Incidence and Predictors of Healthcare-Associated Infections in Patients Admitted to a Temporary Intensive Care Unit during the COVID-19 Pandemic Waves: A Two-Year (2021–2023) Retrospective Cohort Study in Rome, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Data Collection
2.2. Statistical Analysis
3. Results
3.1. Characteristics of Patients
3.2. Occurrence and Characteristics of HAIs and Isolated Microorganisms
3.3. Multivariable Analysis of Occurrence of First HAI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonetti, T.; Grasselli, G.; Zanella, A.; Pizzilli, G.; Fumagalli, R.; Piva, S.; Lorini, L.; Iotti, G.; Foti, G.; Colombo, S.; et al. Use of Critical Care Resources during the First 2 Weeks (February 24–March 8, 2020) of the COVID-19 Outbreak in Italy. Ann. Intensive Care 2020, 10, 133. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, E.; Silverii, G.A.; Monami, M. Saturation of Critical Care Capacity and Mortality in Patients with the Novel Coronavirus (COVID-19) in Italy. Trends Anaesth. Crit. Care 2020, 33, 33–34. [Google Scholar] [CrossRef]
- Ministero della Salute. Circolare Del Ministero Della Salute, Incremento Disponibilità Posti Letto de Servizio Sanitario Nazionale e Ulteriori Indicazioni Relative Alla Gestione Dell’emergenza COVID-19; Ministero Della Salute: Roma, Italy, 2020. [Google Scholar]
- Oakley, C.; Pascoe, C.; Balthazor, D.; Bennett, D.; Gautam, N.; Isaac, J.; Isherwood, P.; Matthews, T.; Murphy, N.; Oelofse, T.; et al. Assembly Line ICU: What the Long Shops Taught Us about Managing Surge Capacity for COVID-19. BMJ Open Qual. 2020, 9, e001117. [Google Scholar] [CrossRef]
- Peng, M.; Qian, Z.; Zhang, L. Care for Critical Ill Patients With COVID-19: Establishment of a Temporary Intensive Care Unit in an Isolated Hospital. Front. Med. 2020, 7, 519. [Google Scholar] [CrossRef]
- Zappella, N.; Dirani, C.; Lortat Jacob, B.; Tanaka, S.; Kantor, E.; El Kalai, A.; Rkik, Y.; Gouel Cheron, A.; Tran Dinh, A.; Montravers, P. Temporary ICUs during the COVID-19 Pandemic First Wave: Description of the Cohort at a French Centre. BMC Anesthesiol. 2022, 22, 310. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.V.; Olivas-Martinez, A.; Rios-Olais, F.A.; Ayala-Aguillón, F.; Gil-López, F.; Leal-Villarreal, M.A.d.J.; Rodríguez-Crespo, J.J.; Jasso-Molina, J.C.; Enamorado-Cerna, L.; Dardón-Fierro, F.E.; et al. Outcomes in Temporary ICUs Versus Conventional ICUs: An Observational Cohort of Mechanically Ventilated Patients with COVID-19-Induced Acute Respiratory Distress Syndrome. Crit. Care Explor. 2022, 4, e0668. [Google Scholar] [CrossRef] [PubMed]
- Candel, F.J.; Canora, J.; Zapatero, A.; Barba, R.; González Del Castillo, J.; García-Casasola, G.; San-Román, J.; Gil-Prieto, R.; Barreiro, P.; Fragiel, M.; et al. Temporary Hospitals in Times of the COVID Pandemic. An Example and a Practical View. Rev. Esp. Quim. 2021, 34, 280–288. [Google Scholar] [CrossRef]
- Rossi, V.; Del Monaco, C.; Gambazza, S.; Santambrogio, M.; Binda, F.; Retucci, M.; Privitera, E.; Mantero, M.; Bottino, N.; Laquintana, D.; et al. Time to Active Sitting Position: One-Year Findings from a Temporary COVID-19 Intensive Care Unit. Respir. Med. 2022, 194, 106773. [Google Scholar] [CrossRef]
- Singh, S.; Ambooken, G.C.; Setlur, R.; Paul, S.K.; Kanitkar, M.; Singh Bhatia, S.; Singh Kanwar, R. Challenges Faced in Establishing a Dedicated 250 Bed COVID-19 Intensive Care Unit in a Temporary Structure. Trends Anaesth. Crit. Care 2021, 36, 9–16. [Google Scholar] [CrossRef]
- Dagenais, C.; Kielende, M.; Coulibaly, A.; Gautier, L.; David, P.-M.; Peiffer-Smadja, N.; Honda, A.; de Araújo Oliveira, S.R.; Traverson, L.; Zinszer, K.; et al. Lessons Learned from Field Experiences on Hospitals’ Resilience to the COVID-19 Pandemic: A Systematic Approach. Health Syst. Reform. 2023, 9, 2231644. [Google Scholar] [CrossRef]
- Vranas, K.C.; Golden, S.E.; Mathews, K.S.; Schutz, A.; Valley, T.S.; Duggal, A.; Seitz, K.P.; Chang, S.Y.; Nugent, S.; Slatore, C.G.; et al. The Influence of the COVID-19 Pandemic on ICU Organization, Care Processes, and Frontline Clinician Experiences: A Qualitative Study. Chest 2021, 160, 1714–1728. [Google Scholar] [CrossRef]
- Fiest, K.M.; Krewulak, K.D. Space, Staff, Stuff, and System: Keys to ICU Care Organization During the COVID-19 Pandemic. Chest 2021, 160, 1585–1586. [Google Scholar] [CrossRef]
- Isonne, C.; Baccolini, V.; Migliara, G.; Ceparano, M.; Alessandri, F.; Ceccarelli, G.; Tellan, G.; Pugliese, F.; De Giusti, M.; De Vito, C.; et al. Comparing the Occurrence of Healthcare-Associated Infections in Patients with and without COVID-19 Hospitalized during the Pandemic: A 16-Month Retrospective Cohort Study in a Hospital Intensive Care Unit. J. Clin. Med. 2022, 11, 1446. [Google Scholar] [CrossRef] [PubMed]
- Baccolini, V.; Migliara, G.; Isonne, C.; Dorelli, B.; Barone, L.C.; Giannini, D.; Marotta, D.; Marte, M.; Mazzalai, E.; Alessandri, F.; et al. The Impact of the COVID-19 Pandemic on Healthcare-Associated Infections in Intensive Care Unit Patients: A Retrospective Cohort Study. Antimicrob. Resist. Infect. Control 2021, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.C.H.; Farhanah, S.; Linn, K.Z.; Tang, Y.W.; Poon, C.Y.; Lim, A.Y.; Tan, H.R.; Binte Hamed, N.H.; Huan, X.; Puah, S.H.; et al. Nosocomial Infections among COVID-19 Patients: An Analysis of Intensive Care Unit Surveillance Data. Antimicrob. Resist. Infect. Control 2021, 10, 119. [Google Scholar] [CrossRef]
- Agodi, A.; Barchitta, M.; Finazzi, S.; Fadda, G.; Fortunato Paolo, D. Sorveglianza Delle ICA Nelle Unità di Terapia Intensiva. Available online: https://www.epicentro.iss.it/sorveglianza-ica/sorveglianza-terapia-intensiva (accessed on 26 February 2024).
- Fakhreddine, S.; Fawaz, M.; Hassanein, S.; Al Khatib, A. Prevalence and Mortality Rate of Healthcare-Associated Infections among COVID-19 Patients: A Retrospective Cohort Community-Based Approach. Front. Public. Health 2023, 11, 1235636. [Google Scholar] [CrossRef] [PubMed]
- Bloch, N.; Rüfenacht, S.; Ludwinek, M.; Frick, W.; Kleger, G.-R.; Schneider, F.; Albrich, W.C.; Flury, D.; Kuster, S.P.; Schlegel, M.; et al. Healthcare-associated Infections in Intensive Care Unit Patients with and without COVID-19: A Single Center Prospective Surveillance Study. Antimicrob. Resist. Infect. Control 2023, 12, 147. [Google Scholar] [CrossRef]
- Saini, V.; Jain, C.; Singh, N.P.; Alsulimani, A.; Gupta, C.; Dar, S.A.; Haque, S.; Das, S. Paradigm Shift in Antimicrobial Resistance Pattern of Bacterial Isolates during the COVID-19 Pandemic. Antibiotics 2021, 10, 954. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Simeonova, M.; Leung, V.; Lo, J.; Kan, T.; Raybardhan, S.; Sapin, M.E.; Mponponsuo, K.; Farrell, A.; et al. Antimicrobial Resistance in Patients with COVID-19: A Systematic Review and Meta-Analysis. Lancet Microbe 2023, 4, e179–e191. [Google Scholar] [CrossRef]
- Provenzano, B.C.; Bartholo, T.; Ribeiro-Alves, M.; dos Santos, A.P.G.; Mafort, T.T.; de Castro, M.C.S.; de Oliveira, J.G.P.; Bruno, L.P.; Lopes, A.J.; da Costa, C.H.; et al. The Impact of Healthcare-Associated Infections on COVID-19 Mortality: A Cohort Study from a Brazilian Public Hospital. Rev. Assoc. Médica Bras. 2021, 67, 997–1002. [Google Scholar] [CrossRef]
- Rezaie, F.; Mohammadi-Shahboulaghi, F.; Fadayevatan, R.; Shati, M.; Ghaedamini Harouni, G. Predictors of In-ICU Mortality Among Older Patients with Healthcare-Associated Infection: A Cohort Study. J. Kermanshah Univ. Med. Sci. 2023, 27, e139129. [Google Scholar] [CrossRef]
- Bonsignore, M.; Hohenstein, S.; Kodde, C.; Leiner, J.; Schwegmann, K.; Bollmann, A.; Möller, R.; Kuhlen, R.; Nachtigall, I. Burden of Hospital-Acquired SARS-CoV-2 Infections in Germany: Occurrence and Outcomes of Different Variants. J. Hosp. Infect. 2022, 129, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Migliara, G.; Paolo, C.; Barbato, D.; Baccolini, V.; Salerno, C.; Nardi, A. Multimodal Surveillance of Healthcare Associated Infections in an Intensive Care Unit of a Large Teaching Hospital. Ann. Ig. 2019, 31, 399–413. [Google Scholar]
- NHSN Patient Safety Component Manual 2016. Available online: https://stacks.cdc.gov/view/cdc/43374 (accessed on 6 November 2023).
- European Surveillance of Healthcare-Associated Infections in Intensive Care Units: HAI Net ICU Protocol, Version 1.02. 2015. Available online: https://data.europa.eu/doi/10.2900/371526 (accessed on 6 November 2023).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Shafie, M.H.; Antony Dass, M.; Ahmad Shaberi, H.S.; Zafarina, Z. Screening and Confirmation Tests for SARS-CoV-2: Benefits and Drawbacks. Beni Suef Univ. J. Basic. Appl. Sci. 2023, 12, 6. [Google Scholar] [CrossRef]
- Stefanelli, P.; Ambrosio, L.; Di Martino, A.; Riccardo, F.; Petrone, D.; Bella, A.; Pezzotti, P.; Palamara, A.T. Monitoraggio Delle Varianti del Virus SARS-CoV-2 di Interesse in Sanità Pubblica in Italia—Archivio Dei Rapporti Periodici. Available online: https://www.epicentro.iss.it/coronavirus/sars-cov-2-monitoraggio-varianti-rapporti-periodici (accessed on 26 October 2023).
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; for the STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. PLoS Med. 2007, 4, e296. [Google Scholar] [CrossRef]
- Austin, P.C.; Lee, D.S.; Fine, J.P. Introduction to the Analysis of Survival Data in the Presence of Competing Risks. Circulation 2016, 133, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Fine, J.P.; Gray, R.J. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J. Am. Stat. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Talbot, D.; Massamba, V.K. A Descriptive Review of Variable Selection Methods in Four Epidemiologic Journals: There Is Still Room for Improvement. Eur. J. Epidemiol. 2019, 34, 725–730. [Google Scholar] [CrossRef]
- Graham, J.W.; Olchowski, A.E.; Gilreath, T.D. How Many Imputations Are Really Needed? Some Practical Clarifications of Multiple Imputation Theory. Prev. Sci. 2007, 8, 206–213. [Google Scholar] [CrossRef]
- Petrone, D.; Mateo-Urdiales, A.; Sacco, C.; Riccardo, F.; Bella, A.; Ambrosio, L.; Lo Presti, A.; Di Martino, A.; Ceccarelli, E.; Del Manso, M.; et al. Reduction of the Risk of Severe COVID-19 Due to Omicron Compared to Delta Variant in Italy (November 2021–February 2022). Int. J. Infect. Dis. 2023, 129, 135–141. [Google Scholar] [CrossRef]
- Marziano, V.; Guzzetta, G.; Menegale, F.; Sacco, C.; Petrone, D.; Mateo Urdiales, A.; Del Manso, M.; Bella, A.; Fabiani, M.; Vescio, M.F.; et al. Estimating SARS-CoV-2 Infections and Associated Changes in COVID-19 Severity and Fatality. Influenza Other Respir. Viruses 2023, 17, e13181. [Google Scholar] [CrossRef]
- Ministero della Salute. Decreto 12 Marzo 2021, Approvazione Del Piano Strategico Nazionale Dei Vaccini per La Prevenzione Delle Infezioni Da SARS-CoV-2, Raccomandazioni Ad Interim Sui Gruppi Target Della Vaccinazione Anti SARS-CoV-2/COVID-19; Ministero della Salute: Roma, Italy, 2021. [Google Scholar]
- Regione Lazio. Determinazione, Approvazione Del Piano Regionale Della Campagna Di Vaccinazione Anti SARS-CoV-2. Documento Ad Interim. Aggiornamento Febbraio 2021; Regione Lazio: Roma, Italy, 2021. [Google Scholar]
- Shenai, M.B.; Rahme, R.; Noorchashm, H. Equivalency of Protection From Natural Immunity in COVID-19 Recovered Versus Fully Vaccinated Persons: A Systematic Review and Pooled Analysis. Cureus 2021, 13, e19102. [Google Scholar] [CrossRef]
- Franchi, M.; Pellegrini, G.; Cereda, D.; Bortolan, F.; Leoni, O.; Pavesi, G.; Galli, M.; Valenti, G.; Corrao, G. Natural and Vaccine-Induced Immunity Are Equivalent for the Protection against SARS-CoV-2 Infection. J. Infect. Public Health 2023, 16, 1137–1141. [Google Scholar] [CrossRef] [PubMed]
- Bobrovitz, N.; Ware, H.; Ma, X.; Li, Z.; Hosseini, R.; Cao, C.; Selemon, A.; Whelan, M.; Premji, Z.; Issa, H.; et al. Protective Effectiveness of Previous SARS-CoV-2 Infection and Hybrid Immunity against the Omicron Variant and Severe Disease: A Systematic Review and Meta-Regression. Lancet Infect. Dis. 2023, 23, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Chiew, C.J.; Ang, L.W.; Mak, T.M.; Cui, L.; Toh, M.P.H.S.; Lim, Y.D.; Lee, P.H.; Lee, T.H.; Chia, P.Y.; et al. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin. Infect. Dis. 2022, 75, e1128–e1136. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, T.; Ferguson, N.M.; Nash, S.G.; Webster, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative Analysis of the Risks of Hospitalisation and Death Associated with SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) Variants in England: A Cohort Study. Lancet 2022, 399, 1303–1312. [Google Scholar] [CrossRef]
- Bouzid, D.; Visseaux, B.; Kassasseya, C.; Daoud, A.; Fémy, F.; Hermand, C.; Truchot, J.; Beaune, S.; Javaud, N.; Peyrony, O.; et al. Comparison of Patients Infected With Delta Versus Omicron COVID-19 Variants Presenting to Paris Emergency Departments: A Retrospective Cohort Study. Ann. Intern. Med. 2022, 175, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Brehm, T.T.; Heyer, A.; Woo, M.S.; Fischer, M.; van der Meirschen, M.; Wichmann, D.; Jarczak, D.; Roedl, K.; Schmiedel, S.; Addo, M.M.; et al. Comparative Analysis of Characteristics and Outcomes in Hospitalized COVID-19 Patients Infected with Different SARS-CoV-2 Variants between January 2020 and April 2022—A Retrospective Single-Center Cohort Study. J. Infect. Public Health 2023, 16, 1806–1812. [Google Scholar] [CrossRef]
- Noureddine, F.Y.; Chakkour, M.; El Roz, A.; Reda, J.; Al Sahily, R.; Assi, A.; Joma, M.; Salami, H.; Hashem, S.J.; Harb, B.; et al. The Emergence of SARS-CoV-2 Variant(s) and Its Impact on the Prevalence of COVID-19 Cases in the Nabatieh Region, Lebanon. Med. Sci. 2021, 9, 40. [Google Scholar] [CrossRef]
- Wang, C.; Liu, B.; Zhang, S.; Huang, N.; Zhao, T.; Lu, Q.-B.; Cui, F. Differences in Incidence and Fatality of COVID-19 by SARS-CoV-2 Omicron Variant versus Delta Variant in Relation to Vaccine Coverage: A World-Wide Review. J. Med. Virol. 2023, 95, e28118. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Interim Public Health Considerations for COVID-19 Vaccination Roll-Out during 2023; ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- ECDC. Interim Analysis of COVID-19 Vaccine Effectiveness against Hospitalisation and Death Using Electronic Health Records in Six European Countries; ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- Barchitta, M.; Maugeri, A.; Favara, G.; Riela, P.M.; Gallo, G.; Mura, I.; Agodi, A. A Machine Learning Approach to Predict Healthcare-Associated Infections at Intensive Care Unit Admission: Findings from the SPIN-UTI Project. J. Hosp. Infect. 2021, 112, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Vicka, V.; Januskeviciute, E.; Miskinyte, S.; Ringaitiene, D.; Serpytis, M.; Klimasauskas, A.; Jancoriene, L.; Sipylaite, J. Comparison of Mortality Risk Evaluation Tools Efficacy in Critically Ill COVID-19 Patients. BMC Infect. Dis. 2021, 21, 1173. [Google Scholar] [CrossRef]
- Razazi, K.; Martins Bexiga, A.; Arrestier, R.; Peiffer, B.; Voiriot, G.; Luyt, C.-E.; Urbina, T.; Mayaux, J.; Pham, T.; Roux, D.; et al. SARS-CoV-2 Variants and Mutational Patterns: Relationship with Risk of Ventilator-Associated Pneumonia in Critically Ill COVID-19 Patients in the Era of Dexamethasone. Sci. Rep. 2023, 13, 6658. [Google Scholar] [CrossRef] [PubMed]
- WHO. Therapeutics and COVID-19: Living Guideline; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Koh, D. Occupational Risks for COVID-19 Infection. Occup Med. 2020, 70, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Cawcutt, K.A.; Starlin, R.; Rupp, M.E. Fighting Fear in Healthcare Workers during the COVID-19 Pandemic. Infect. Control Hosp. Epidemiol. 2020, 41, 1192–1193. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Shafqat, N.; Verma, R.; Patidar, A.B. Factors Influencing Compliance With Personal Protective Equipment (PPE) Use Among Healthcare Workers. Cureus 2023, 15, e35269. [Google Scholar] [CrossRef]
- Rangel, K.; De-Simone, S.G. Treatment and Management of Acinetobacter Pneumonia: Lessons Learned from Recent World Event. Infect. Drug Resist. 2024, 17, 507–529. [Google Scholar] [CrossRef]
- Rouyer, M.; Strazzulla, A.; Youbong, T.; Tarteret, P.; Pitsch, A.; de Pontfarcy, A.; Cassard, B.; Vignier, N.; Pourcine, F.; Jochmans, S.; et al. Ventilator-Associated Pneumonia in COVID-19 Patients: A Retrospective Cohort Study. Antibiotics 2021, 10, 988. [Google Scholar] [CrossRef]
- Ippolito, M.; Misseri, G.; Catalisano, G.; Marino, C.; Ingoglia, G.; Alessi, M.; Consiglio, E.; Gregoretti, C.; Giarratano, A.; Cortegiani, A. Ventilator-Associated Pneumonia in Patients with COVID-19: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 545. [Google Scholar] [CrossRef]
- Pickens, C.O.; Gao, C.A.; Cuttica, M.J.; Smith, S.B.; Pesce, L.L.; Grant, R.A.; Kang, M.; Morales-Nebreda, L.; Bavishi, A.A.; Arnold, J.M.; et al. Bacterial Superinfection Pneumonia in Patients Mechanically Ventilated for COVID-19 Pneumonia. Am. J. Respir. Crit. Care Med. 2021, 204, 921–932. [Google Scholar] [CrossRef]
- François, B.; Laterre, P.-F.; Luyt, C.-E.; Chastre, J. The Challenge of Ventilator-Associated Pneumonia Diagnosis in COVID-19 Patients. Crit. Care 2020, 24, 289. [Google Scholar] [CrossRef] [PubMed]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A Systematic Review and Meta-Analysis of the Effects of Antibiotic Consumption on Antibiotic Resistance. BMC Infect. Dis. 2014, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- De Blasiis, M.R.; Sciurti, A.; Baccolini, V.; Isonne, C.; Ceparano, M.; Iera, J.; De Vito, C.; Marzuillo, C.; Villari, P.; Migliara, G. Impact of Antibiotic Exposure on Antibiotic-Resistant Acinetobacter Baumannii Isolation in Intensive Care Unit Patients: A Systematic Review and Meta-Analysis. J. Hosp. Infect. 2024, 143, 123–139. [Google Scholar] [CrossRef]
- Garg, S.K. Antibiotic Misuse during COVID-19 Pandemic: A Recipe for Disaster. Indian J. Crit. Care Med. 2021, 25, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Chaaban, T.; Ezzeddine, Z.; Ghssein, G. Antibiotic Misuse during the COVID-19 Pandemic in Lebanon: A Cross-Sectional Study. COVID 2024, 4, 921–929. [Google Scholar] [CrossRef]
- CDC. Core Elements of Hospital Antibiotic Stewardship Programs; CDC: Atlanta, GA, USA, 2019. [Google Scholar]
- Raoofi, S.; Pashazadeh Kan, F.; Rafiei, S.; Hosseinipalangi, Z.; Noorani Mejareh, Z.; Khani, S.; Abdollahi, B.; Seyghalani Talab, F.; Sanaei, M.; Zarabi, F.; et al. Global Prevalence of Nosocomial Infection: A Systematic Review and Meta-Analysis. PLoS ONE 2023, 18, e0274248. [Google Scholar] [CrossRef] [PubMed]
- Babamahmoodi, F.; Rezai, M.S.; Ahangarkani, F.; Mohammadi Kali, A.; Alizadeh-Navaei, R.; Alishahi, A.; Najafi, N.; Haddadi, A.; Davoudi, A.; Azargon, L.; et al. Multiple Candida Strains Causing Oral Infection in COVID-19 Patients under Corticosteroids and Antibiotic Therapy: An Observational Study. Front. Cell Infect. Microbiol. 2022, 12, 1103226. [Google Scholar] [CrossRef]
- Singh, R.; Malik, P.; Kumar, M.; Kumar, R.; Alam, M.S.; Mukherjee, T.K. Secondary Fungal Infections in SARS-CoV-2 Patients: Pathological Whereabouts, Cautionary Measures, and Steadfast Treatments. Pharmacol. Rep. 2023, 75, 817–837. [Google Scholar] [CrossRef]
- Camirand-Lemyre, F.; Merson, L.; Tirupakuzhi Vijayaraghavan, B.K.; Burrell, A.J.C.; Citarella, B.W.; Domingue, M.-P.; Lévesque, S.; Usuf, E.; Wils, E.-J.; Ohshimo, S.; et al. Implementation of Recommendations on the Use of Corticosteroids in Severe COVID-19. JAMA Netw. Open 2023, 6, e2346502. [Google Scholar] [CrossRef]
- Agodi, A.; Barchitta, M.; Auxilia, F.; Brusaferro, S.; D’Errico, M.M.; Montagna, M.T.; Pasquarella, C.; Tardivo, S.; Arrigoni, C.; Fabiani, L.; et al. Epidemiology of Intensive Care Unit-Acquired Sepsis in Italy: Results of the SPIN-UTI Network. Ann. Ig. 2018, 30, 15–21. [Google Scholar] [CrossRef] [PubMed]
- GISIO; SItI PROGETTO SPIN-UTI. Ottava Edizione 2020/2021. Sorveglianza Attiva Prospettica Delle Infezioni Nosocomiali Nelle Unità Di Terapia Intensiva (UTI). Risultati Finali 2021. Available online: https://www.epicentro.iss.it/infezioni-correlate/pdf/REPORT%20SPIN-UTI%202020-2021.pdf (accessed on 26 March 2024).
- ECDC. Healthcare-Associated Infections Acquired in Intensive Care Units. Annual Epidemiological Report for 2020; ECDC: Stockholm, Sweden, 2024. [Google Scholar]
- Fournier, P.E.; Richet, H.; Weinstein, R.A. The Epidemiology and Control of Acinetobacter Baumannii in Health Care Facilities. Clin. Infect. Dis. 2006, 42, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.; Chakkour, M.; Zein El Dine, H.; Obaseki, E.F.; Obeid, S.T.; Jezzini, A.; Ghssein, G.; Ezzeddine, Z. General Overview of Klebsiella Pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity. Biology 2024, 13, 78. [Google Scholar] [CrossRef]
- Tomczyk, S.; Zanichelli, V.; Grayson, M.L.; Twyman, A.; Abbas, M.; Pires, D.; Allegranzi, B.; Harbarth, S. Control of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter Baumannii, and Pseudomonas Aeruginosa in Healthcare Facilities: A Systematic Review and Reanalysis of Quasi-Experimental Studies. Clin. Infect. Dis. 2019, 68, 873–884. [Google Scholar] [CrossRef] [PubMed]
Period of SARS-CoV-2 Variant Dominance | |||||||
---|---|---|---|---|---|---|---|
Alpha | Delta | Omicron BA.1 | Omicron BA.2 | Omicron BA.5 | Omicron XBB | p-Value | |
1 Mar 2021– 18 Jun 2021 | 19 Jun 2021–31 Dec 2021 | 1 Jan 2022– 12 Mar 2022 | 13 Mar 2022– 6 Jun 2022 | 7 Jun 2022– 12 Feb 2023 | 13 Feb 2023–15 Jul 2023 | ||
Patients, N | 66 | 53 | 45 | 46 | 107 | 38 | |
Cumulative patient-days from admission | 978 | 789 | 825 | 658 | 1765 | 726 | |
Age, mean (SD) | 60.3 (12.9) | 64.4 (11.0) | 64.8 (11.5) | 68.7 (16.3) | 69.5 (13.3) | 72.5 (14.6) | <0.001 |
Age, median (IQR) | 61.1 (49.5–70.8) | 64.5 (55.2–72.3) | 66.0 (59.1–73.6) | 72.7 (60.7–82.5) | 72.1 (61.6–78.9) | 75.1 (64.4–84.1) | |
Gender, N (%) | |||||||
Female | 25 (37.9) | 18 (34.0) | 11 (24.4) | 15 (32.6) | 31 (29.0) | 18 (47.4) | 0.258 |
Male | 41 (62.1) | 35 (66.0) | 34 (75.6) | 31 (67.4) | 76 (71.0) | 20 (52.6) | |
Type of admission to ICU, N (%) | <0.001 | ||||||
Other hospital | 2 (3.0) | 6 (11.3) | 7 (15.6) | 9 (19.6) | 35 (32.7) | 12 (31.6) | |
Other ward | 19 (28.8) | 17 (32.1) | 2 (4.4) | 10 (21.7) | 26 (24.3) | 5 (13.2) | |
Emergency department | 39 (59.1) | 29 (54.7) | 32 (71.1) | 21 (45.7) | 38 (35.5) | 20 (52.6) | |
Other | 6 (9.1) | 1 (1.9) | 4 (8.9) | 6 (13.0) | 8 (7.5) | 1 (2.6) | |
Coexisting conditions, N (%) | <0.001 | ||||||
No condition | 36 (54.5) | 24 (45.3) | 18 (40.0) | 6 (13.0) | 24 (22.4) | 7 (18.4) | |
One condition | 17 (25.8) | 13 (24.5) | 11 (24.4) | 18 (39.1) | 36 (33.6) | 11 (28.9) | |
Two conditions or more | 13 (19.7) | 16 (30.2) | 16 (35.6) | 22 (47.8) | 47 (43.9) | 20 (52.6) | |
Coexisting conditions, N (%) | |||||||
Hypertension | 20 (30.3) | 24 (45.3) | 20 (44.4) | 26 (56.5) | 55 (51.4) | 22 (57.9) | 0.036 |
Diabetes mellitus | 9 (13.6) | 7 (13.2) | 9 (20.0) | 10 (21.7) | 27 (25.2) | 11 (28.9) | 0.235 |
Obesity | 5 (7.6) | 8 (15.1) | 5 (11.1) | 5 (10.9) | 4 (3.7) | 2 (5.3) | 0.18 |
COPD | 2 (3.0) | 1 (1.9) | 5 (11.1) | 11 (23.9) | 12 (11.2) | 6 (15.8) | 0.003 |
Asthma | 1 (1.5) | 2 (3.8) | 2 (4.4) | 0 (0.0) | 1 (0.9) | 0 (0.0) | 0.385 |
Bronchiectasis | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (2.2) | 0 (0.0) | 0 (0.0) | 0.241 |
Pulmonary fibrosis | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.9) | 0 (0.0) | 0.803 |
Chronic heart disease | 3 (4.5) | 2 (3.8) | 3 (6.7) | 2 (4.3) | 5 (4.7) | 10 (26.3) | <0.001 |
Chronic kidney disease | 1 (1.5) | 3 (5.7) | 5 (11.1) | 10 (21.7) | 22 (20.6) | 2 (5.3) | <0.001 |
Chronic liver disease | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (2.2) | 0 (0.0) | 0 (0.0) | 0.241 |
Active neoplasm | 5 (7.6) | 4 (7.5) | 4 (8.9) | 12 (26.1) | 28 (26.2) | 4 (10.5) | 0.001 |
Neutropenia | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (2.2) | 0 (0.0) | 0 (0.0) | 0.241 |
Organ transplantation | 0 (0.0) | 1 (1.9) | 0 (0.0) | 0 (0.0) | 1 (0.9) | 0 (0.0) | 0.696 |
SAPS II, mean (SD) (N = 229) | 28.7 (11.2) | 38.7 (9.4) | 59.0 (-) | 40.8 (17.3) | 41.7 (16.3) | 37.2 (15.7) | NA |
Intubated at admission, N (%) | <0.001 | ||||||
Non-intubated | 55 (83.3) | 30 (56.6) | 26 (57.8) | 29 (63.0) | 55 (51.4) | 24 (63.2) | |
Intubated, other reasons | 2 (3.0) | 2 (3.8) | 6 (13.3) | 12 (26.1) | 32 (29.9) | 6 (15.8) | |
Intubated with COVID-19 pneumonia | 9 (13.6) | 21 (39.6) | 13 (28.9) | 5 (10.9) | 20 (18.7) | 8 (21.1) | |
Use of devices before first HAI, N (%) | |||||||
Central venous catheter | 49 (74.2) | 42 (79.2) | 35 (77.8) | 30 (65.2) | 87 (81.3) | 29 (76.3) | 0.404 |
Mechanical ventilation | 33 (50.0) | 41 (77.4) | 33 (73.3) | 29 (63.0) | 71 (66.4) | 20 (52.6) | 0.017 |
Urinary catheter | 65 (98.5) | 53 (100.0) | 43 (95.6) | 46 (100.0) | 106 (99.1) | 38 (100.0) | 0.294 |
Antibiotic consumption in days, mean, SD | |||||||
Antifungal agents (N = 176) | 14.5 (11.5) | 12.7 (8.9) | 15.2 (14.8) | 12.7 (10.7) | 15.8 (13.0) | 15.3 (17.7) | 0.816 |
Carbapenems (N = 172) | 12.5 (9.2) | 11.1 (7.3) | 11.1 (6.8) | 10.8 (8.2) | 10.6 (6.9) | 10.9 (8.9) | 0.976 |
Extended-spectrum cephalosporins (N = 156) | 8.4 (9.7) | 7.8 (6.6) | 13.2 (11.8) | 7.3 (5.2) | 11.6 (10.0) | 9.2 (7.8) | 0.454 |
Glycopeptides (N = 186) | 10.9 (7.8) | 10.1 (6.6) | 13.4 (9.5) | 10.2 (6.4) | 13.2 (10.0) | 16.1 (14.6) | 0.618 |
Macrolides (N = 115) | 6.0 (4.3) | 8.1 (4.9) | 8.5 (5.6) | 8.1 (2.7) | 5.8 (3.0) | 9.4 (4.5) | 0.006 |
Penicillins (N = 210) | 7.6 (4.3) | 8.6 (4.6) | 11.3 (8.8) | 8.5 (7.8) | 9.3 (6.7) | 12.5 (8.6) | 0.361 |
Polymyxins (N = 93) | 11.8 (6.7) | 8.9 (3.9) | 14.3 (12.4) | 9.4 (9.7) | 9.6 (5.1) | 11.5 (4.9) | 0.638 |
Length of ICU stay in days, mean (SD) | 14.8 (12.2) | 14.9 (8.5) | 18.3 (15.8) | 14.3 (10.7) | 16.5 (12.7) | 19.1 (18.2) | 0.604 |
ICU deaths, N (%) | 20 (30.3) | 35 (66.0) | 32 (71.1) | 22 (47.8) | 54 (50.5) | 13 (34.2) | <0.001 |
Mortality rate per 1000 patient-days (95% CI) | 20.4 (11.5–29.4) | 44.4 (29.7–59.1) | 38.8 (25.3–52.2) | 33.4 (19.5–47.4) | 30.6 (22.4–38.8) | 17.9 (8.2–27.6) | NA |
Period of SARS-CoV-2 Variant Dominance | |||||||
---|---|---|---|---|---|---|---|
Alpha | Delta | Omicron BA.1 | Omicron BA.2 | Omicron BA.5 | Omicron XBB | p-Value | |
1 Mar 2021–18 Jun 2021 | 19 Jun 2021–31 Dec 2021 | 1 Jan 2022– 12 Mar 2022 | 13 Mar 2022–6 Jun 2022 | 7 Jun 2022– 12 Feb 2023 | 13 Feb 2023– 15 Jul 2023 | ||
Type of HAI (N = 138), N (%) | <0.001 | ||||||
CR-BSI | 0 (0.0) | 5 (16.7) | 1 (4.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
VAP | 11 (32.4) | 15 (50.0) | 13 (61.9) | 4 (36.4) | 16 (57.1) | 8 (57.1) | |
CAUTI | 18 (52.9) | 4 (13.3) | 3 (14.3) | 3 (27.3) | 3 (10.7) | 2 (14.3) | |
BUO | 5 (14.7) | 6 (20.0) | 4 (19.0) | 4 (36.4) | 9 (32.1) | 4 (28.6) | |
Patients with HAIs (N = 355), N (%) | 0.023 | ||||||
No HAI | 45 (68.2) | 31 (58.5) | 28 (62.2) | 37 (80.4) | 88 (82.2) | 29 (76.3) | |
One HAI | 11 (16.7) | 14 (26.4) | 14 (31.1) | 7 (15.2) | 11 (10.3) | 6 (15.8) | |
Two HAIs or more | 10 (15.2) | 8 (15.1) | 3 (6.7) | 2 (4.3) | 8 (7.5) | 3 (7.9) |
SHR | 95% CI | p-Value | |
---|---|---|---|
Period of SARS-CoV-2 variant dominance (Ref. Alpha: 1 Mar 2021–18 Jun 2021) | |||
Delta: 19 Jun 2021–31 Dec 2021 | 0.65 | 0.31–1.34 | 0.241 |
Omicron BA.1: 1 Jan 2022–12 Mar 2022 | 0.40 | 0.16–0.96 | 0.040 |
Omicron BA.2: 13 Mar 2022–6 Jun 2022 | 0.30 | 0.13–0.72 | 0.007 |
Omicron BA.5: 7 Jun 2022–12 Feb 2023 | 0.23 | 0.11–0.50 | <0.001 |
Omicron XBB: 13 Feb 2023–15 Jul 2023 | 0.34 | 0.14–0.82 | 0.016 |
Age | 0.99 | 0.98–1.01 | 0.463 |
Male gender (Ref. Female) | 4.01 | 1.68–9.57 | 0.002 |
SAPS II | 1.01 | 0.99–1.02 | 0.538 |
Coexisting conditions (Ref. None) | |||
One coexisting condition | 1.24 | 0.74–2.08 | 0.414 |
Two coexisting conditions or more | 0.98 | 0.57–1.70 | 0.949 |
Intubated at admission (Ref. Non-intubated) | |||
Intubated, other reasons | 1.54 | 0.79–3.01 | 0.207 |
Intubated with COVID-19 pneumonia | 1.82 | 1.08–3.07 | 0.025 |
Use of carbapenems, in days | 0.87 | 0.82–0.93 | <0.001 |
Use of glycopeptides, in days | 0.98 | 0.96–1.01 | 0.159 |
Use of penicillins, in days | 0.99 | 0.96–1.02 | 0.498 |
Time-varying coefficients | |||
Male gender * Time | 0.92 | 0.88–0.97 | 0.002 |
Use of glycopeptides, in days * Time | 1.00 | 1.00–1.01 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sciurti, A.; Baccolini, V.; Ceparano, M.; Isonne, C.; Migliara, G.; Iera, J.; Alessandri, F.; Ceccarelli, G.; Marzuillo, C.; Tellan, G.; et al. Incidence and Predictors of Healthcare-Associated Infections in Patients Admitted to a Temporary Intensive Care Unit during the COVID-19 Pandemic Waves: A Two-Year (2021–2023) Retrospective Cohort Study in Rome, Italy. Antibiotics 2024, 13, 842. https://doi.org/10.3390/antibiotics13090842
Sciurti A, Baccolini V, Ceparano M, Isonne C, Migliara G, Iera J, Alessandri F, Ceccarelli G, Marzuillo C, Tellan G, et al. Incidence and Predictors of Healthcare-Associated Infections in Patients Admitted to a Temporary Intensive Care Unit during the COVID-19 Pandemic Waves: A Two-Year (2021–2023) Retrospective Cohort Study in Rome, Italy. Antibiotics. 2024; 13(9):842. https://doi.org/10.3390/antibiotics13090842
Chicago/Turabian StyleSciurti, Antonio, Valentina Baccolini, Mariateresa Ceparano, Claudia Isonne, Giuseppe Migliara, Jessica Iera, Francesco Alessandri, Giancarlo Ceccarelli, Carolina Marzuillo, Guglielmo Tellan, and et al. 2024. "Incidence and Predictors of Healthcare-Associated Infections in Patients Admitted to a Temporary Intensive Care Unit during the COVID-19 Pandemic Waves: A Two-Year (2021–2023) Retrospective Cohort Study in Rome, Italy" Antibiotics 13, no. 9: 842. https://doi.org/10.3390/antibiotics13090842
APA StyleSciurti, A., Baccolini, V., Ceparano, M., Isonne, C., Migliara, G., Iera, J., Alessandri, F., Ceccarelli, G., Marzuillo, C., Tellan, G., De Giusti, M., Pugliese, F., Villari, P., & the Collaborating Group. (2024). Incidence and Predictors of Healthcare-Associated Infections in Patients Admitted to a Temporary Intensive Care Unit during the COVID-19 Pandemic Waves: A Two-Year (2021–2023) Retrospective Cohort Study in Rome, Italy. Antibiotics, 13(9), 842. https://doi.org/10.3390/antibiotics13090842