Analysis of Antibiotic Resistance Genes (ARGs) across Diverse Bacterial Species in Shrimp Aquaculture
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Escherichia coli
2.2. Antibiotic Resistance Genes
2.3. Bacterial Species
2.4. Genotypes of Escherichia coli
3. Discussion
4. Potential Future Research
5. Materials and Methods
5.1. Study Area
5.2. Water Sample Collection and Analysis
5.3. Shrimp Sample Collection and Analysis
5.4. Isolation Procedure for Escherichia coli
5.5. DNA Sequence and Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Thornber, K.; Verner-Jeffreys, D.; Hinchliffe, S.; Rahman, M.M.; Bass, D.; Tyler, C.R. Evaluating Antimicrobial Resistance in the Global Shrimp Industry. Rev. Aquac. 2020, 12, 966–986. [Google Scholar] [CrossRef]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, Antibiotic-Resistant Bacteria, and Resistance Genes in Aquaculture: Risks, Current Concern, and Future Thinking. Environ. Sci. Pollut. Res. Int. 2022, 29, 11054–11075. [Google Scholar] [CrossRef]
- Schar, D.; Sommanustweechai, A.; Laxminarayan, R.; Tangcharoensathien, V. Surveillance of Antimicrobial Consumption in Animal Production Sectors of Low- and Middle-Income Countries: Optimizing Use and Addressing Antimicrobial Resistance. PLoS Med. 2018, 15, e1002521. [Google Scholar] [CrossRef]
- Sivaraman, G.K.; Rajan, V.; Vijayan, A.; Elangovan, R.; Prendiville, A.; Bachmann, T.T. Antibiotic Resistance Profiles and Molecular Characteristics of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli and Klebsiella Pneumoniae Isolated From Shrimp Aquaculture Farms in Kerala, India. Front. Microbiol. 2021, 12, 622891. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Paul, S.I.; Rahman, M.M.; Lively, J.A. Antimicrobial Resistant Bacteria in Shrimp and Shrimp Farms of Bangladesh. Water 2022, 14, 3172. [Google Scholar] [CrossRef]
- Cheng, H.; Jiang, H.; Fang, J.; Zhu, C. Antibiotic Resistance and Characteristics of Integrons in Escherichia coli Isolated from Penaeus Vannamei at a Freshwater Shrimp Farm in Zhejiang Province, China. J. Food Prot. 2019, 82, 470–478. [Google Scholar] [CrossRef]
- Mok, J.S.; Cho, S.R.; Park, Y.J.; Jo, M.R.; Ha, K.S.; Kim, P.H.; Kim, M.J. Distribution and Antimicrobial Resistance of Vibrio Parahaemolyticus Isolated from Fish and Shrimp Aquaculture Farms along the Korean Coast. Mar. Pollut. Bull. 2021, 171, 112785. [Google Scholar] [CrossRef]
- FAO. FAO Yearbook. Fishery and Aquaculture Statistics 2019/FAO Annuaire. Statistiques Des Pêches et de l’aquaculture 2019/FAO Anuario. Estadísticas de Pesca y Acuicultura 2019; FAO: Rome, Italy, 2021; ISBN 978-92-5-135410-0. [Google Scholar]
- Hinchliffe, S.; Butcher, A.; Rahman, M.M. The AMR Problem: Demanding Economies, Biological Margins, and Co-Producing Alternative Strategies. Palgrave Commun. 2018, 4, 142. [Google Scholar] [CrossRef]
- Milligan, E.G.; Calarco, J.; Davis, B.C.; Keenum, I.M.; Liguori, K.; Pruden, A.; Harwood, V.J. A Systematic Review of Culture-Based Methods for Monitoring Antibiotic-Resistant Acinetobacter, Aeromonas, and Pseudomonas as Environmentally Relevant Pathogens in Wastewater and Surface Water. Curr. Environ. Health Rep. 2023, 10, 154–171. [Google Scholar] [CrossRef]
- Igbinosa, E.O.; Beshiru, A. Antimicrobial Resistance, Virulence Determinants, and Biofilm Formation of Enterococcus Species From Ready-to-Eat Seafood. Front. Microbiol. 2019, 10, 728. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Lively, J.A. Determination of Sulfite and Antimicrobial Residue in Imported Shrimp to the USA. Aquac. Rep. 2020, 18, 100529. [Google Scholar] [CrossRef]
- FAO. GLOBEFISH Highlights—International Markets for Fisheries and Aquaculture Products; FAO: Rome, Italy, 2023; ISBN 978-92-5-138174-8. [Google Scholar]
- Monsalve, E.R.; Quiroga, E. Farmed Shrimp Aquaculture in Coastal Wetlands of Latin America—A Review of Environmental Issues. Mar. Pollut. Bull. 2022, 183, 113956. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.; Chen, H.; Goh, S.G.; Haller, L.; Wu, Z.; Charles, F.R.; Trottet, A.; Gin, K. Microbial Water Quality and the Detection of Multidrug Resistant E. coli and Antibiotic Resistance Genes in Aquaculture Sites of Singapore. Mar. Pollut. Bull. 2018, 135, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Tubón, J.; Barragán-Fonseca, G.; Lalaleo, L.; Calero-Cáceres, W. Data on Antibiograms and Resistance Genes of Enterobacterales Isolated from Ready-to-Eat Street Food of Ambato, Ecuador. F1000Research 2022, 11, 669. [Google Scholar] [CrossRef] [PubMed]
- Romo-Castillo, H.F.; Pazin-Filho, A. Towards Implementing an Antibiotic Stewardship Programme (ASP) in Ecuador: Evaluating Antibiotic Consumption and the Impact of an ASP in a Tertiary Hospital According to World Health Organization (WHO) Recommendations. J. Glob. Antimicrob. Resist. 2022, 29, 462–467. [Google Scholar] [CrossRef]
- Sperling, L.; Alter, T.; Huehn, S. Prevalence and Antimicrobial Resistance of Vibrio spp. in Retail and Farm Shrimps in Ecuador. J. Food Prot. 2015, 78, 2089–2092. [Google Scholar] [PubMed]
- Mulchandani, R.; Wang, Y.; Gilbert, M.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food-Producing Animals: 2020 to 2030. PLoS Glob. Public Health 2023, 3, e0001305. [Google Scholar] [CrossRef]
- Boyd, C.E.; Davis, R.P.; Wilson, A.G.; Marcillo, F.; Brian, S.; McNevin, A.A. Resource Use in Whiteleg Shrimp Litopenaeus Vannamei Farming in Ecuador. J. World Aquac. Soc. 2021, 52, 772–788. [Google Scholar] [CrossRef]
- Marcillo, F. Shrimp Farming and the Environment in Ecuador: Past and Present. World Aquac. 2017, 48, 39–42. [Google Scholar]
- Ministerio de Production, Comercio Exterior, Inversiones y Pesca. Listado de los Certificados de Registro Sanitario Unificado (RSU) Vigentes; Ministerio de Production, Comercio Exterior, Inversiones y Pesca: Quito, Ecuador, 2024. [Google Scholar]
- Vinueza, D.; Ochoa-Herrera, V.; Maurice, L.; Tamayo, E.; Mejía, L.; Tejera, E.; Machado, A. Determining the Microbial and Chemical Contamination in Ecuador’s Main Rivers. Sci. Rep. 2021, 11, 17640. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO’s List of Medically Important Antimicrobials: A Risk Management Tool for Mitigating Antimicrobial Resistance Due to Non-Human Use; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Robertson, J.; Nash, J.H.E. MOB-Suite: Software Tools for Clustering, Reconstruction and Typing of Plasmids from Draft Assemblies. Microb. Genom. 2018, 4, e000206. [Google Scholar] [CrossRef]
- Robertson, J.; Bessonov, K.; Schonfeld, J.; Nash, J.H.E. Universal Whole-Sequence-Based Plasmid Typing and Its Utility to Prediction of Host Range and Epidemiological Surveillance. Microb. Genom. 2020, 6, e000435. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.M.; Mercoulia, K.; Valcanis, M.; Gorrie, C.L.; Sherry, N.L.; Howden, B.P. Hidden Resistances: How Routine Whole-Genome Sequencing Uncovered an Otherwise Undetected blaNDM-1 Gene in Vibrio Alginolyticus from Imported Seafood. Microbiol. Spectr. 2023, 11, e04176-22. [Google Scholar] [CrossRef]
- Fu, S.; Wang, Q.; Wang, R.; Zhang, Y.; Lan, R.; He, F.; Yang, Q. Horizontal Transfer of Antibiotic Resistance Genes within the Bacterial Communities in Aquacultural Environment. Sci. Total Environ. 2022, 820, 153286. [Google Scholar] [CrossRef]
- Bello-López, J.M.; Cabrero-Martínez, O.A.; Ibáñez-Cervantes, G.; Hernández-Cortez, C.; Pelcastre-Rodríguez, L.I.; Gonzalez-Avila, L.U.; Castro-Escarpulli, G. Horizontal Gene Transfer and Its Association with Antibiotic Resistance in the Genus aeromonas spp. Microorganisms 2019, 7, 363. [Google Scholar] [CrossRef] [PubMed]
- Montero, L.; Irazabal, J.; Cardenas, P.; Graham, J.P.; Trueba, G. Extended-Spectrum Beta-Lactamase Producing-Escherichia coli Isolated From Irrigation Waters and Produce in Ecuador. Front. Microbiol. 2021, 12, 709418. [Google Scholar] [CrossRef]
- Sabino, Y.N.V.; de Melo, M.D.; da Silva, G.C.; Mantovani, H.C. Unraveling the Diversity and Dissemination Dynamics of Antimicrobial Resistance Genes in Enterobacteriaceae Plasmids across Diverse Ecosystems. J. Appl. Microbiol. 2024, 135, lxae028. [Google Scholar] [CrossRef]
- Ramsamy, Y.; Mlisana, K.P.; Amoako, D.G.; Abia, A.L.K.; Ismail, A.; Allam, M.; Mbanga, J.; Singh, R.; Essack, S.Y. Mobile Genetic Elements-Mediated Enterobacterales-Associated Carbapenemase Antibiotic Resistance Genes Propagation between the Environment and Humans: A One Health South African Study. Sci. Total Environ. 2022, 806, 150641. [Google Scholar] [CrossRef]
- Nasrollahian, S.; Graham, J.P.; Halaji, M. A Review of the Mechanisms That Confer Antibiotic Resistance in Pathotypes of E. coli. Front. Cell. Infect. Microbiol. 2024, 14, 1387497. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Zheng, N.; Ge, C.; Yao, H. Occurrence and Distribution of Antibiotics and Antibiotic Resistance Genes in the Guts of Shrimp from Different Coastal Areas of China. Sci. Total Environ. 2022, 815, 152756. [Google Scholar] [CrossRef] [PubMed]
- Wall, B.A.; Mateus, A.; Marshall, L.; Pfeiffer, D.U.; Lubroth, J.; Ormel, H.J.; Otto, P.; Patriarchi, A. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production; FAO: Rome, Italy, 2016. [Google Scholar]
- Taylor, N.G.H.; Verner-Jeffreys, D.W.; Baker-Austin, C. Aquatic Systems: Maintaining, Mixing and Mobilising Antimicrobial Resistance? Trends Ecol. Evol. 2011, 26, 278–284. [Google Scholar] [CrossRef]
- Abe, K.; Nomura, N.; Suzuki, S. Biofilms: Hot Spots of Horizontal Gene Transfer (HGT) in Aquatic Environments, with a Focus on a New HGT Mechanism. FEMS Microbiol. Ecol. 2020, 96, fiaa031. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.M.; Hayes, A.; Snape, J.; Kasprzyk-Hordern, B.; Gaze, W.H.; Murray, A.K. Co-Selection for Antibiotic Resistance by Environmental Contaminants. Npj Antimicrob. Resist. 2024, 2, 9. [Google Scholar] [CrossRef]
- Wistrand-Yuen, E.; Knopp, M.; Hjort, K.; Koskiniemi, S.; Berg, O.G.; Andersson, D.I. Evolution of High-Level Resistance during Low-Level Antibiotic Exposure. Nat. Commun. 2018, 9, 1599. [Google Scholar] [CrossRef]
- Ibrahim, M.; Ahmad, F.; Yaqub, B.; Ramzan, A.; Imran, A.; Afzaal, M.; Mirza, S.A.; Mazhar, I.; Younus, M.; Akram, Q.; et al. Chapter 4—Current Trends of Antimicrobials Used in Food Animals and Aquaculture. In Antibiotics and Antimicrobial Resistance Genes in the Environment; Hashmi, M.Z., Ed.; Advances in Environmental Pollution Research Series; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 39–69. ISBN 978-0-12-818882-8. [Google Scholar]
- Girijan, S.K.; Pillai, D. Genetic Diversity and Prevalence of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella Pneumoniae in Aquatic Environments Receiving Untreated Hospital Effluents. J. Water Health 2022, 21, 66–80. [Google Scholar] [CrossRef]
- Wyres, K.L.; Holt, K.E. Klebsiella pneumoniae as a Key Trafficker of Drug Resistance Genes from Environmental to Clinically Important Bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef]
- Piotrowska, M.; Popowska, M. The Prevalence of Antibiotic Resistance Genes among Aeromonas Species in Aquatic Environments. Ann. Microbiol. 2014, 64, 921–934. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Y.; Yang, G.; Wu, Q.; Zhang, J.; Wang, J.; Ding, Y.; Su, Y.; Ye, Q.; Wu, S.; et al. High Prevalence of Multidrug-Resistant Escherichia coli in Retail Aquatic Products in China and the First Report of Mcr-1-Positive Extended-Spectrum β-Lactamase-Producing E. coli ST2705 and ST10 in Fish. Int. J. Food Microbiol. 2024, 408, 110449. [Google Scholar] [CrossRef]
- Nguyen, P.T.L.; Ngo, T.H.H.; Tran, T.M.H.; Vu, T.N.B.; Le, V.T.; Tran, H.A.; Pham, D.T.; Nguyen, H.T.; Tran, D.L.; Nguyen, T.P.L.; et al. Genomic Epidemiological Analysis of Mcr-1-Harboring Escherichia coli Collected from Livestock Settings in Vietnam. Front. Vet. Sci. 2022, 9, 1034610. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wang, Q.; Du, X.; Yu, Y.; Jiang, Y. Coexistence of BlaKPC-2–IncN and Mcr-1–IncX4 Plasmids in a ST48 Escherichia coli Strain in China. J. Glob. Antimicrob. Resist. 2020, 23, 149–153. [Google Scholar] [CrossRef]
- Madec, J.-Y.; Haenni, M.; Ponsin, C.; Kieffer, N.; Rion, E.; Gassilloud, B. Sequence Type 48 Escherichia coli Carrying the blaCTX-M-1 IncI1/ST3 Plasmid in Drinking Water in France. Antimicrob. Agents Chemother. 2016, 60, 6430–6432. [Google Scholar] [CrossRef]
- Do, K.-H.; Seo, K.; Jung, M.; Lee, W.-K.; Lee, W.-K. Comparative Genetic Characterization of Pathogenic Escherichia coli Isolated from Patients and Swine Suffering from Diarrhea in Korea. Animals 2023, 13, 1154. [Google Scholar] [CrossRef]
- Horváth, M.; Kovács, T.; Kun, J.; Gyenesei, A.; Damjanova, I.; Tigyi, Z.; Schneider, G. Virulence Characteristics and Molecular Typing of Carbapenem-Resistant ST15 Klebsiella Pneumoniae Clinical Isolates, Possessing the K24 Capsular Type. Antibiotics 2023, 12, 479. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S. The Impact of Shrimp Farming on Mangrove Ecosystems and Local Livelihoods along the Pacific Coast of Ecuador. Ph.D. Dissertation, University of Southern Mississippi, Hattiesburg, MS, USA, 2011. [Google Scholar]
- Treviño, M.; Murillo-Sandoval, P.J. Uneven Consequences: Gendered Impacts of Shrimp Aquaculture Development on Mangrove Dependent Communities. Ocean. Coast. Manag. 2021, 210, 105688. [Google Scholar] [CrossRef]
- Godfrey, M. China, Ecuador Free Trade Agreement Greases Seafood Trade, but Benefits May Be Lopsided. Available online: https://www.seafoodsource.com/news/premium/supply-trade/china-ecuador-free-trade-agreement-greases-seafood-trade-but-benefits-may-be-lopsided (accessed on 31 October 2023).
- Palacios, O.A.; Adame-Gallegos, J.R.; Rivera-Chavira, B.E.; Nevarez-Moorillon, G.V. Antibiotics, Multidrug-Resistant Bacteria, and Antibiotic Resistance Genes: Indicators of Contamination in Mangroves? Antibiotics 2021, 10, 1103. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Liu, S.; Hu, X.; Xu, X.; Xu, W.; Xu, Y.; Li, Z.; Wen, G.; Liu, Y.; Cao, Y. Occurrence and Temporal Variation of Antibiotic Resistance Genes (ARGs) in Shrimp Aquaculture: ARGs Dissemination from Farming Source to Reared Organisms. Sci. Total Environ. 2017, 607–608, 357–366. [Google Scholar] [CrossRef]
- Bondad-Reantaso, M.G.; MacKinnon, B.; Karunasagar, I.; Fridman, S.; Alday-Sanz, V.; Brun, E.; Le Groumellec, M.; Li, A.; Surachetpong, W.; Karunasagar, I.; et al. Review of Alternatives to Antibiotic Use in Aquaculture. Rev. Aquac. 2023, 15, raq.12786. [Google Scholar] [CrossRef]
- Muziasari, W.I.; Pärnänen, K.; Johnson, T.A.; Lyra, C.; Karkman, A.; Stedtfeld, R.D.; Tamminen, M.; Tiedje, J.M.; Virta, M. Aquaculture Changes the Profile of Antibiotic Resistance and Mobile Genetic Element Associated Genes in Baltic Sea Sediments. FEMS Microbiol. Ecol. 2016, 92, fiw052. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadísticas y Censos (INEC). Censo Ecuador 2022. Available online: https://censoecuador.ecudatanalytics.com (accessed on 23 May 2024).
- Aquagenx GEL EC Kit Quantifies Colony Forming Units (CFU) of E. coli in 100 mL. Available online: https://www.aquagenx.com/gel-kits/ (accessed on 6 February 2023).
- Rayasam, S.D.; Ray, I.; Smith, K.R.; Riley, L.W. Extraintestinal Pathogenic Escherichia coli and Antimicrobial Drug Resistance in a Maharashtrian Drinking Water System. Am. J. Trop. Med. Hyg. 2019, 100, 1101. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Seemann, T. MLST. GitHub: San Francisco, CA, USA. Available online: https://github.com/tseemann/mlst (accessed on 1 May 2024).
- Jolley, K.A.; Bray, J.E.; Maiden, M.C. Open-Access Bacterial Population Genomics: BIGSdb Software, the PubMLST. Org Website and Their Applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Seemann, T. ABRicate. GitHub: San Francisco, CA, USA. Available online: https://github.com/tseemann/abricate (accessed on 1 May 2024).
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef]
- Kjær Hansen, S.; Andersen, L.; Detlefsen, M.; Holm, A.; Roer, L.; Antoniadis, P.; Skov, M.N.; Hammerum, A.M.; Kemp, M. Using Core Genome Multilocus Sequence Typing (cgMLST) for Vancomycin-Resistant Enterococcus Faecium Isolates to Guide Infection Control Interventions and End an Outbreak. J. Glob. Antimicrob. Resist. 2021, 24, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Tange, O. GNU Parallel 20150322 (‘Hellwig’); Zenodo: Geneva, Switzerland, 2015. [Google Scholar]
Sample Location | Sample Type | Number of Samples | Mean E. coli CFU (per 10 mL) | Median E. coli CFU (per 10 mL) | Percent of Samples with Bacterial Growth in Presence of Ceftriaxone |
---|---|---|---|---|---|
A—Influent | Water | 18 | 27.8 | 7 | 100% |
A—Effluent | Water | 18 | 66.3 | 77 | 100% |
A—Shrimp pond | Water | 18 | 41.4 | 25 | 100% |
B—Influent | Water | 18 | 44 | 43 | 100% |
B—Effluent | Water | 18 | 54.8 | 56 | 100% |
B—Shrimp pond | Water | 18 | 48 | 61 | 100% |
C—Influent | Water | 18 | 39.4 | 20 | 89% |
C—Effluent | Water | 18 | 47.6 | 49 | 100% |
C—Shrimp pond | Water | 18 | 62.6 | 60 | 100% |
Sample Location | Sample Type | Number of Samples | Percent of Samples with Bacterial Growth in Presence of Ceftriaxone |
---|---|---|---|
A | Shrimp intestines | 18 | 67% |
B | Shrimp intestines | 18 | 78% |
C | Shrimp intestines | 18 | 67% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchell, T.M.; Ho, T.; Salinas, L.; VanderYacht, T.; Walas, N.; Trueba, G.; Graham, J.P. Analysis of Antibiotic Resistance Genes (ARGs) across Diverse Bacterial Species in Shrimp Aquaculture. Antibiotics 2024, 13, 825. https://doi.org/10.3390/antibiotics13090825
Mitchell TM, Ho T, Salinas L, VanderYacht T, Walas N, Trueba G, Graham JP. Analysis of Antibiotic Resistance Genes (ARGs) across Diverse Bacterial Species in Shrimp Aquaculture. Antibiotics. 2024; 13(9):825. https://doi.org/10.3390/antibiotics13090825
Chicago/Turabian StyleMitchell, Tilden M., Tin Ho, Liseth Salinas, Thomas VanderYacht, Nikolina Walas, Gabriel Trueba, and Jay P. Graham. 2024. "Analysis of Antibiotic Resistance Genes (ARGs) across Diverse Bacterial Species in Shrimp Aquaculture" Antibiotics 13, no. 9: 825. https://doi.org/10.3390/antibiotics13090825
APA StyleMitchell, T. M., Ho, T., Salinas, L., VanderYacht, T., Walas, N., Trueba, G., & Graham, J. P. (2024). Analysis of Antibiotic Resistance Genes (ARGs) across Diverse Bacterial Species in Shrimp Aquaculture. Antibiotics, 13(9), 825. https://doi.org/10.3390/antibiotics13090825