Safety and Effectiveness of BPaL-Based Regimens to Treat Multidrug-Resistant TB: First Experience of an Italian Tuberculosis Referral Hospital
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Consolidated Guidelines on Tuberculosis. Module 3: Diagnosis—Rapid Diagnostics for Tuberculosis Detection 2021 Update; World Health Organization: Geneva, Switzerland, 2021; Available online: https://iris.who.int/handle/10665/342331 (accessed on 24 December 2024).
- European Centre for Disease Prevention and Control, WHO Regional Office for Europe. Tuberculosis Surveillance and Monitoring in Europe 2023—2021 Data; European Centre for Disease Prevention and Control and Copenhagen, WHO Regional Office for Europe: Stockholm, Sweden, 2023. [Google Scholar]
- World Health Organization. Global Tuberculosis Report 2023; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Borisov, S.; Danila, E.; Maryandyshev, A.; Dalcolmo, M.; Miliauskas, S.; Kuksa, L.; Manga, S.; Skrahina, A.; Diktanas, S.; Codecasa, L.R.; et al. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: First global report. Eur. Respir. J 2019, 54, 1901522. [Google Scholar] [CrossRef] [PubMed]
- Vanino, E.; Granozzi, B.; Akkerman, O.W.; Munoz-Torrico, M.; Palmieri, F.; Seaworth, B.; Tiberi, S.; Tadolini, M. Update of drug-resistant tuberculosis treatment guidelines: A turning point. Int. J. Infect. Dis. 2023, 130 (Suppl. S1), S12–S15. [Google Scholar] [CrossRef] [PubMed]
- WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment—Drug-Resistant Tuberculosis Treatment, 2022 Update; World Health Organization: Geneva, Switzerland, 2022.
- Migliori, G.B.; Tiberi, S. WHO Drug-Resistant TB Guidelines 2022: What is New? Int. J. Tuberc. Lung. Dis. 2022, 26, 590–591. [Google Scholar] [CrossRef] [PubMed]
- Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A.M.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J.; et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N. Engl. J. Med. 2020, 382, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Conradie, F.; Bagdasaryan, T.R.; Borisov, S.; Howell, P.; Mikiashvili, L.; Ngubane, N.; Samoilova, A.; Skornykova, S.; Tudor, E.; Variava, E.; et al. Bedaquiline-Pretomanid-Linezolid Regimens for Drug-Resistant Tuberculosis. N. Engl. J. Med. 2022, 387, 810–823. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nyang’wa, B.T.; Berry, C.; Kazounis, E.; Motta, I.; Parpieva, N.; Tigay, Z.; Moodliar, R.; Dodd, M.; Solodovnikova, V.; Liverko, I.; et al. Short oral regimens for pulmonary rifampicin-resistant tuberculosis (TB-PRACTECAL): An open-label, randomised, controlled, phase 2B-3, multi-arm, multicentre, non-inferiority trial. Lancet Respir. Med. 2024, 12, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Haley, C.A.; Schechter, M.C.; Ashkin, D.; Peloquin, C.A.; Peter Cegielski, J.; Andrino, B.B.; Burgos, M.; Caloia, L.A.; Chen, L.; Colon-Semidey, A.; et al. Implementation of Bedaquiline, Pretomanid, and Linezolid in the United States: Experience Using a Novel All-Oral Treatment Regimen for Treatment of Rifampin-Resistant or Rifampin-Intolerant Tuberculosis Disease. Clin. Infect. Dis. 2023, 77, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control, WHO Regional Office for Europe. Tuberculosis Surveillance and Monitoring in Europe 2024—2022 Data; European Centre for Disease Prevention and Control, WHO Regional Office for Europe: Copenhagen, Denmark, 2024. [Google Scholar]
- Gualano, G.; Mencarini, P.; Musso, M.; Mosti, S.; Santangelo, L.; Murachelli, S.; Cannas, A.; Di Caro, A.; Navarra, A.; Goletti, D.; et al. Putting in harm to cure: Drug related adverse events do not affect outcome of patients receiving treatment for multidrug-resistant Tuberculosis. Experience from a tertiary hospital in Italy. PLoS ONE 2019, 14, e0212948. [Google Scholar] [CrossRef] [PubMed]
- Simanjuntak, A.M.; Daenansya, R.; Aflandhanti, P.M.; Yovi, I.; Suyanto, S.; Anggraini, D.; Rosdiana, D. Efficacy of pretomanid-containing regiments for drug-resistant tuberculosis: A systematic review and meta-analysis of clinical trials. Narra J. 2023, 3, e402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trauth, J.; Kantelhardt, V.; Usenko, B.; Knipper, M.; Kuhns, M.; Friesen, I.; Herold, S. Bedaquiline, pretomanid and linezolid in multidrug-resistant and preextensively drug-resistant tuberculosis in refugees from Ukraine and Somalia in Germany. Eur. Respir. J. 2024, 63, 2400303. [Google Scholar] [CrossRef] [PubMed]
- Lachenal, N.; Hewison, C.; Mitnick, C.; Lomtadze, N.; Coutisson, S.; Osso, E.; Ahmed, S.; Leblanc, G.; Islam, S.; Atshemyan, H.; et al. Setting up pharmacovigilance based on available endTB Project data for bedaquiline. Int. J. Tuberc. Lung Dis. 2020, 24, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Carvalho, A.C.C.; Centis, R.; D Ambrosio, L.; Migliori, G.B.; Mpagama, S.G.; Nguyen, B.C.; Aarnoutse, R.E.; Aleksa, A.; van Altena, R.; et al. Clinical standards for the management of adverse effects during treatment for TB. Int. J. Tuberc. Lung Dis. 2023, 27, 506–519. [Google Scholar] [CrossRef] [PubMed]
- Hasan, T.; Medcalf, E.; Nyang’wa, B.T.; Egizi, E.; Berry, C.; Dodd, M.; Foraida, S.; Gegia, M.; Li, M.; Mirzayev, F.; et al. The Safety and Tolerability of Linezolid in Novel Short-Course Regimens Containing Bedaquiline, Pretomanid, and Linezolid to Treat Rifampicin-Resistant Tuberculosis: An Individual Patient Data Meta-analysis. Clin. Infect. Dis. 2024, 78, 730–741. [Google Scholar] [CrossRef] [PubMed]
- Motta, I.; Cusinato, M.; Ludman, A.J.; Lachenal, N.; Dodd, M.; Soe, M.; Abdrasuliev, T.; Usmanova, R.; Butabekov, I.; Nikolaevna, T.Z.; et al. How much should we still worry about QTc prolongation in rifampicin-resistant tuberculosis? ECG findings from TB-PRACTECAL clinical trial. Antimicrob. Agents Chemother. 2024, 68, e0053624. [Google Scholar] [CrossRef] [PubMed]
- Reza Yosofi, A.; Mesic, A.; Decroo, T. Relapse after treatment with standardized all-oral short regimens for rifampicin-resistant tuberculosis (RR-TB): A systematic review and meta-analysis. J. Clin. Tuberc. Other Mycobact. Dis. 2024, 35, 100426. [Google Scholar] [CrossRef] [PubMed]
- Saluzzo, F.; Adepoju, V.A.; Duarte, R.; Lange, C.; Phillips, P.P.J. Treatment-shortening regimens for tuberculosis: Updates and future priorities. Breathe 2023, 19, 230028. [Google Scholar] [CrossRef] [PubMed]
- Halleux, C.M.; Falzon, D.; Merle, C.; Jaramillo, E.; Mirzayev, F.; Olliaro, P.; Weyer, K. The World Health Organization global aDSM database: Generating evidence on the safety of new treatment regimens for drug-resistant tuberculosis. Eur. Respir. J 2018, 51, 1701643. [Google Scholar] [CrossRef] [PubMed]
- Cannas, A.; Butera, O.; Mazzarelli, A.; Messina, F.; Vulcano, A.; Parracino, M.P.; Gualano, G.; Palmieri, F.; Di Caro, A.; Nisii, C.; et al. Implementation of Whole Genome Sequencing of Tuberculosis Isolates in a Referral Center in Rome: Six Years’ Experience in Characterizing Drug-Resistant TB and Disease Transmission. Antibiotics 2024, 13, 134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- PDTA Sulla Gestione del Paziente con Infezione/Malattia Tubercolare. Available online: https://www.inmi.it/wp-content/uploads/2023/02/PDTA-Tubercolosi-Rev.-9_2023_DS_PW-1.pdf (accessed on 21 December 2024).
Characteristic | Patients, No. (%) | |
---|---|---|
Age, mean (range), years | 42 (range 29–48) | |
Male sex | 14/22 (64%) | |
Born outside Italy | 19 (86%) | |
Baseline comorbid conditions | ||
HIV infection | none | |
HCV Infection (concomitant treatment with sofosbuvir/velpatasvir) | 2 (9%) | |
Diabetes | 2 (9%) | |
Renal disease | none | |
Liver disease or alcohol abuse | 4 (18%) | |
Cognitive impairment | 2 (9%) | |
Concomitant drug prolonging QTc | 1 (5%; quetiapine) | |
Tuberculosis disease characteristics | ||
New TB cases | 15 (68%) | |
RR-TB | 3 (14%) | |
MDR-TB | 15 (68%) | |
Pre-XDR-TB | 4 (18%) | |
Pulmonary | 22 (100%) | |
Extrapulmonary only | none | |
Both pulmonary and extrapulmonary sites | 2 (9%) Pleural Lymphnodes | |
Cavitation on chest radiograph | 17 (77%) | |
Positive sputum AFB smear | 22 (100%) | |
Positive molecular test | 22 (100%) | |
Positive mycobacterial culture | 22 (100%) | |
Other positive culture, any site | none | |
Bilateral involvement | 12 (55%) |
Type of Outcome | Outcomes at the End of 6 Months Treatment Patients N. (%) | Outcomes 6 Months After the End of Treatment Patients N. (%) |
---|---|---|
Cured | 17/19 (90%) (excluded transferred patients) | 16/19 (84%) (sustained treatment success) |
Transferred out | 3/22 (14%) | 3/22 (14%) |
Failed | 0 | 1/19 (5%) |
Lost to follow-up | 1/19 (5%) | 1/19 (5%) |
Died | 1/19 (5%) | 2/19 (10%) |
AE | AE Patient No. (WHO Grade) | Action Required | SAE Patients (Grade) | Median Days of Exposure Before SAE | Action Required |
---|---|---|---|---|---|
Gastrointestinal intolerance (nausea, vomiting, diarrhea, dispepsia) | 2 (Grade 2) | Supportive treatment | 1 (Grade 3) | 120 | Interruption of offending drug (fluoroquinolone) |
Liver toxicity (AST/ALT elevation) | 2 (Grade 1) | Counselling on diet | 0 | - | - |
Anemia | 4 (Grade 1) | Supportive treatment (iron supplementation) | 1 (Grade 3) | 36 | Reduced dosage of Linezolid (300 mg/day) |
Peripheral neuropathy | 2 (Grade 1) | Supportive treatment (pregabalin) | 0 | - | - |
Cardiac abnormalities (QTc prolongation) | 2 (Grade 1) | Monitoring | 0 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gualano, G.; Musso, M.; Mencarini, P.; Mosti, S.; Cerva, C.; Vittozzi, P.; Mazzarelli, A.; Cannas, A.; Navarra, A.; Ianniello, S.; et al. Safety and Effectiveness of BPaL-Based Regimens to Treat Multidrug-Resistant TB: First Experience of an Italian Tuberculosis Referral Hospital. Antibiotics 2025, 14, 7. https://doi.org/10.3390/antibiotics14010007
Gualano G, Musso M, Mencarini P, Mosti S, Cerva C, Vittozzi P, Mazzarelli A, Cannas A, Navarra A, Ianniello S, et al. Safety and Effectiveness of BPaL-Based Regimens to Treat Multidrug-Resistant TB: First Experience of an Italian Tuberculosis Referral Hospital. Antibiotics. 2025; 14(1):7. https://doi.org/10.3390/antibiotics14010007
Chicago/Turabian StyleGualano, Gina, Maria Musso, Paola Mencarini, Silvia Mosti, Carlotta Cerva, Pietro Vittozzi, Antonio Mazzarelli, Angela Cannas, Assunta Navarra, Stefania Ianniello, and et al. 2025. "Safety and Effectiveness of BPaL-Based Regimens to Treat Multidrug-Resistant TB: First Experience of an Italian Tuberculosis Referral Hospital" Antibiotics 14, no. 1: 7. https://doi.org/10.3390/antibiotics14010007
APA StyleGualano, G., Musso, M., Mencarini, P., Mosti, S., Cerva, C., Vittozzi, P., Mazzarelli, A., Cannas, A., Navarra, A., Ianniello, S., Faccendini, P., & Palmieri, F. (2025). Safety and Effectiveness of BPaL-Based Regimens to Treat Multidrug-Resistant TB: First Experience of an Italian Tuberculosis Referral Hospital. Antibiotics, 14(1), 7. https://doi.org/10.3390/antibiotics14010007