Evaluation of Antimicrobial Performance of Calcium Dihydroxide (Ca(OH)2) Coating on Ti for Potential Metallic Orthopedic Implant Applications
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Coating
2.2. TTC Assay and Isothermal Microcalorimetry on Disk Samples
2.3. Isothermal Microcalorimetry on Screws
3. Discussion
4. Materials and Methods
4.1. Coating Procedures for Disk and Screws Used
4.2. Microorganisms and Growth Conditions
4.3. Triphenyl Tetrazolim Chloride (TTC) Assay on Discs
4.4. Measurement of the Metabolic Activity Close to the Ca(OH)2 Layer by Isothermal Microcalorimetry
4.4.1. Isothermal Microcalorimetry of Discs
4.4.2. Isothermal Microcalorimetry of Screws
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammadi, Z.; Shalavi, S.; Yazdizadeh, M. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review. Chonnam Med. J. 2012, 48, 133–140. [Google Scholar] [CrossRef]
- David R Lide, E. CRC Handbook of Chemistry and Physics, 87th ed.; Internet Version 2007; Taylor & Francis: Boca Raton, FL, USA, 2007. [Google Scholar]
- Siqueira, J.F.; Lopes, H.P. Mechanisms of Antimicrobial Activity of Calcium Hydroxide: A Critical Review. Int. Endod. J. 1999, 32, 361–369. [Google Scholar] [CrossRef]
- Cheng, K.F.; Leung, P.C. What Happened in China during the 1918 Influenza Pandemic? Int. J. Infect. Dis. 2007, 11, 360–364. [Google Scholar] [CrossRef]
- Dowling, A.; O’Dwyer, J.; Adley, C.C. Lime in the Limelight. J. Clean. Prod. 2015, 92, 13–22. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Sadaf, D.; Merdad, K.A.; Almohaimeed, A.; Onakpoya, I.J. Calcium Hydroxide as an Intracanal Medication for Postoperative Pain during Primary Root Canal Therapy: A Systematic Review and Meta-Analysis with Trial Sequential Analysis of Randomised Controlled Trials. J. Evid. Based. Dent. Pract. 2022, 22, 101680. [Google Scholar] [CrossRef]
- Torres, C.P.; Apicella, M.J.; Yancich, P.P.; Parker, M.H. Intracanal Placement of Calcium Hydroxide: A Comparison of Techniques, Revisited. J. Endod. 2004, 30, 225–227. [Google Scholar] [CrossRef]
- European Lime Association. Practical Guidelines for Disinfection with Lime; European Lime Association: Brussels, Belgium, 2009; Available online: https://www.eula.eu/wp-content/uploads/2009/02/2009-02-11-Influenza_UK_web.pdf (accessed on 10 August 2024).
- Wang, M.; Duday, D.; Scolan, E.; Perbal, S.; Prato, M.; Lasseur, C.; Hołyńska, M. Antimicrobial Surfaces for Applications on Confined Inhabited Space Stations. Adv. Mater. Interfaces 2021, 8, 2100118. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Dummer, P.M.H. Properties and Applications of Calcium Hydroxide in Endodontics and Dental Traumatology. Int. Endod. J. 2011, 44, 697–730. [Google Scholar] [CrossRef] [PubMed]
- Meininger, M.; Meininger, S.; Groll, J.; Gbureck, U.; Moseke, C. Silver and Copper Addition Enhances the Antimicrobial Activity of Calcium Hydroxide Coatings on Titanium. J. Mater. Sci. Mater. Med. 2018, 29, 61. [Google Scholar] [CrossRef]
- Moseke, C.; Braun, W.; Ewald, A. Electrochemically Deposited Ca(OH)2 Coatings as a Bactericidal and Osteointegrative Modification of Ti Implants. Adv. Eng. Mater. 2009, 11, B1–B6. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, H. Phytic Acid Calcium Hydroxide Composite Coating on Titanium Implants Promote Early Osseointegration. Clin. Oral Implant. Res. 2019, 30, 65. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, H.; Lu, M.; Liu, L.; Yan, Y.; Chu, Z.; Ge, Y.; Wang, T.; Tang, C. Enhanced Bioactive and Osteogenic Activities of Titanium by Modification with Phytic Acid and Calcium Hydroxide. Appl. Surf. Sci. 2019, 478, 162–175. [Google Scholar] [CrossRef]
- Greenfield, E.M.; Bi, Y.; Ragab, A.A.; Goldberg, V.M.; Nalepka, J.L.; Seabold, J.M. Does Endotoxin Contribute to Aseptic Loosening of Orthopedic Implants? J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 72, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Hoenders, C.S.M.; Harmsen, M.C.; Van Luyn, M.J.A. The Local Inflammatory Environment and Microorganisms in “Aseptic” Loosening of Hip Prostheses. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 86, 291–301. [Google Scholar] [CrossRef]
- Sadaf, D.; Ahmad, M.Z. Calcium Hydroxide (Ca[OH]2) as an Intracanal Medication May Significantly Reduce Endotoxins Level from Infected Teeth. J. Evid. Based. Dent. Pract. 2021, 21, 101616. [Google Scholar] [CrossRef] [PubMed]
- Bedran, N.R.; Nadelman, P.; Magno, M.B.; de Almeida Neves, A.; Ferreira, D.M.; Braga Pintor, A.V.; Maia, L.C.; Primo, L.G. Does Calcium Hydroxide Reduce Endotoxins in Infected Root Canals? Systematic Review and Meta-Analysis. J. Endod. 2020, 46, 1545–1558. [Google Scholar] [CrossRef]
- Tanomaru, J.M.G.; Leonardo, M.R.; Tanomaru Filho, M.; Bonetti Filho, I.; Silva, L.A.B. Effect of Different Irrigation Solutions and Calcium Hydroxide on Bacterial LPS. Int. Endod. J. 2003, 36, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Baik, J.E.; Kum, K.Y.; Yun, C.H.; Lee, J.K.; Lee, K.; Kim, K.K.; Han, S.H. Calcium Hydroxide Inactivates Lipoteichoic Acid from Enterococcus Faecalis. J. Endod. 2008, 34, 1355–1359. [Google Scholar] [CrossRef] [PubMed]
- Silipo, A.; Lanzetta, R.; Amoresano, A.; Parrilli, M.; Molinaro, A. Ammonium Hydroxide Hydrolysis: A Valuable Support in the MALDI-TOF Mass Spectrometry Analysis of Lipid A Fatty Acid Distribution. J. Lipid Res. 2002, 43, 2188–2195. [Google Scholar] [CrossRef] [PubMed]
- Harrasser, N.; de Wild, M.; Gorkotte, J.; Obermeier, A.; Feihl, S.; Straub, M.; von Eisenhart-Rothe, R.; Gollwitzer, H.; Rüegg, J.; Moser, W.; et al. Evaluation of Calcium Dihydroxideand Silver-Coated Implants in the Rat Tibia. J. Appl. Biomater. Funct. Mater. 2016, 14, 441–448. [Google Scholar] [CrossRef]
- Gruner, P.; Moser, W.; Wittwer, M.; Rüegg, J.; Holeczek, H.; Braissant, O.; Maniura, K.; de Wild, M. An Inorganic Antimicrobial Surface Modification for Orthopaedic Implants. Eur. Cells Mater. 2017, 33 (Suppl. S3), 55. [Google Scholar]
- Holeczek, H.; Braissant, O.; Rüegg, J.; de Wild, M. Anti-Bacterial Coating for Implant Surfaces Based on Electrochemically-Formed Calcium Hydroxide. In Proceedings of the Materials and Surface Technology for Implants, 33rd Annual Conference of the European Society of Biomaterials, Davos, Switzerland, 4–8 September 2023; p. 16. Available online: https://esb2023.org/wp-content/uploads/2023/09/ESB2023-Booklet.pdf (accessed on 18 September 2024).
- Kohal, R.J.; Hürzeler, M.B.; Schneider, S.R.; Riede, U.N.; Caffesse, R.G. The Effect of a Calcium Hydroxide Paste on Wound Healing and Osseointegration of Dental Implants: A Pilot Study in Beasle Dogs. Clin. Oral Implant. Res. 1997, 8, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Braissant, O.; Chavanne, P.; De Wild, M.; Pieles, U.; Stevanovic, S.; Schumacher, R.; Straumann, L.; Wirz, D.; Gruner, P.; Bachmann, A.; et al. Novel Microcalorimetric Assay for Antibacterial Activity of Implant Coatings: The Cases of Silver-Doped Hydroxyapatite and Calcium Hydroxide. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Scolaro, C.; Liotta, L.F.; Calabrese, C.; Marcì, G.; Visco, A. Adhesive and Rheological Features of Ecofriendly Coatings with Antifouling Properties. Polymers 2023, 15, 2456. [Google Scholar] [CrossRef]
- Braissant, O.; Bonkat, G.; Wirz, D.; Bachmann, A. Microbial Growth and Isothermal Microcalorimetry: Growth Models and Their Application to Microcalorimetric Data. Thermochim. Acta 2013, 555, 64–71. [Google Scholar] [CrossRef]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; Van’t Riet, K. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- Winsor, C.P. The Gompertz Curve as a Growth Curve. Proc. Natl. Acad. Sci. USA 1932, 18, 1–8. [Google Scholar] [CrossRef]
- Pasquarella, C.; Pitzurra, O.; Savino, A. The Index of Microbial Air Contamination. J. Hosp. Infect. 2000, 46, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, H.; Takahashi, T.; Kure, T.; Sugiyama, R.Y.O.; Suda, T.; Kobayashi, K.; Katayama, T. In Vitro Study of Bactericidal Activity of Calcium Hydroxide on Clinically Isolated Staphylococcus aureus. Jpn. J. Conserv. Dent. 2007, 50, 75–79. [Google Scholar]
- Kim, D.; Kim, E. Antimicrobial Effect of Calcium Hydroxide as an Intracanal Medicament in Root Canal Treatment: A Literature Review-Part I. In Vitro Studies. Restor. Dent. Endod. 2014, 39, 241–252. [Google Scholar] [CrossRef]
- Brečević, L.; Füredi-Milhofer, H. Precipitation of Calcium Phosphates from Electrolyte Solutions V. The Influence of Citrate Ions. Calcif. Tissue Int. 1979, 28, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, H.; Neilands, J.; Svensäter, G.; Stavropoulos, A. Antimicrobial Potential of Strontium Hydroxide on Bacteria Associated with Peri-Implantitis. Antibiotics 2021, 10, 150. [Google Scholar] [CrossRef]
- Meininger, S.; Moseke, C.; Spatz, K.; März, E.; Blum, C.; Ewald, A.; Vorndran, E. Effect of Strontium Substitution on the Material Properties and Osteogenic Potential of 3D Powder Printed Magnesium Phosphate Scaffolds. Mater. Sci. Eng. C 2019, 98, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Trampuz, A.; Zimmerli, W. Diagnosis and Treatment of Infections Associated with Fracture-Fixation Devices. Injury 2006, 37, S59–S66. [Google Scholar] [CrossRef] [PubMed]
- Sendi, P.; Zimmerli, W. Antimicrobial Treatment Concepts for Orthopaedic Device-Related Infection. Clin. Microbiol. Infect. 2012, 18, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, T.F.; Kuehl, R.; Coenye, T.; Metsemakers, W.J.; Morgenstern, M.; Schwarz, E.M.; Riool, M.; Zaat, S.A.J.; Khana, N.; Kates, S.L.; et al. Orthopaedic Device-Related Infection: Current and Future Interventions for Improved Prevention and Treatment. EFORT Open Rev. 2016, 1, 89–99. [Google Scholar] [CrossRef]
- Gu, B.; Cai, J.; Peng, G.; Zhou, H.; Zhang, W.; Zhang, D.; Gong, D. Metal Organic Framework-Loaded Biohybrid Magnetic Microrobots for Enhanced Antibacterial Treatment. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133295. [Google Scholar] [CrossRef]
- Huang, F.; Cai, X.; Hou, X.; Zhang, Y.; Liu, J.; Yang, L.; Liu, Y.; Liu, J. A Dynamic Covalent Polymeric Antimicrobial for Conquering Drug-Resistant Bacterial Infection. Exploration 2022, 2, 20210145. [Google Scholar] [CrossRef] [PubMed]
- Braissant, O.; Bachmann, A.; Bonkat, G. Microcalorimetric assays for measuring cell growth and metabolic activity: Methodology and applications. Methods 2015, 76, 27–34. [Google Scholar] [CrossRef]
- Kahm, M.; Hasenbrink, G.; Lichtenberg-Fraté, H.; Ludwig, J.; Kschischo, M. Grofit: Fitting Biological Growth Curves with R. J. Stat. Softw. 2010, 33, 1–21. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, R Core Team: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 10 February 2023).
Coating | % Growth | p-Value 1 | n 2 | |
---|---|---|---|---|
S. aureus | Pure Ti coating | 100.0 ± 32.5% | 12 | |
HA | 91.0 ± 16.5% | 0.50 | 4 | |
Ca(OH)2 | 30.2 ± 8.0% | <0.05 | 12 | |
S. epidermidis | Pure Ti coating | 100.0 ± 41.2% | 12 | |
HA | 81.9 ± 6.7% | 0.38 | 4 | |
Ca(OH)2 | 30.4 ± 0.9% | <0.05 | 4 | |
Blanks | Pure Ti coating | 0.0 ± 0.0% | <0.05 | 12 |
Coating | μ [J·h−1] | p-Value | λ [h] | p-Value | n 2 | |
---|---|---|---|---|---|---|
S. epidermidis | HA | 1.98 ± 0.34 | 11.1 ± 3.1 | 3 | ||
(105 CFU) | Ca(OH)2 | 1.41 ± 0.33 | <0.05 | 19.6 ± 3.8 | <0.05 | 4 |
Blanks 1 | 0.00 ± 0.00 | NA | 3 | |||
S. aureus | HA | 2.96 ± 0.89 | 18.1 ± 8.8 | 3 | ||
(105 CFU) | Ca(OH)2 | 2.67 ± 0.34 | 0.64 | 11.0 ± 5.7 | 0.30 | 4 |
Blanks 1 | 0.00 ± 0.00 | NA | 3 | |||
S. aureus | HA | 1.60 ± 0.12 | 17.1 ± 2.3 | 3 | ||
(103 CFU) | Ca(OH)2 | 0.74 ± 0.39 | <0.05 | 42.6 ± 9.5 | <0.05 | 4 |
Blanks 1 | 0.00 ± 0.00 | NA | 3 |
Material | μ [J·h−1] | p-Value 1 | λ [h] | p-Value 1 | n |
---|---|---|---|---|---|
Pure Ti coating | 0.12 ± 0.02 | <0.05 2 | 4.3 ± 0.3 | 5 | |
HA coating | 0.22 ± 0.03 | <0.05 2 | 4.1 ± 0.6 | 0.68 | 5 |
Ca(OH)2 coating | 0.05 ± 0.02 | <0.05 2 | 0.9 ± 3.7 | 0.06 | 5 |
Blanks 3 | 0.01 ± 0.00 | <0.05 2 | NA | NA | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holeczek, H.; de Wild, M.; Ruegg, J.; Gruner, P.; Moser, W.; Braissant, O. Evaluation of Antimicrobial Performance of Calcium Dihydroxide (Ca(OH)2) Coating on Ti for Potential Metallic Orthopedic Implant Applications. Antibiotics 2025, 14, 91. https://doi.org/10.3390/antibiotics14010091
Holeczek H, de Wild M, Ruegg J, Gruner P, Moser W, Braissant O. Evaluation of Antimicrobial Performance of Calcium Dihydroxide (Ca(OH)2) Coating on Ti for Potential Metallic Orthopedic Implant Applications. Antibiotics. 2025; 14(1):91. https://doi.org/10.3390/antibiotics14010091
Chicago/Turabian StyleHoleczek, Harald, Michael de Wild, Jasmine Ruegg, Philipp Gruner, Walter Moser, and Olivier Braissant. 2025. "Evaluation of Antimicrobial Performance of Calcium Dihydroxide (Ca(OH)2) Coating on Ti for Potential Metallic Orthopedic Implant Applications" Antibiotics 14, no. 1: 91. https://doi.org/10.3390/antibiotics14010091
APA StyleHoleczek, H., de Wild, M., Ruegg, J., Gruner, P., Moser, W., & Braissant, O. (2025). Evaluation of Antimicrobial Performance of Calcium Dihydroxide (Ca(OH)2) Coating on Ti for Potential Metallic Orthopedic Implant Applications. Antibiotics, 14(1), 91. https://doi.org/10.3390/antibiotics14010091