | |
| Source control, n (%) | 82/94 (87.2) | 70/79 (88.6) | 12/15 (80) | 0.621 | |
| Antifungal therapy, n (%) | 75 (72.1) | 63 (74.1) | 12 (63.2) | 0.496 | |
| effective empirical therapy, n (%) | 80 (76.9) | 67 (78.8) | 13 (68.4) | 0.502 | |
| Effective empirical therapy + source control < 24 h, n (%) | 46/93 (49.5) | 44/79 (55.7) | 2/14 (14.3) | 0.01 | 0.27 | 
| Effective empirical therapy + source control < 48 h, n (%) | 47/93 (50.5) | 45/79 (57) | 2/14 (14.3) | 0.008 | 0.28 | 
| Clinical response at seven days, n (%) | 83 (79.8) | 69 (81.2) | 14 (73.7) | 0.675 | |
| In-hospital mortality, n (%) | 32 (30.8) | 23 (27.1) | 9 (47.4) | 0.145 | |
| 30-day mortality, n (%) | 26 (25) | 19 (22.4) | 7 (36.8) | 0.305 | |
| 90-day mortality. n (%) | 39 (37.5) | 29 (34.1) | 10 (52.6) | 0.213 | 
| Positive Outcome (n = 83) | Negative Outcome (n = 21) | p-Value | Effect Size * | |
|---|---|---|---|---|
| Age, median (IQR) | 71 (60–80) | 77 (68–82) | 0.168 | |
| Males, n (%) | 50 (60.2) | 11 (52.4) | 0.685 | |
| CCI, median (IQR) | 5 (3–7) | 6 (5–9) | 0.159 | |
| APACHE, median (IQR) | 11 (8–15) | 13.5 (12.25–16) | 0.022 | 0.31 | 
| SOFA, median (IQR) | 3 (2–4) | 3 (3–5.5) | 0.211 | |
| Septic shock, n (%) | 39 (47) | 20 (95.2) | <0.001 | 0.37 | 
| Hospital-acquired infections, n (%) | 31 (37.3) | 10 (47.6) | 0.541 | |
| Infections with bacteremia, n (%) | 18/75 (24) | 8/18 (44.4) | 0.149 | |
| Polymicrobial infections, n (%) | 40/62 (64.5) | 10/15 (66.7) | 0.885 | |
| Fungal etiology, n (%) | 18 (21.7) | 5 (23.8) | 0.932 | |
| Etiology from germs characterized by antibiotic-resistance profiles, n (%) | 24/62 (38.7) | 9/15 (60) | 0.228 | |
| PCT on admission ng/mL, mean (SD) | 29.91 (37.29) | 29.68 (36.57) | 0.98 | |
| Source control < 24 h, n (%) | 50/75 (66.7) | 10/19 (52.6) | 0.384 | |
| Source control < 48 h, n (%) | 52/75 (69.3) | 12/19 (63.2) | 0.81 | |
| Source control, n (%) | 67/75 (89.3) | 15/19 (78.9) | 0.408 | |
| Antifungal therapy, n (%) | 58 (69.9) | 17 (81) | 0.46 | |
| Effective empirical therapy, n (%) | 70 (84.3) | 10 (47.6) | 0.001 | 0.35 | 
| Effective empirical therapy + source control < 24 h, n (%) | 42/74 (56.8) | 4/19 (21.1) | 0.012 | 0.29 | 
| Effective empirical therapy + source control < 48 h, n (%) | 42/74 (56.8) | 5/19 (26.3) | 0.035 | 0.25 | 
| Fosfomycin, n (%) | 14 (16.9) | 5 (23.8) | 0.675 | 
| Univariate OR (95%CI) | p-Value | Multivariate OR (95%CI) | p-Value | |
|---|---|---|---|---|
| Age | 1.031 (0.99–1.073) | 0.141 | ||
| Male sex at birth | 0.729 (0.277–1.901) | 0.514 | ||
| CCI | 1.152 (0.999–1.327) | 0.051 | 1.239 (1.01–1.52) | 0.04 | 
| APACHE score | 1.05 (0.972–1.133) | 0.214 | ||
| SOFA score | 1.121 (0.947–1.328) | 0.184 | ||
| Septic shock | 22.564 (2.893–176.003) | 0.003 | 11.36 (1.281–100.762) | 0.029 | 
| Hospital acquired infections | 1.525 (0.581–4.003) | 0.391 | ||
| Infections with bacteremia | 2.533 (0.869–7.387) | 0.089 | 1.852 (0.509–6.743) | 0.35 | 
| Polymicrobial infections | 1.1 (0.334–3.627) | 0.876 | ||
| Infections due to non-wild-type microorganisms | 2.375 (0.75–7.52) | 0.141 | ||
| Fungal etiology | 1.129 (0.364–3.5) | 0.834 | ||
| PCT on admission | 1 (0.987–1.013) | 0.979 | ||
| Source control < 24 h | 0.556 (0.2–1.542) | 0.259 | ||
| Source control < 48 h | 0.758 (0.264–2.174) | 0.607 | ||
| Source control | 0.448 (0.119–1.684) | 0.234 | ||
| Antifungal therapy | 1.832 (0.56–5.997) | 0.317 | ||
| Effective empirical therapy | 0.169 (0.06–0.478) | <0.001 | 0.141 (0.037–0.541) | 0.004 | 
| Effective empirical therapy + source control < 24 h | 0.203 (0.062–0.671) | 0.009 | ||
| Effective empirical therapy + source control < 48 h | 0.272 (0.089–0.834) | 0.023 | ||
| Fosfomycin | 1.54 (0.484–4.898) | 0.464 | 
| Total (n = 59) | Group A (n = 45) | Group B (n = 14) | p-Value | Effect Size | |
|---|---|---|---|---|---|
| Age, median (IQR) | 72 (58.5–79) | 69 (58–79) | 73.5 (70.5–76.5) | 0.509 | |
| Males n (%) | 36 (61) | 27 (60) | 9 (64.3) | 0.979 | |
| CCI, median (IQR) | 5 (3.5–7) | 5 (4–7) | 5.5 (3.25–6.75) | 0.912 | |
| APACHE, median (IQR) | 13 (10–19) | 13 (9–17.25) | 15 (11–22) | 0.162 | |
| SOFA, median (IQR) | 4 (3–6) | 4 (3–5.75) | 5 (3–9) | 0.337 | |
| Hospital-acquired infections, n (%) | 24 (40.7) | 18 (40) | 6 (42.9) | 0.903 | |
| Infections with bacteremia, n (%) | 22/55 (40) | 16/42 (38.1) | 7/13 (53.8) | 0.494 | |
| Polymicrobial infections, n (%) | 31/46 (67.4) | 24/35 (68.6) | 7/11 (63.6) | 0.949 | |
| Infections due to non-wild-type microorganisms, n (%) | 22/46 (47.8) | 17/35 (48.6) | 5/11 (45.5) | 0.869 | |
| Fungal etiology, n (%) | 10 (16.9) | 8 (17.8) | 2 (14.3) | 0.917 | |
| PCT on admission ng/mL, mean (SD) | 37.82 (40.68) | 38.18 (41.07) | 36.66 (40.91) | 0.904 | |
| Source control < 24 h, n (%) | 32/53 (60.4) | 28/42 (66.7) | 4/11 (36.4) | 0.138 | |
| Source control < 48 h, n (%) | 34/53 (64.2) | 28/42 (66.7) | 6/11 (54.5) | 0.694 | |
| Source control, n (%) | 44/53 (83) | 34/42 (81) | 10/11 (90.9) | 0.74 | |
| Antifungal therapy, n (%) | 43 (72.9) | 35 (77.8) | 8 (57.1) | 0.241 | |
| Effective empirical therapy, n (%) | 41 (69.5) | 32 (71.1) | 9 (64.3) | 0.871 | |
| Effective empirical therapy + source control < 24 h, n (%) | 23/53 (43.4) | 21/42 (50) | 2/11 (18.2) | 0.059 | 0.21 | 
| Effective empirical therapy + source control < 48 h, n (%) | 23/53 (43.4) | 21/42 (50) | 2/11 (18.2) | 0.059 | 0.21 | 
| Clinical response at 7 days, n (%) | 39 (66.1) | 29 (64.4) | 10 (71.4) | 0.874 | |
| Hospital mortality, n (%) | 23 (39) | 15 (33.3) | 8 (57.1) | 0.2 | |
| 30-day mortality, n (%) | 20 (33.9) | 14 (31.1) | 6 (42.9) | 0.626 | |
| 90-day mortality, n (%) | 27 (45.8) | 19 (42.2) | 8 (57.1) | 0.502 | 
| Positive Outcome (n = 39) | Negative Outcome (n = 20) | p-Value | Effect Size | |
|---|---|---|---|---|
| Age, median (IQR) | 69 (57.5–75) | 75.5 (67.75–82) | 0.043 | 0.27 | 
| Males, n (%) | 25 (64.1) | 11 (55) | 0.692 | |
| CCI, median (IQR) | 5 (3–7) | 5.5 (4.75–8.25) | 0.19 | |
| APACHE, median (IQR) | 11 (8.75–19) | 13 (12–16) | 0.327 | |
| SOFA, median (IQR) | 4 (3–6) | 3.5 (3–5.75) | 0.841 | |
| Hospital-acquired infections, n (%) | 14 (35.9) | 10 (50) | 0.445 | |
| Infections with bacteremia, n (%) | 15/38 (39.5) | 7/17 (41.2) | 0.858 | |
| Polymicrobial infections, n (%) | 21/31 (67.7) | 10/15 (66.7) | 0.793 | |
| Infections due to non-wild-type microorganisms, n (%) | 13/31 (41.9) | 9/15 (60) | 0.404 | |
| Fungal etiology, n (%) | 5 (12.8) | 5 (25) | 0.416 | |
| PCT on admission ng/mL, mean (SD) | 41.24 (42.54) | 31.15 (36.89) | 0.372 | |
| Source control < 24 h, n (%) | 22/35 (62.9) | 10/18 (55.6) | 0.827 | |
| Source control < 48 h, n (%) | 22/35 (62.9) | 12/18 (66.7) | 0.977 | |
| Source control, n (%) | 29/35 (82.9) | 15/18 (83.3) | 0.732 | |
| Antifungal therapy, n (%) | 27 (69.2) | 16 (80) | 0.568 | |
| Effective empirical therapy, n (%) | 32 (82.1) | 9 (45) | 0.009 | 0.34 | 
| Effective empirical therapy + source control < 24 h, n (%) | 19/35 (54.3) | 4/18 (22.2) | 0.001 | 0.48 | 
| Effective empirical therapy + source control < 48 h, n (%) | 19/35 (54.3) | 5/18 (27.8) | 0.122 | |
| Fosfomycin, n (%) | 10 (25.6) | 4 (20) | 0.874 | |
| In-hospital mortality, n (%) | 8 (20.5) | 15 (75) | <0.001 | 0.49 | 
| 30-day mortality, n (%) | 7 (17.9) | 13 (65) | <0.001 | 0.43 | 
| 90-day mortality, n (%) | 11 (28.2) | 16 (80) | <0.001 | 0.46 | 
| Univariate OR (95%CI) | p-Value | Multivariate OR (95%CI) | p-Value | |
|---|---|---|---|---|
| Age | 1.051 (1.001–1.104) | 0.046 | 1.03 (0.974–1.09) | 0.303 | 
| Gender male | 0.684 (0.228–2.051) | 0.498 | ||
| CCI score | 1.158 (0.973–1.379) | 0.099 | 1.112 (0.895–1.381) | 0.338 | 
| APACHE score | 1.023 (0.933–1.120) | 0.633 | ||
| SOFA score | 0.999 (0.828–1.206) | 0.994 | ||
| Hospital-acquired infections | 1.786 (0.598–5.331) | 0.299 | ||
| Infections with bacteremia | 1.073 (0.335–3.439) | 0.905 | ||
| Polymicrobial infections | 0.952 (0.257–3.534) | 0.942 | ||
| Infections due to non-wild-type microorganisms | 2.077 (0.592–7.289) | 0.254 | ||
| Fungal etiology | 2.267 (0.57–9.014) | 0.245 | ||
| PCT on admission | 0.994 (0.980–1.007) | 0.365 | ||
| Source control < 24 h | 0.739 (0.233–2.345) | 0.607 | ||
| Source control < 48 h | 1.182 (0.357–3.908) | 0.784 | ||
| Source control | 1.035 (0.226–4.728) | 0.965 | ||
| Antifungal therapy | 1.778 (0.49–6.455) | 0.382 | ||
| Effective empirical therapy | 0.179 (0.054–0.595) | 0.005 | 0.202 (0.057–0.711) | 0.013 | 
| Effective empirical therapy + source control < 24 h | 0.241 (0.066–0.879) | 0.031 | ||
| Effective empirical therapy + source control < 48 h | 0.324 (0.095–1.105) | 0.072 | ||
| Fosfomycin | 0.725 (0.196–2.688) | 0.631 | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genga, G.; Ragni, F.; Benvenuto, M.C.; Svizzeretto, E.; Tommasi, A.; De Socio, G.V.L.; Francisci, D.; Pallotto, C. Fosfomycin in Complicated Intra-Abdominal Infections in an Intensive Care Setting: Does It Improve the Outcome? A Retrospective Observational Study. Antibiotics 2025, 14, 1104. https://doi.org/10.3390/antibiotics14111104
Genga G, Ragni F, Benvenuto MC, Svizzeretto E, Tommasi A, De Socio GVL, Francisci D, Pallotto C. Fosfomycin in Complicated Intra-Abdominal Infections in an Intensive Care Setting: Does It Improve the Outcome? A Retrospective Observational Study. Antibiotics. 2025; 14(11):1104. https://doi.org/10.3390/antibiotics14111104
Chicago/Turabian StyleGenga, Giovanni, Federico Ragni, Maria Carolina Benvenuto, Elisabetta Svizzeretto, Andrea Tommasi, Giuseppe Vittorio Luigi De Socio, Daniela Francisci, and Carlo Pallotto. 2025. "Fosfomycin in Complicated Intra-Abdominal Infections in an Intensive Care Setting: Does It Improve the Outcome? A Retrospective Observational Study" Antibiotics 14, no. 11: 1104. https://doi.org/10.3390/antibiotics14111104
APA StyleGenga, G., Ragni, F., Benvenuto, M. C., Svizzeretto, E., Tommasi, A., De Socio, G. V. L., Francisci, D., & Pallotto, C. (2025). Fosfomycin in Complicated Intra-Abdominal Infections in an Intensive Care Setting: Does It Improve the Outcome? A Retrospective Observational Study. Antibiotics, 14(11), 1104. https://doi.org/10.3390/antibiotics14111104
        
