Respiratory Bacteria and Antimicrobial Resistance Genes Detected by Long-Read Metagenomic Sequencing Following Feedlot Arrival, Subsequent Treatment Risk and Phenotypic Resistance in Feedlot Calves
Abstract
1. Introduction
2. Results
2.1. Study Population and Descriptive Statistics
2.2. Association Between Metagenomic Detection of Bacteria at Arrival Processing and 13 DOF and Calf-Level BRD Treatment
2.3. Among Calves Treated for BRD ≤ 13 DOF, Association Between ARG Detection at Arrival Processing and Phenotypic Resistance at BRD Treatment
2.4. Among Calves Treated for BRD 14–45 DOF, Association Between ARG Detection at 13 DOF and Phenotypic Resistance at BRD Treatment
3. Discussion
4. Methods
4.1. Ethics Statement
4.2. Study Population
4.3. Processing and Sample Collection
4.4. Calves Receiving First Treatment for BRD
4.5. Microbiology Methods and Isolate Selection
4.6. Long-Read Metagenomic Sequencing and Classification of Positive Results
4.6.1. Metagenomic Sequencing Sample Preparation Protocols
4.6.2. 2020 Sample Processing Protocol
4.6.3. 2021 Sample Processing Protocol
4.6.4. 2020 and 2021 Library Preparation and Sequencing Protocol
4.6.5. Preprocessing/Quality Control
4.6.6. Read Classification and Host Filtering
4.6.7. Antimicrobial Resistance Gene Detection
4.6.8. Classification of Metagenomic Results as Positive or Negative
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AMR | Antimicrobial Resistance |
| AMU | Antimicrobial Use |
| ARGs | Antimicrobial Resistance Genes |
| AST | Antimicrobial Susceptibility Testing |
| BHI | Brain Heart Infusion |
| BRD | Bovine Respiratory Disease |
| BW | Body Weight |
| CARD | Comprehensive Antimicrobial Resistance Database |
| CCAC | Canadian Council of Animal Care |
| CLSI | Clinical and Laboratory Standards Institute |
| DNPS | Deep Nasopharyngeal Swab |
| DOF | Days On Feed |
| GEE | Generalized Estimating Equations |
| MALDI-TOF-MS | Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry |
| MIC | Minimal Inhibitory Concentration |
| PBS | Phosphate-Buffered Saline |
| ROC | Receiver Operating Characteristic Curve |
References
- Esnault, G.; Earley, B.; Cormican, P.; Waters, S.M.; Lemon, K.; Barry, T.; Reddington, K.; McCabe, M.S. Optimisation of rapid untargeted nanopore DNA virus metagenomics using cell cultures and calves experimentally infected with bovine herpes virus-1. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Esnault, G.; Earley, B.; Cormican, P.; Waters, S.M.; Lemon, K.; Cosby, S.L.; Lagan, P.; Barry, T.; Reddington, K.; McCabe, M.S. Assessment of Rapid MinION Nanopore DNA Virus Meta-Genomics Using Calves Experimentally Infected with Bovine Herpes Virus-1. Viruses 2022, 14, 1859. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Qi, J.; Cai, D.; Fang, J.; Xie, Y.; Guo, H.; Chen, S.; Ma, X.; Gou, L.; Cui, H.; et al. Metagenomics Reveals That Proper Placement After Long-Distance Transportation Significantly Affects Calf Nasopharyngeal Microbiota and Is Critical for the Prevention of Respiratory Diseases. Front. Microbiol. 2021, 12, 700704. [Google Scholar] [CrossRef] [PubMed]
- Gaeta, N.C.; Lima, S.F.; Teixeira, A.G.V.; Ganda, E.; Oikonomou, G.; Gregory, L.; Bicalho, R.C. Deciphering upper respiratory tract microbiota complexity in healthy calves and calves that develop respiratory disease using shotgun metagenomics. J. Dairy Sci. 2017, 100, 1445–1458. [Google Scholar] [CrossRef]
- Freeman, C.N.; Herman, E.K.; Abi Younes, J.; Ramsay, D.E.; Erikson, N.; Stothard, P.; Links, M.G.; Otto, S.J.G.; Waldner, C. Evaluating the potential of third generation metagenomic sequencing for the detection of BRD pathogens and genetic determinants of antimicrobial resistance in chronically ill feedlot cattle. BMC Vet. Res. 2022, 18, 211. [Google Scholar] [CrossRef]
- Wilkes, R.P. Next-Generation Diagnostics for Pathogens. Vet. Clin. N. Am. Food Anim. Pract. 2023, 39, 165–173. [Google Scholar] [CrossRef]
- Neal, K.; Amachawadi, R.G.; White, B.J.; Shippy, T.D.; Theurer, M.E.; Larson, R.L.; Lubbers, B.V.; Kleinhenz, M. Nasopharyngeal Bacterial Prevalence and Microbial Diversity at First Treatment for Bovine Respiratory Disease (BRD) and Its Associations with Health and Mortality Outcomes in Feedyard Cattle. Microorganisms 2024, 12, 33. [Google Scholar] [CrossRef]
- Smith, R.A.; Step, D.L.; Woolums, A.R. Bovine Respiratory Disease: Looking Back and Looking Forward, What Do We See? Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 239–251. [Google Scholar] [CrossRef]
- Johnson, K.K.; Pendell, D.L. Market Impacts of Reducing the Prevalence of Bovine Respiratory Disease in United States Beef Cattle Feedlots. Front. Vet. Sci. 2017, 4, 189. [Google Scholar] [CrossRef]
- Taylor, J.D.; Fulton, R.W.; Lehenbauer, T.W.; Step, D.L.; Confer, A.W. The epidemiology of bovine respiratory disease: What is the evidence for preventive measures? Can. Vet. J. 2010, 51, 1351–1359. [Google Scholar]
- Griffin, D.; Chengappa, M.M.; Kuszak, J.; McVey, D.S. Bacterial pathogens of the bovine respiratory disease complex. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 381–394. [Google Scholar] [CrossRef]
- Smith, D.R. Risk factors for bovine respiratory disease in beef cattle. Anim. Health Res. Rev. 2020, 21, 149–152. [Google Scholar] [CrossRef]
- Hanthorn, C.J.; Dewell, R.D.; Cooper, V.L.; Frana, T.S.; Plummer, P.J.; Wang, C.; Dewell, G.A. Randomized clinical trial to evaluate the pathogenicity of Bibersteinia trehalosi in respiratory disease among calves. BMC Vet. Res. 2014, 10, 89. [Google Scholar] [CrossRef]
- O’Connor, A.M.; Hu, D.; Totton, S.C.; Scott, N.; Winder, C.B.; Wang, B.; Wang, C.; Glanville, J.; Wood, H.; White, B.; et al. A systematic review and network meta-analysis of bacterial and viral vaccines, administered at or near arrival at the feedlot, for control of bovine respiratory disease in beef cattle. Anim. Health Res. Rev. 2019, 20, 143–162. [Google Scholar] [CrossRef]
- Apley, M.D. Ancillary bovine respiratory disease therapy. Am. Assoc. Bov. Pract. Conf. Proc. 2021, 54, 106–109. [Google Scholar] [CrossRef]
- Brault, S.A.; Hannon, S.J.; Gow, S.P.; Warr, B.N.; Withell, J.; Song, J.; Williams, C.M.; Otto, S.J.G.; Booker, C.W.; Morley, P.S. Antimicrobial Use on 36 Beef Feedlots in Western Canada: 2008–2012. Front. Vet. Sci. 2019, 6, 329. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, A.M.; Hu, D.; Totton, S.C.; Scott, N.; Winder, C.B.; Wang, B.; Wang, C.; Glanville, J.; Wood, H.; White, B.; et al. A systematic review and network meta-analysis of injectable antibiotic options for the control of bovine respiratory disease in the first 45 days post arrival at the feedlot. Anim. Health Res. Rev. 2019, 20, 163–181. [Google Scholar] [CrossRef] [PubMed]
- Ives, S.E.; Richeson, J.T. Use of antimicrobial metaphylaxis for the control of bovine respiratory disease in high-risk cattle. Vet. Clin. Food Anim. Pract. 2015, 31, 341–350. [Google Scholar] [CrossRef]
- Beef Cattle Research Council. Research Priorities. 2025. Available online: https://www.beefresearch.ca/research/research-priorities/ (accessed on 29 September 2025).
- Aidara-Kane, A.; Angulo, F.J.; Conly, J.M.; Minato, Y.; Silbergeld, E.K.; McEwen, S.A.; Collignon, P.J.; Balkhy, H.; Collignon, P.; Conly, J.; et al. World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob. Resist. Infect. Control 2018, 7, 7. [Google Scholar] [CrossRef]
- Canadian Academy of Health Sciences. Antimicrobial Resistance/Antimicrobial Use in Food-Producing Animals in Canada: Strategic Interventions to Strengthen Antimicrobial Stewardship. 2025. Available online: https://cahs-acss.ca/wp-content/uploads/2025/03/CAHS-AMU-Report_EN_Final-1.pdf (accessed on 29 September 2025).
- Herman, E.K.; Lacoste, S.R.; Freeman, C.N.; Otto, S.J.G.; McCarthy, E.L.; Links, M.G.; Stothard, P.; Waldner, C.L. Bacterial enrichment prior to third-generation metagenomic sequencing improves detection of BRD pathogens and genetic determinants of antimicrobial resistance in feedlot cattle. Front. Microbiol. 2024, 15, 1386319. [Google Scholar] [CrossRef]
- Abi Younes, J.N.; Campbell, J.R.; Gow, S.P.; Woolums, A.R.; Waldner, C.L. Association between respiratory disease pathogens in calves near feedlot arrival with treatment for bovine respiratory disease and subsequent antimicrobial resistance status. Front. Vet. Sci. 2024, 11, 1416436. [Google Scholar] [CrossRef] [PubMed]
- Shane, D.D.; McLellan, J.G.; White, B.J.; Larson, R.L.; Amrine, D.E.; Sanderson, M.W.; Apley, M.D. Evaluation of animal-to-animal and community contact structures determined by a real-time location system for correlation with and prediction of new bovine respiratory disease diagnoses in beef cattle during the first 28 days after feedlot entry. Am. J. Vet. Res. 2018, 79, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Snyder, E.R.; Alvarez-Narvaez, S.; Credille, B.C. Genetic characterization of susceptible and multi-drug resistant Mannheimia haemolytica isolated from high-risk stocker calves prior to and after antimicrobial metaphylaxis. Vet. Microbiol. 2019, 235, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, C.; Timsit, E.; Uddin, M.S.; Guan, L.L.; Alexander, T.W. Comparison of pathogenic bacteria in the upper and lower respiratory tracts of cattle either directly transported to a feedlot or co-mingled at auction markets prior to feedlot placement. Front. Vet. Sci. 2023, 9, 1026470. [Google Scholar] [CrossRef]
- Abi Younes, J.N.; Campbell, J.R.; Otto, S.J.G.; Gow, S.P.; Woolums, A.R.; Jelinski, M.; Lacoste, S.; Waldner, C.L. Variation in pen-level prevalence of BRD bacterial pathogens and antimicrobial resistance following feedlot arrival in beef calves. Antibiotics 2024, 13, 322. [Google Scholar] [CrossRef]
- Woolums, A.; Karisch, B.; Frye, J.; Epperson, W.; Smith, D.; Blanton, J.; Austin, F.; Kaplan, R.; Hiott, L.; Woodley, T.; et al. Multidrug resistant Mannheimia haemolytica isolated from high-risk beef stocker cattle after antimicrobial metaphylaxis and treatment for bovine respiratory disease. Vet. Microbiol. 2018, 221, 143. [Google Scholar] [CrossRef]
- Ramsay, D.; McDonald, W.; Thompson, M.; Erickson, N.; Gow, S.; Osgood, N.D.; Waldner, C. Contagious acquisition of antimicrobial resistance is critical for explaining emergence in western Canadian feedlots—Insights from an agent-based modelling tool. Front. Vet. Sci. 2025, 11, 1466986. [Google Scholar] [CrossRef]
- Abi Younes, J.N.; McLeod, L.; Otto, S.J.G.; Chai, Z.; Lacoste, S.; McCarthy, L.; Links, M.G.; Herman, E.K.; Stothard, P.; Gow, S.P.; et al. Evaluating the diagnostic performance of long-read metagenomic sequencing compared to culture and antimicrobial susceptibility testing for detection of bovine respiratory bacteria and indicators of antimicrobial resistance. Antibiotics, 2025; 14, accepted. [Google Scholar]
- Desmolaize, B.; Rose, S.; Wilhelm, C.; Warrass, R.; Douthwaite, S. Combinations of macrolide resistance determinants in field isolates of Mannheimia haemolytica and Pasteurella multocida. Antimicrob. Agents Chemother. 2011, 55, 4128–4133. [Google Scholar] [CrossRef]
- DeDonder, K.D.; Apley, M.D. A literature review of antimicrobial resistance in Pathogens associated with bovine respiratory disease. Anim. Health Res. Rev. 2015, 16, 125–134. [Google Scholar] [CrossRef]
- Rose, S.; Desmolaize, B.; Jaju, P.; Wilhelm, C.; Warrass, R.; Douthwaite, S. Multiplex PCR to identify macrolide resistance determinants in Mannheimia haemolytica and Pasteurella multocida. Antimicrob. Agents Chemother. 2012, 56, 3664–3669. [Google Scholar] [CrossRef]
- Michael, G.B.; Eidam, C.; Kadlec, K.; Meyer, K.; Sweeney, M.T.; Murray, R.W.; Watts, J.L.; Schwarz, S. Increased MICs of gamithromycin and tildipirosin in the presence of the genes erm(42) and msr(E)-mph(E) for bovine Pasteurella multocida and Mannheimia haemolytica. J. Antimicrob. Chemother. 2012, 67, 1555–1557. [Google Scholar] [CrossRef] [PubMed]
- Deschner, D.; Voordouw, M.J.; Fernando, C.; Campbell, J.; Waldner, C.L.; Hill, J.E. Identification of genetic markers of resistance to macrolide class antibiotics in Mannheimia haemolytica isolates from a Saskatchewan feedlot. Appl. Environ. Microbiol. 2024, 90, e0050224. [Google Scholar] [CrossRef]
- Dhindwal, P.; Thompson, C.; Kos, D.; Planedin, K.; Jain, R.; Jelinski, M.; Ruzzini, A. A neglected and emerging antimicrobial resistance gene encodes for a serine-dependent macrolide esterase. Proc. Natl. Acad. Sci. USA 2023, 120, e2219827120. [Google Scholar] [CrossRef] [PubMed]
- Klima, C.L.; Zaheer, R.; Cook, S.R.; Booker, C.W.; Hendrick, S.; Alexander, T.W.; McAllister, T.A. Pathogens of Bovine Respiratory Disease in North American Feedlots Conferring Multidrug Resistance via Integrative Conjugative Elements. J. Clin. Microbiol. 2014, 52, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Michael, G.B.; Kadlec, K.; Sweeney, M.T.; Brzuszkiewicz, E.; Liesegang, H.; Daniel, R.; Murray, R.W.; Watts, J.L.; Schwarz, S. ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: Analysis of the regions that comprise 12 antimicrobial resistance genes. J. Antimicrob. Chemother. 2011, 67, 84–90. [Google Scholar] [CrossRef]
- Lhermie, G.; Toutain, P.-L.; El Garch, F.; Bousquet-Mélou, A.; Assié, S. Implementing Precision Antimicrobial Therapy for the Treatment of Bovine Respiratory Disease: Current Limitations and Perspectives. Front. Vet. Sci. 2017, 4, 143. [Google Scholar] [CrossRef]
- Holman, D.B.; McAllister, T.A.; Topp, E.; Wright, A.D.; Alexander, T.W. The nasopharyngeal microbiota of feedlot cattle that develop bovine respiratory disease. Vet. Microbiol. 2015, 180, 90–95. [Google Scholar] [CrossRef]
- Klima, C.L.; Cook, S.R.; Zaheer, R.; Laing, C.; Gannon, V.P.; Xu, Y.; Rasmussen, J.; Potter, A.; Hendrick, S.; Alexander, T.W.; et al. Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources. PLoS ONE 2016, 11, e0149520. [Google Scholar] [CrossRef]
- McMullen, C.; Alexander, T.W.; Orsel, K.; Timsit, E. Progression of nasopharyngeal and tracheal bacterial microbiotas of feedlot cattle during development of bovine respiratory disease. Vet. Microbiol. 2020, 248, 108826. [Google Scholar] [CrossRef]
- McMullen, C.; Orsel, K.; Alexander, T.W.; van der Meer, F.; Plastow, G.; Timsit, E. Evolution of the nasopharyngeal bacterial microbiota of beef calves from spring processing to 40 days after feedlot arrival. Vet. Microbiol. 2018, 225, 139–148. [Google Scholar] [CrossRef]
- Owen, J.R.; Noyes, N.; Young, A.E.; Prince, D.J.; Blanchard, P.C.; Lehenbauer, T.W.; Aly, S.S.; Davis, J.H.; O’Rourke, S.M.; Abdo, Z.; et al. Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease. G3 Genes Genomes Genet. 2017, 7, 3059–3071. [Google Scholar] [CrossRef] [PubMed]
- Snyder, E.R.; Savitske, B.J.; Credille, B.C. Concordance of disk diffusion, broth microdilution, and whole-genome sequencing for determination of in vitro antimicrobial susceptibility of Mannheimia haemolytica. J. Vet. Intern. Med. 2020, 34, 2158–2168. [Google Scholar] [CrossRef]
- Jobman, E.; Hagenmaier, J.; Meyer, N.; Harper, L.B.; Taylor, L.; Lukasiewicz, K.; Thomson, D.; Lowe, J.; Terrell, S. Cross-Section Observational Study to Assess Antimicrobial Resistance Prevalence among Bovine Respiratory Disease Bacterial Isolates from Commercial US Feedlots. Antibiotics 2023, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Klima, C.L.; Alexander, T.W.; Hendrick, S.; McAllister, T.A. Characterization of Mannheimia haemolytica isolated from feedlot cattle that were healthy or treated for bovine respiratory disease. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2014, 78, 38. [Google Scholar]
- Kos, D.; Jelinski, M.; Ruzzini, A. Retrospective analysis of antimicrobial resistance associated with bovine respiratory disease. Appl. Environ. Microbiol. 2025, 91, e0190924. [Google Scholar] [CrossRef]
- Howe, S.; Kegley, B.; Powell, J.; Chen, S.; Zhao, J. Effect of bovine respiratory disease on the respiratory microbiome: A meta-analysis. Front. Cell. Infect. Microbiol. 2023, 13, 1223090. [Google Scholar] [CrossRef]
- Ambrose, R.K.; Blakebrough-Hall, C.; Gravel, J.L.; Gonzalez, L.A.; Mahony, T.J. Characterisation of the Upper Respiratory Tract Virome of Feedlot Cattle and Its Association with Bovine Respiratory Disease. Viruses 2023, 15, 455. [Google Scholar] [CrossRef]
- Brito, B.P.; Frost, M.J.; Anantanawat, K.; Jaya, F.; Batterham, T.; Djordjevic, S.P.; Chang, W.-S.; Holmes, E.C.; Darling, A.E.; Kirkland, P.D. Expanding the range of the respiratory infectome in Australian feedlot cattle with and without respiratory disease using metatranscriptomics. Microbiome 2023, 11, 158. [Google Scholar] [CrossRef]
- Timsit, E.; Hallewell, J.; Booker, C.; Tison, N.; Amat, S.; Alexander, T.W. Prevalence and antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from the lower respiratory tract of healthy feedlot cattle and those diagnosed with bovine respiratory disease. Vet. Microbiol. 2017, 208, 118–125. [Google Scholar] [CrossRef]
- Zhang, M.; Hill, J.E.; Godson, D.L.; Ngeleka, M.; Fernando, C.; Huang, Y. The pulmonary virome, bacteriological and histopathological findings in bovine respiratory disease from western Canada. Transbound. Emerg. Dis. 2020, 67, 924–934. [Google Scholar] [CrossRef]
- Adewusi, O.O.; Nykiforuk, C.I.J.; Waldner, C.L.; Erickson, N.E.N.; Gow, S.P.; Otto, S.J.G. Laboratory Testing to Inform Antimicrobial Use for Bovine Respiratory Disease: Perceptions of Canadian Feedlot Veterinarians. Vet. Sci. 2025, 12, 409. [Google Scholar] [CrossRef]
- Lubbers, B.V.; Turnidge, J. Antimicrobial susceptibility testing for bovine respiratory disease: Getting more from diagnostic results. Vet. J. 2015, 203, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial susceptibility testing: A comprehensive review of currently used methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Antimicrobial Resistance Surveillance System (GLASS): Molecular Methods for Antimicrobial Resistance (AMR) Diagnostics to Enhance the Global Antimicrobial Resistance Surveillance System; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Otto, S.J.G.; Pollock, C.M.; Relf-Eckstein, J.A.; McLeod, L.; Waldner, C.L. Opportunities for Laboratory Testing to Inform Antimicrobial Use for Bovine Respiratory Disease: Application of Information Quality Value Stream Maps in Commercial Feedlots. Antibiotics 2024, 13, 903. [Google Scholar] [CrossRef] [PubMed]
- Portis, E.; Lindeman, C.; Johansen, L.; Stoltman, G. A ten-year (2000–2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex—Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni—In the United States and Canada. J. Vet. Diagn. Investig. 2012, 24, 932–944. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated from Animals, 6th ed.; CLSI Supplement VET01S ed.; The Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Apley, M. Antimicrobials and BRD. Anim. Health Res. Rev. 2009, 10, 159–161. [Google Scholar] [CrossRef]
- Watts, J.L.; Sweeney, M.T. Antimicrobial Resistance in Bovine Respiratory Disease Pathogens: Measures, Trends, and Impact on Efficacy. Vet. Clin. North America. Food Anim. Pract. 2010, 26, 79–88. [Google Scholar] [CrossRef]
- Watts, J.L.; Yancey, R.J., Jr. Identification of veterinary pathogens by use of commercial identification systems and new trends in antimicrobial susceptibility testing of veterinary pathogens. Clin. Microbiol. Rev. 1994, 7, 346–356. [Google Scholar] [CrossRef]
- Brumbaugh, G.W. Will antimicrobial resistance of BRD pathogens impact BRD management in the future? Anim. Health Res. Rev. 2014, 15, 175–177. [Google Scholar] [CrossRef]
- Turnidge, J.; Paterson, D.L. Setting and revising antibacterial susceptibility breakpoints. Clin. Microbiol. Rev. 2007, 20, 391–408. [Google Scholar] [CrossRef]
- Doern Gary, V.; Brecher Stephen, M. The Clinical Predictive Value (or Lack Thereof) of the Results of In Vitro Antimicrobial Susceptibility Tests. J. Clin. Microbiol. 2011, 49, S11–S14. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Ferraro, M.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- MacVane, S.H.; Dwivedi, H.P. Evaluating the impact of rapid antimicrobial susceptibility testing for bloodstream infections: A review of actionability, antibiotic use and patient outcome metrics. J. Antimicrob. Chemother. 2024, 79, i13–i25. [Google Scholar] [CrossRef] [PubMed]
- Somayaji, R.; Parkins, M.D.; Shah, A.; Martiniano, S.L.; Tunney, M.M.; Kahle, J.S.; Waters, V.J.; Elborn, J.S.; Bell, S.C.; Flume, P.A.; et al. Antimicrobial susceptibility testing (AST) and associated clinical outcomes in individuals with cystic fibrosis: A systematic review. J. Cyst. Fibros 2019, 18, 236–243. [Google Scholar] [CrossRef]
- Anton-Vazquez, V.; Hine, P.; Krishna, S.; Chaplin, M.; Planche, T. Rapid versus standard antimicrobial susceptibility testing to guide treatment of bloodstream infection. Cochrane Database Syst. Rev. 2021, 5, Cd013235. [Google Scholar] [CrossRef]
- Amat, S.; Holman, D.B.; Timsit, E.; Schwinghamer, T.; Alexander, T.W. Evaluation of the Nasopharyngeal Microbiota in Beef Cattle Transported to a Feedlot, With a Focus on Lactic Acid-Producing Bacteria. Front. Microbiol. 2019, 10, 1988. [Google Scholar] [CrossRef]
- Erickson, N.E.N.; Ngeleka, M.G.; Lubbers, B.V.; Trokhymchuk, A. Changes in the rates of field isolation and antimicrobial susceptibility of bacterial pathogens collected from fall-placed feedlot steers between arrival at the feedlot and 90 to 120 days on feed. Bov. Pract. 2017, 51, 165–173. [Google Scholar] [CrossRef]
- Timsit, E.; Workentine, M.; Schryvers, A.B.; Holman, D.B.; van Der Meer, F.; Alexander, T.W. Evolution of the nasopharyngeal microbiota of beef cattle from weaning to 40days after arrival at a feedlot. Vet. Microbiol. 2016, 187, 75–81. [Google Scholar] [CrossRef]
- Timsit, E.; Arcangioli, M.A.; Bareille, N.; Seegers, H.; Assie, S. Transmission dynamics of Mycoplasma bovis in newly received beef bulls at fattening operations. J. Vet. Diagn. Investig. 2012, 24, 1172–1176. [Google Scholar] [CrossRef]
- Timsit, E.; Christensen, H.; Bareille, N.; Seegers, H.; Bisgaard, M.; Assie, S. Transmission dynamics of Mannheimia haemolytica in newly-received beef bulls at fattening operations. Vet. Microbiol. 2013, 161, 295–304. [Google Scholar] [CrossRef]
- Cameron, A.; McAllister, T.A. Antimicrobial usage and resistance in beef production. J. Anim. Sci. Biotechnol. 2016, 7, 68. [Google Scholar] [CrossRef]
- Klima, C.L.; Alexander, T.W.; Read, R.R.; Gow, S.P.; Booker, C.W.; Hannon, S.; Sheedy, C.; McAllister, T.A.; Selinger, L.B. Genetic characterization and antimicrobial susceptibility of Mannheimia haemolytica isolated from the nasopharynx of feedlot cattle. Vet. Microbiol. 2011, 149, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Noyes, N.R.; Benedict, K.M.; Gow, S.P.; Booker, C.W.; Hannon, S.J.; McAllister, T.A.; Morley, P.S. Mannheimia haemolytica in feedlot cattle: Prevalence of recovery and associations with antimicrobial use, resistance, and health outcomes. J. Vet. Intern. Med. 2015, 29, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; McMullen, C.; Timsit, E.; Hallewell, J.; Orsel, K.; van der Meer, F.; Yan, S.; Alexander, T.W. Genetic relatedness and antimicrobial resistance in respiratory bacteria from beef calves sampled from spring processing to 40 days after feedlot entry. Vet. Microbiol. 2020, 240, 108478. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Lasheras, S.; Ha, R.; Zaheer, R.; Lee, C.; Booker, C.W.; Dorin, C.; Van Donkersgoed, J.; Deardon, R.; Gow, S.; Hannon, S.J.; et al. Prevalence and Risk Factors Associated With Antimicrobial Resistance in Bacteria Related to Bovine Respiratory Disease—A Broad Cross-Sectional Study of Beef Cattle at Entry Into Canadian Feedlots. Front. Vet. Sci. 2021, 8, 692646. [Google Scholar] [CrossRef]
- Fossen, J.D.; Campbell, J.R.; Gow, S.P.; Erickson, N.; Waldner, C.L. Antimicrobial Use in Canadian Cow-Calf Herds. Vet. Sci. 2023, 10, 366. [Google Scholar] [CrossRef]
- Fossen, J.D.; Campbell, J.R.; Gow, S.P.; Erickson, N.; Waldner, C.L. Antimicrobial resistance in Enterococcus isolated from western Canadian cow-calf herds. BMC Vet. Res. 2024, 20, 6. [Google Scholar] [CrossRef]
- Step, D.L.; Krehbiel, C.R.; DePra, H.A.; Cranston, J.J.; Fulton, R.W.; Kirkpatrick, J.G.; Gill, D.R.; Payton, M.E.; Montelongo, M.A.; Confer, A.W. Effects of commingling beef calves from different sources and weaning protocols during a forty-two-day receiving period on performance and bovine respiratory disease1,2. J. Anim. Sci. 2008, 86, 3146–3158. [Google Scholar] [CrossRef]
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef]
- Bizzini, A.; Greub, G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect. 2010, 16, 1614–1619. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef]
- Silva, K.P.T.; Khare, A. Antibiotic resistance mediated by gene amplifications. npj Antimicrob. Resist. 2024, 2, 35. [Google Scholar] [CrossRef]
- Dantas, G.; Sommer, M.O.A. Context matters—The complex interplay between resistome genotypes and resistance phenotypes. Curr. Opin. Microbiol. 2012, 15, 577–582. [Google Scholar] [CrossRef]
- Narayanan, S.; Bates, H.; Confer, A.; Couger, B.; Ramachandran, A. Whole-Genome Sequence of Multidrug-Resistant Bibersteinia trehalosi Strain OADDL-BT1. Microbiol. Resour. Announc. 2019, 8, e01690-18. [Google Scholar] [CrossRef] [PubMed]
- Cortese, V.S.; Braun, D.A.; Crouch, D.; Townsend, C.; Zukowski, B. Case report: Peracute to acute fatal pneumonia in cattle caused by Bibersteinia trehalosi. Bov. Pract. 2012, 46, 138–142. [Google Scholar] [CrossRef]
- Maunsell, F.P.; Woolums, A.R.; Francoz, D.; Rosenbusch, R.F.; Step, D.L.; Wilson, D.J.; Janzen, E.D. Mycoplasma bovis Infections in Cattle. J. Vet. Intern. Med. 2011, 25, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Gagea, M.I.; Bateman, K.G.; Shanahan, R.A.; van Dreumel, T.; McEwen, B.J.; Carman, S.; Archambault, M.; Caswell, J.L. Naturally Occurring Mycoplasma Bovis—Associated Pneumonia and Polyarthritis in Feedlot Beef Calves. J. Vet. Diagn. Investig. 2006, 18, 29–40. [Google Scholar] [CrossRef]
- Caswell, J.L.; Archambault, M. Mycoplasma bovis pneumonia in cattle. Anim. Health Res. Rev. 2007, 8, 161–186. [Google Scholar] [CrossRef]
- Ledger, L.; Eidt, J.; Cai, H.Y. Identification of Antimicrobial Resistance-Associated Genes through Whole Genome Sequencing of Mycoplasma bovis Isolates with Different Antimicrobial Resistances. Pathogens 2020, 9, 588. [Google Scholar] [CrossRef]
- Andrés-Lasheras, S.; Zaheer, R.; Ruzzini, A.; Jelinski, M.D.; McAllister, T.A. PSLBII-27 Investigating the emergence of antimicrobial resistance in Mycoplasma bovis from feedlot cattle. J. Anim. Sci. 2024, 102, 674–675. [Google Scholar] [CrossRef]
- Jelinski, M.; Kinnear, A.; Gesy, K.; Andrés-Lasheras, S.; Zaheer, R.; Weese, S.; McAllister, T.A. Antimicrobial Sensitivity Testing of Mycoplasma bovis Isolates Derived from Western Canadian Feedlot Cattle. Microorganisms 2020, 8, 124. [Google Scholar] [CrossRef] [PubMed]
- Vogel, G.J.; Bokenkroger, C.D.; Rutten-Ramos, S.C.; Bargen, J.L. A Retrospective evaluation of animal mortality in US feedlots: Rate, timing, and cause of death. Bov. Pract. 2015, 49, 113–123. [Google Scholar] [CrossRef]
- Smith, K.J.; White, B.J.; Amrine, D.E.; Larson, R.L.; Theurer, M.E.; Szasz, J.I.; Bryant, T.C.; Waggoner, J.W. Evaluation of first treatment timing, fatal disease onset, and days from first treatment to death associated with bovine respiratory disease in feedlot Cattle. Vet. Sci. 2023, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Apley, M.D. Treatment of calves with bovine respiratory disease: Duration of therapy and posttreatment intervals. Vet. Clin. N. Am. Food Anim. Pract. 2015, 31, 441–453. [Google Scholar] [CrossRef]
- Credille, B.; Berghaus, R.D.; Jane Miller, E.; Credille, A.; Schrag, N.F.D.; Naikare, H. Antimicrobial Metaphylaxis and its Impact on Health, Performance, Antimicrobial Resistance, and Contextual Antimicrobial Use in High-Risk Beef Stocker Calves. J. Anim. Sci. 2023, 102, skad417. [Google Scholar] [CrossRef]
- Crosby, W.B.; Karisch, B.B.; Hiott, L.M.; Pinnell, L.J.; Pittman, A.; Frye, J.G.; Jackson, C.R.; Loy, J.D.; Epperson, W.B.; Blanton, J.; et al. Tulathromycin metaphylaxis increases nasopharyngeal isolation of multidrug resistant Mannheimia haemolytica in stocker heifers. Front. Vet. Sci. 2023, 10, 1256997. [Google Scholar] [CrossRef]
- Portik, D.M.; Brown, C.T.; Pierce-Ward, N.T. Evaluation of taxonomic classification and profiling methods for long-read shotgun metagenomic sequencing datasets. BMC Bioinform. 2022, 23, 541. [Google Scholar] [CrossRef]
- Forry, S.P.; Servetas, S.L.; Kralj, J.G.; Soh, K.; Hadjithomas, M.; Cano, R.; Carlin, M.; Amorim, M.G.d.; Auch, B.; Bakker, M.G.; et al. Variability and bias in microbiome metagenomic sequencing: An interlaboratory study comparing experimental protocols. Sci. Rep. 2024, 14, 9785. [Google Scholar] [CrossRef]
- Keenum, I.; Jackson, S.A.; Eloe-Fadrosh, E.; Schriml, L.M. A standards perspective on genomic data reusability and reproducibility. Front. Bioinform. 2025, 5, 1572937. [Google Scholar] [CrossRef]
- Genomic Standards Consortium. Minimum Information about Any Sequence (MIxS). 2025. Available online: https://www.gensc.org/pages/standards-intro.html (accessed on 17 October 2025).
- Ramsay, D.E.; McDonald, W.; Gow, S.P.; McLeod, L.; Otto, S.J.G.; Osgood, N.D.; Waldner, C.L. The Potential for Sample Testing at the Pen Level to Inform Prudent Antimicrobial Selection for Bovine Respiratory Disease Treatment: Investigations Using a Feedlot Simulation Tool. Antibiotics 2025, 14, 1009. [Google Scholar] [CrossRef]
- Olfert, E.D.; Cross, B.M.; McWilliam, A.A. Guide to the Care and Use of Experimental Animals, 2nd ed.; The Council: Ottawa, ON, Canada, 1993. [Google Scholar]
- National Farm Animal Care Council. Code of Practice for the Care and Handling of Beef Cattle. 2013. Available online: https://www.nfacc.ca/beef-cattle-code (accessed on 29 September 2025).
- National Research Council. Nutrient Requirements of Beef Cattle: Seventh Revised Edition: Update 2000; The National Academies Press: Washington, DC, USA, 2000; p. 248. [Google Scholar]
- Wick, R.R.; Judd, L.M.; Holt, K.E. Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks. PLoS Comput. Biol. 2018, 14, e1006583. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 2017, 3, e000132. [Google Scholar] [CrossRef] [PubMed]
- De Coster, W.; D’Hert, S.; Schultz, D.T.; Cruts, M.; Van Broeckhoven, C. NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics 2018, 34, 2666–2669. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Goldfarb, T.; Kodali, V.K.; Pujar, S.; Brover, V.; Robbertse, B.; Farrell, C.M.; Oh, D.H.; Astashyn, A.; Ermolaeva, O.; Haddad, D.; et al. NCBI RefSeq: Reference sequence standards through 25 years of curation and annotation. Nucleic Acids Res. 2025, 53, D243–D257. [Google Scholar] [CrossRef]
- Hayes, B.J.; Daetwyler, H.D. 1000 Bull Genomes Project to Map Simple and Complex Genetic Traits in Cattle: Applications and Outcomes. Annu. Rev. Anim. Biosci. 2019, 7, 89–102. [Google Scholar] [CrossRef]
- Lu, J.; Rincon, N.; Wood, D.E.; Breitwieser, F.P.; Pockrandt, C.; Langmead, B.; Salzberg, S.L.; Steinegger, M. Metagenome analysis using the Kraken software suite. Nat. Protoc. 2022, 17, 2815–2839. [Google Scholar] [CrossRef]
- Bushnell, B. BBTools. Available online: https://sourceforge.net/projects/bbmap/ (accessed on 28 September 2025).
- Lu, J.; Breitwieser, F.P.; Thielen, P.; Salzberg, S.L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2017, 3, e104. [Google Scholar] [CrossRef]
- Li, H. Seqtk. Available online: https://github.com/lh3/seqtk (accessed on 28 September 2025).
- Seeman, T. Abricate (1.0.1). Available online: https://github.com/tseemann/abricate (accessed on 28 September 2025).
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
| (a) | ||||
| Risk Factor: Sequencing Detection of Bacteria | Odds Ratios | 95% Confidence Interval | p-value | |
| Lower | Upper | |||
| Metagenomic detection at 1 DOF (n = 840 calves) | Outcome: BRD ≤ 13 DOF | |||
| M. haemolytica | 0.97 | 0.58 | 1.6 | 0.90 |
| P. multocida | 0.87 | 0.49 | 1.5 | 0.63 |
| H. somni | 0.86 | 0.27 | 2.7 | 0.80 |
| B. trehalosi | 0.86 | 0.27 | 2.7 | 0.80 |
| Metagenomic detection at 13 DOF (n = 819 calves) | Outcome: BRD 14 to 45 DOF | |||
| M. haemolytica | 1.4 | 0.95 | 2.1 | 0.09 |
| P. multocida | 1.8 | 0.78 | 4.2 | 0.17 |
| H. somni | 2.1 | 1.04 | 4.3 | 0.04 |
| B. trehalosi | 0.70 | 0.44 | 1.1 | 0.15 |
| (b) | ||||
| Risk Factor: Sequencing Detection of Bacteria | Odds Ratios | 95% Confidence Intervals | p-value | |
| Lower | Upper | |||
| Pen-level metagenomic detection at 13 DOF (10% increase) (n = 819) | Outcome: BRD 14 to 45 DOF | |||
| M. haemolytica | 1.16 | 1.00 | 1.34 | 0.04 |
| P. multocida | 1.14 | 1.01 | 1.27 | 0.03 |
| H. somni | 1.16 | 0.82 | 1.66 | 0.41 |
| B. trehalosi | 1.00 | 0.81 | 1.22 | 0.97 |
| (i) Dichotomous Outcome: Susceptible + Intermediate vs. Resistant | |||||
| Risk Factor: ARGs detected in Pasteurellaceae bacteria at 1 DOF | Outcome: Resistant AST in Pasteurellaceae bacteria at BRD treatment ≤ 13 DOF | Odds ratio | 95% confidence intervals | p-value | |
| Lower | Upper | ||||
| msrE-mphE | Tula/Gam/Tild/Tilm | no calves with mphE-msrE at 1DOF | |||
| msrE-mphE | Tula/Gam | ||||
| msrE-mphE | Tild/Tilm | ||||
| EstT ** | Tula/Gam/Tild/Tilm | 31 | 0.0001 | 1209 | >0.99 |
| EstT ** | Tula/Gam | 31 | 0.0001 | 1209 | >0.99 |
| EstT | Tild/Tilm | no calves with Tild/Tilm at 1 DOF | |||
| tet(H) ** | Tet | 7.8 | 0.40 | 152 | 0.18 |
| (ii) Dichotomous Outcome: Susceptible vs. Intermediate + Resistant (Non-susceptible) | |||||
| Risk Factor: ARGs detected in Pasteurellaceae bacteria at 1 DOF | Outcome: AST in Pasteurellaceae bacteria at BRD treatment ≤ 13 DOF | Odds ratio | 95% confidence intervals | p-value | |
| Lower | Upper | ||||
| msrE-mphE | Tula/Gam/Tild/Tilm | no calves with mphE-msrE at 1 DOF | |||
| msrE-mphE | Tula/Gam | ||||
| msrE-mphE | Tild/Tilm | ||||
| EstT ** | Tula/Gam/Tild/Tilm | 9.7 | 0.0001 | 377 | >0.99 |
| EstT ** | Tula/Gam | 20 | 0.0001 | 793 | >0.99 |
| EstT ** | Tild/Tilm | 12 | 0.0001 | 460 | >0.99 |
| tet(H) ** | Tet | 7.1 | 0.35 | 144 | 0.20 |
| (a) | |||||
| (i) Dichotomous Outcome: Susceptible + Intermediate vs. Resistant | |||||
| Risk Factor: ARGs detected in Pasteurellaceae bacteria at 13 DOF | Outcome: AST in Pasteurellaceae bacteria at BRD treatment 14 to 45 DOF | Odds ratio | 95% confidence intervals | p-value | |
| Lower | Upper | ||||
| msrE-mphE * | Tula/Gam/Tild/Tilm | 27 | 1.7 | 427 | 0.02 |
| msrE-mphE * | Tula/Gam | 27 | 1.7 | 427 | 0.02 |
| msrE-mphE * | Tild/Tilm | 3.6 | 0.34 | 38 | 0.29 |
| EstT * | Tula/Gam/Tild/Tilm | 6.3 | 2.1 | 19 | 0.001 |
| EstT | Tula/Gam | 6.3 | 2.1 | 19 | 0.001 |
| EstT * | Tild/Tilm | 7.4 | 1.5 | 38 | 0.02 |
| tet(H) ** | Tet | 11 | 2.04 | 73 | 0.004 |
| (ii) Dichotomous Outcome: Susceptible vs. Intermediate + Resistant (Non-susceptible) | |||||
| Risk Factor: ARGs detected in Pasteurellaceae bacteria at 13 DOF | Outcome: AST in Pasteurellaceae bacteria at BRD treatment 14 to 45 DOF | Odds ratio | 95% confidence intervals | p-value | |
| Lower | Upper | ||||
| msrE-mphE | Tula/Gam/Tild/Tilm | 6.1 | 0.31 | 120 | 0.24 |
| msrE-mphE * | Tula/Gam | 18 | 1.3 | 258 | 0.03 |
| msrE-mphE | Tild/Tilm | 2.0 | 0.16 | 23 | 0.59 |
| EstT | Tula/Gam/Tild/Tilm | 14 | 2.5 | 78 | 0.003 |
| EstT * | Tula/Gam | 3.6 | 1.4 | 9.7 | 0.01 |
| EstT | Tild/Tilm | 3.3 | 0.37 | 30 | 0.28 |
| tet(H) ** | Tet | 1.3 | 0.19 | 9.6 | 0.78 |
| (b) | |||||
| (i) Dichotomous Outcome: Susceptible + Intermediate vs. Resistant | |||||
| Risk Factor: Pen-level ARG prevalence in Pasteurellaceae bacteria at 13 DOF (10% increase) | Outcome: AST in Pasteurellaceae bacteria at BRD treatment 14 to 45 DOF | Odds ratio | 95% confidence intervals | p-value | |
| Lower | Upper | ||||
| msrE-mphE * | Tula/Gam/Tild/Tilm | 2.00 | 1.13 | 3.53 | 0.02 |
| msrE-mphE * | Tula/Gam | 2.00 | 1.13 | 3.53 | 0.02 |
| msrE-mphE * | Tild/Tilm | 1.46 | 0.81 | 2.62 | 0.21 |
| EstT * | Tula/Gam/Tild/Tilm | 1.59 | 0.60 | 4.20 | 0.35 |
| EstT | Tula/Gam | 1.59 | 0.60 | 4.20 | 0.35 |
| EstT * | Tild/Tilm | 3.33 | 1.36 | 8.17 | 0.01 |
| tet(H) ** | Tet | 7.37 | 0.23 | 234 | 0.26 |
| (ii) Dichotomous Outcome: Susceptible vs. Intermediate + Resistant (Non-susceptible) | |||||
| Risk Factor: Pen-level ARG prevalence in Pasteurellaceae bacteria at 13 DOF (10% increase) | Outcome: AST in Pasteurellaceae bacteria at BRD treatment 14 to 45 DOF | Odds ratio | 95% confidence intervals | p-value | |
| Lower | Upper | ||||
| msrE-mphE | Tula/Gam/Tild/Tilm | 1.99 | 0.82 | 4.84 | 0.13 |
| msrE-mphE * | Tula/Gam | 1.83 | 1.10 | 3.06 | 0.02 |
| msrE-mphE | Tild/Tilm | 1.37 | 0.61 | 3.06 | 0.44 |
| EstT | Tula/Gam/Tild/Tilm | 2.57 | 1.02 | 6.49 | 0.046 |
| EstT * | Tula/Gam | 1.94 | 0.85 | 4.46 | 0.12 |
| EstT | Tild/Tilm | 3.83 | 1.43 | 10.2 | 0.01 |
| tet(H) ** | Tet | 9.37 | 0.55 | 160 | 0.12 |
| Calves with sequencing data included in model: | Associations of interest: | |
| All calves, 1 DOF (n = 840 calves) | Sequencing detection of bacteria at 1 DOF and association with BRD ≤13 DOF | |
| All calves, 13 DOF (n = 819 calves) | Sequencing detection of bacteria at 13 DOF and association with BRD 14–45 DOF | |
| BRD calves treated ≤ 13 DOF (n = 64 calves) | Sequencing detection of ARGs at 1 DOF and association with antimicrobial susceptibility at BRD treatment | |
| BRD calves treated from 14 to 45 DOF (n = 64 calves) | Sequencing detection of ARGs at 13 DOF and association with antimicrobial susceptibility at BRD treatment | |
| Outcome of interest: | Risk factors evaluated: | |
| Risk of BRD within first 13 DOF | Sequencing detection of individual bacteria (M. haemolytica, P. multocida, H. somni, B. trehalosi) at 1 DOF | |
| Risk of BRD between 14 and 45 DOF | Sequencing detection of individual bacteria (M. haemolytica, P. multocida, H. somni, B. trehalosi) at 13 DOF | |
| Antimicrobial susceptibility results at BRD treatment for any target organism (M. haemolytica, P. multocida, or H. somni): | Sequencing detection of at least one Pasteurellaceae (M. haemolytica, P. multocida, H. somni, or B. trehalosi) carrying specific ARGs: | |
| Any macrolide resistance (tulathromycin, gamithromycin, tildipirosin, tilmicosin) | Analysis repeated for calves treated for BRD: ≤13 DOF 14 to 45 DOF for all comparisons | Analysis repeated for mphE-msrE EstT |
| 15-membered ring macrolide resistance (tulathromycin or gamithromycin) | ||
| 16-membered ring macrolide resistance (tildipirosin or tilmicosin) | ||
| Tetracycline resistance (oxytetracycline) | tet(H) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abi Younes, J.N.; McLeod, L.; Lacoste, S.R.; Chai, Z.; Herman, E.K.; McCarthy, E.L.; Campbell, J.R.; Gow, S.P.; Stothard, P.; Links, M.G.; et al. Respiratory Bacteria and Antimicrobial Resistance Genes Detected by Long-Read Metagenomic Sequencing Following Feedlot Arrival, Subsequent Treatment Risk and Phenotypic Resistance in Feedlot Calves. Antibiotics 2025, 14, 1098. https://doi.org/10.3390/antibiotics14111098
Abi Younes JN, McLeod L, Lacoste SR, Chai Z, Herman EK, McCarthy EL, Campbell JR, Gow SP, Stothard P, Links MG, et al. Respiratory Bacteria and Antimicrobial Resistance Genes Detected by Long-Read Metagenomic Sequencing Following Feedlot Arrival, Subsequent Treatment Risk and Phenotypic Resistance in Feedlot Calves. Antibiotics. 2025; 14(11):1098. https://doi.org/10.3390/antibiotics14111098
Chicago/Turabian StyleAbi Younes, Jennifer N., Lianne McLeod, Stacey R. Lacoste, Zhijian Chai, Emily K. Herman, E. Luke McCarthy, John R. Campbell, Sheryl P. Gow, Paul Stothard, Matthew G. Links, and et al. 2025. "Respiratory Bacteria and Antimicrobial Resistance Genes Detected by Long-Read Metagenomic Sequencing Following Feedlot Arrival, Subsequent Treatment Risk and Phenotypic Resistance in Feedlot Calves" Antibiotics 14, no. 11: 1098. https://doi.org/10.3390/antibiotics14111098
APA StyleAbi Younes, J. N., McLeod, L., Lacoste, S. R., Chai, Z., Herman, E. K., McCarthy, E. L., Campbell, J. R., Gow, S. P., Stothard, P., Links, M. G., Otto, S. J. G., & Waldner, C. L. (2025). Respiratory Bacteria and Antimicrobial Resistance Genes Detected by Long-Read Metagenomic Sequencing Following Feedlot Arrival, Subsequent Treatment Risk and Phenotypic Resistance in Feedlot Calves. Antibiotics, 14(11), 1098. https://doi.org/10.3390/antibiotics14111098

