Occurrence, Source Apportionment, and Risk Assessment of Antibiotics in Mangrove Sediments from the Lianzhou Bay, China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Occurrence and Distribution of Antibiotics in Mangrove Sediments from Lianzhou Bay
2.2. Correlation between Environmental Factors and Antibiotic Concentrations
2.3. Potential Sources of Antibiotics in the Sediment of Lianzhou Bay
2.4. Risk Assessment
3. Materials and Methods
3.1. Sampling Sites and Sample Collection
3.2. Materials and Solvents
3.3. Analysis of the Physicochemical Parameters of the Sediments
3.4. Quantitative Analysis of Antibiotics in Sediments
3.5. Quality Assurance and Quality Control (QA/QC)
3.6. Ecological Risk Assessment
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Xiao, S.; Pan, C.; Yin, C.; Wang, Y.; Yu, K.F. Occurrence, source apportionment and risk assessment of antibiotics in water and sediment from the subtropical Beibu Gulf, South China. Sci. Total Environ. 2022, 806, 150439. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Carvalho, I.T.; Santos, L. Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef]
- Qiao, M.; Ying, G.G.; Singer, A.C.; Zhu, Y.G. Review of antibiotic resistance in China and its environment. Environ. Int. 2017, 110, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Colzani, L.; Forni, C.; Clerici, L.; Barreca, S.; Dellavedova, P. Determination of pollutants, antibiotics, and drugs in surface water in Italy as required by the third EU Water Framework Directive Watch List: Method development, validation, and assessment. Environ. Sci. Pollut. Res. 2024, 31, 14791–14803. [Google Scholar] [CrossRef]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef] [PubMed]
- Grenni, P.; Ancona, V.; Caracciolo, A.B. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Leng, Y.; Xiao, H.; Li, Z.; Wang, J. Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in coastal areas of Beibu Gulf, China. Sci. Total Environ. 2020, 714, 136899. [Google Scholar] [CrossRef]
- Das, N.; Madhavan, J.; Selvi, A.; Das, D. An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech 2019, 9, 231. [Google Scholar] [CrossRef]
- Liu, T.; Lun, J.; Zheng, P.; Feng, J.; Meng, S.; Peng, T.; Hu, Z. Diversity and distribution of antibiotics and antibiotic resistance genes in seven national mangrove nature reserves, South China. Int. Biodeter. Biodegr. 2020, 153, 105000. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, H.; Singh, N.; Tang, Y.; Cai, Z. Intertidal zone effects on occurrence, fate and potential risks of microplastics with perspectives under COVID-19 pandemic. Chem. Eng. J. 2022, 429, 132351. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Sun, Y.; De Silva, A.O.; Muir, D.C.; Wang, W.; Mai, B. Bioaccumulation and translocation of tetrabromobisphenol A and hexabromocyclododecanes in mangrove plants from a national nature reserve of Shenzhen City, South China. Environ. Int. 2019, 129, 239–246. [Google Scholar] [CrossRef]
- Lee, H.; Heo, Y.M.; Kwon, S.L.; Yoo, Y.; Kim, D.; Lee, J.; Kwon, B.O.; Khim, J.S.; Kim, J.J. Environmental drivers affecting the bacterial community of intertidal sediments in the Yellow Sea. Sci. Total Environ. 2021, 755, 142726. [Google Scholar] [CrossRef] [PubMed]
- Saintilan, N.; Khan, N.S.; Ashe, E.; Kelleway, J.J.; Rogers, K.; Woodroffe, C.D.; Horton, B.P. Thresholds of mangrove survival under rapid sea level rise. Science 2020, 368, 1118–1121. [Google Scholar] [CrossRef]
- Duke, N.C.; Meynecke, J.O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D.; et al. A world without mangroves? Science 2007, 317, 41–42. [Google Scholar] [CrossRef]
- Bayen, S. Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: A review. Environ. Int. 2012, 1, 84–101. [Google Scholar] [CrossRef]
- Ouyang, X.; Guo, F. Paradigms of mangroves in treatment of anthropogenic wastewater pollution. Sci. Total Environ. 2015, 544, 971–979. [Google Scholar] [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global decline in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef]
- Rigonato, J.; Kent, A.D.; Gumiere, T.; Branco, L.H.Z.; Andreote, F.D.; Fiore, M.F. Temporal assessment of microbial communities in soils of two contrasting mangroves. Braz. J. Microbiol. 2018, 49, 87–96. [Google Scholar] [CrossRef]
- Palit, K.; Rath, S.; Chatterjee, S.; Das, S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. Environ. Sci. Pollut. Res. 2022, 29, 32467–32512. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Flandes, S.; Gonz´alez, B.; Ulloa, O. Redox traits characterize the organization of global microbial communities. Proc. Natl. Acad. Sci. USA 2019, 116, 3630–3635. [Google Scholar] [CrossRef]
- Passari, A.K.; Leo, V.V.; Chandra, P.; Kumar, B.; Nayak, C.; Hashem, A.; Singh, B.P. Bioprospection of actinobacteria derived from freshwater sediments for their potential to produce antimicrobial compounds. Microb. Cell Factories 2018, 17, 68. [Google Scholar]
- Costa-Böddeker, S.; Hoelzmann, P.; de Stigter, H.C.; van Gaever, P.; Huy, H.Đ.; Smol, J.P.; Schwalb, A. Heavy metal pollution in a reforested mangrove ecosystem (Can Gio Biosphere Reserve, Southern Vietnam): Effects of natural and anthropogenic stressors over a thirty-year history. Sci. Total Environ. 2020, 716, 137035. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Y.; Pan, C.; Li, R.; Xue, R.; Guo, J.; Zhang, R. Spatiotemporal distributions, source apportionment and potential risks of 15 pharmaceuticals and personal care products (PPCPs) in Qinzhou Bay, South China. Mar. Pollut. Bull. 2019, 141, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.G.; Xiao, S.K.; Yu, K.F.; Wu, Q.; Wang, Y.H. Legacy and alternative per- and polyfluoroalkyl substances in a subtropical marine food web from the Beibu Gulf, South China: Fate, trophic transfer and health risk assessment. J. Hazard. Mater. 2020, 403, 123618. [Google Scholar] [CrossRef]
- Xiao, S.K.; Wu, Q.; Pan, C.G.; Yin, C.; Wang, Y.H.; Yu, K.F. Distribution, partitioning behavior and potential source of legacy and alternative per- and polyfluoroalkyl substances (PFASs) in water and sediments from a subtropical Gulf, South China Sea. Environ. Res. 2021, 201, 111485. [Google Scholar] [CrossRef]
- Xue, B.M.; Zhang, L.L.; Li, R.L.; Wang, Y.H.; Guo, J.; Yu, K.F.; Wang, S.P. Underestimated microplastic pollution derived from fishery activities and “hidden” in deep sediment. Environ. Sci. Technol. 2020, 54, 2210–2217. [Google Scholar] [CrossRef]
- He, B.; Lai, T.; Wang, X.; Pan, L.; Cao, Q. Secondary productivity of benthic macrofaunal community in intertidal zone of Lianzhou Bay, China. Chin. J. Ecol. 2013, 32, 2104–2112. [Google Scholar]
- Wang, Z.; Liang, Y.; Wei, J.; Zhang, C.; Wei, C. Reshaping of coastal zone terrain deformation monitoring discussion: Taking the Lianzhou Bay of Beihai east coast remediation rehabilitation as an example. Geomat. Spat. Infor. Technol. 2017, 40, 35–38. [Google Scholar]
- Li, J.; Cui, M.; Zhang, H. Spatial and temporal variations of antibiotics in a tidal river. Environ. Monit. Assess. 2020, 192, 336. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, R.; Li, J.; Cheng, Z.; Luo, C.; Wang, Y.; Yu, K.; Zhang, G. Occurrence and distribution of antibiotics in multiple environmental media of the East River (Dongjiang) catchment, South China. Environ. Sci. Pollut. Res. 2017, 24, 9690–9701. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Q.; Zhou, K.; Sun, X.L.; Zhao, L.R.; Zhang, Y.B. Occurrence and distribution of the environmental pollutant antibiotics in Gaoqiao mangrove area, China. Chemosphere 2016, 147, 25–35. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Xu, J.R.; Ren, K.J.; Meng, X.Z. Tracking aquaculture-derived fluoroquinolones in a mangrove wetland, South China. Environ. Pollut. 2016, 219, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Kurwadkar, S.T.; Adams, C.D.; Meyer, M.T.; Kolpin, D.W. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils. J. Agric. Food Chem. 2007, 55, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Sun, J.; Fang, M.; Luo, S.; Tian, Y.; Dong, P.; Xu, B.; Zheng, C. Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community. Sci. Total Environ. 2019, 653, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, J.; Zhong, Z.; Guo, C.; Li, L.; He, Y.; Fan, W.; Chen, Y. Degradation of sulfonamides antibiotics in lake water and sediment. Environ. Sci. Pollut. Res. 2013, 20, 2372–2380. [Google Scholar] [CrossRef]
- Ahamad, T.; Naushad, M.; Al-Shahrani, T.; Al-Hokbany, N.; Alshehri, S.M. Preparation ochitosan based magnetic nanocomposite for tetracycline adsorption: Kinetic and thermodynamic studies. Int. J. Biol. Macromol. 2020, 147, 258–267. [Google Scholar] [CrossRef]
- Liang, X.; Chen, B.; Nie, X.; Shi, Z.; Huang, X.; Li, X. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China. Chemosphere 2013, 92, 1410–1416. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, J.L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 2014, 95, 604–612. [Google Scholar] [CrossRef]
- Gray, A.D.; Todd, D.; Hershey, A.E. The seasonal distribution and concentration of antibiotics in rural streams and drinking wells in the piedmont of North Carolina. Sci. Total Environ. 2020, 710, 136286. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cui, Y.; Wang, H.; Ye, Q.; Duo, X.; Lu, Y.; Cui, X.; Dong, W. Ofloxacin and norfloxacin simultaneous detection by ERGO/GCE and its application in medicine and aquaculture wastewater. Res. Chem. Intermediat. 2023, 49, 741–761. [Google Scholar] [CrossRef]
- Han, Q.F.; Zhang, X.R.; Xu, X.Y.; Wang, X.L.; Yuan, X.Z.; Ding, Z.J.; Zhao, S.; Wang, S.G. Antibiotics in marine aquaculture farms surrounding Laizhou Bay, Bohai Sea: Distribution characteristics considering various culture modes and organism species. Sci. Total Environ. 2021, 760, 143863. [Google Scholar] [CrossRef]
- Wei, C.; Wang, Y.; Zhang, R.; Liu, F.; Zhang, Z.E.; Wang, J.; Yu, K. Spatiotemporal distribution and potential risks of antibiotics in coastal water of Beibu Gulf, South China Sea: Livestock and poultry emissions play essential effect. J. Hazard. Mater. 2024, 466, 133550. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Chen, Q.; Zhang, J.; Wang, Z.; Cai, J.; Yan, H.; Chen, C. Effects of rainfall events on behavior of tetracycline antibiotics in a receiving river: Seasonal differences in dominant processes and mechanisms. Sci. Total Environ. 2019, 692, 511–518. [Google Scholar] [CrossRef]
- Chang, B.V.; Ren, Y.L. Biodegradation of three tetracyclines in river sediment. Ecol. Eng. 2015, 75, 272–277. [Google Scholar] [CrossRef]
- Dettenmaier, E.M.; Doucette, W.J.; Bugbee, B. Chemical hydrophobicity and uptake by plant roots. Environ. Sci. Technol. 2009, 43, 324–329. [Google Scholar] [CrossRef]
- Boonsaner, M.; Hawker, D.W. Accumulation of oxytetracycline and norfloxacin from saline soil by soybeans. Sci. Total Environ. 2009, 408, 1731–1737. [Google Scholar] [CrossRef]
- Herklotz, P.A.; Gurung, P.; Heuvel, B.V.; Kinney, C.A. Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere 2010, 78, 1416–1421. [Google Scholar] [CrossRef]
- Li, Z.L.; Cheng, R.; Chen, F.; Lin, X.Q.; Yao, X.J.; Liang, B.; Huang, C.; Sun, K.; Wang, A.J. Selective stress of antibiotics on microbial denitrification: Inhibitory effects, dynamics of microbial community structure and function. J. Hazard. Mater. 2021, 405, 124366. [Google Scholar] [CrossRef]
- Li, F.; Wen, D.; Bao, Y.; Huang, B.; Mu, Q.; Chen, L. Insights into the distribution, partitioning and influencing factors of antibiotics concentration and ecological risk in typical bays of the East China Sea. Chemosphere 2022, 288, 132566. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.; Wang, D.; Li, X.; Chen, H.; Sun, J.; An, H.; Wang, L.; Deng, Y.; Liu, J.; Zeng, G. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater. Sci. Total Environ. 2017, 605, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, T.; Zhang, J.; Zhang, H.; Zheng, S.; Chen, Z.; Ma, Y. Performance of the nitrogen removal, bioactivity and microbial community responded to elevated norfloxacin antibiotic in an Anammox biofilm system. Chemosphere 2018, 210, 1185–1192. [Google Scholar] [CrossRef]
- Fan, N.S.; Bai, Y.H.; Chen, Q.Q.; Shen, Y.Y.; Huang, B.C.; Jin, R.C. Deciphering the toxic effects of antibiotics on denitrification: Process performance, microbial community and antibiotic resistance genes. J. Environ. Manag. 2020, 262, 110375. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.R.; Li, X.Y. Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere 2009, 78, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, X.; Sun, K.; Zhao, Y.; Lin, C. Sorption of tetracycline to sediments and soils: Assessing the roles of pH, the presence of cadmium and properties of sediments and soils. Front. Environ. Sci. Eng. 2010, 4, 421–429. [Google Scholar] [CrossRef]
- Park, J.Y.; Huwe, B. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils. Environ. Pollut. 2016, 213, 561–570. [Google Scholar] [CrossRef]
- Zhi, D.; Yang, D.; Zheng, Y.; Yang, Y.; He, Y.; Luo, L.; Zhou, Y. Current progress in the adsorption, transport and biodegradation of antibiotics in soil. J. Environ. Manag. 2019, 251, 109598. [Google Scholar] [CrossRef]
- Li, S.; Shi, W.; Li, H.; Xu, N.; Zhang, R.; Chen, X.; Sun, W.; Wen, D.; He, S.; Pan, J.; et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, south China. Sci. Total Environ. 2018, 636, 1009–1019. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Xu, X.R.; Zhou, G.J.; Liu, S.S.; Yue, W.Z.; Sun, K.F.; Ying, G.G. Antibiotics in the coastal environment of the Hailing Bay region, South China Sea: Spatial distribution, source analysis and ecological risks. Mar. Pollut. Bull. 2015, 95, 365–373. [Google Scholar] [CrossRef]
- Lyu, J.; Yang, L.; Zhang, L.; Ye, B.; Wang, L. Antibiotics in soil and water in China—A systematic review and source analysis. Environ. Pollut. 2020, 266, 115147. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, M.; Wu, Y.; Li, S.; Hu, J.; Sun, W.; Ni, J. Profiles, drivers, and prioritization of antibiotics in China’s major rivers. J. Hazard. Mater. 2024, 477, 135399. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Rosal, R.; Rodríguez, A.; Perdigón-Melón, J.A.; Petre, A.; García-Calvo, E.; Gómez, M.J.; Agüera, A.; Fernández-Alba, A.R. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res. 2009, 44, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2020, 753, 141975. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tang, J.; Li, J.; Cheng, Z.; Chaemfa, C.; Liu, D.; Zheng, Q.; Song, M.; Luo, C.; Zhang, G. Occurrence and risks of antibiotics in the coastal aquatic environment of the Yellow Sea, North China. Sci. Total Environ. 2013, 450, 197–204. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, J.; Li, J.; Zheng, Q.; Liu, D.; Chen, Y.; Zou, Y.; Chen, X.; Luo, C.; Zhang, G. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China: Occurrence, distribution and ecological risks. Environ. Pollut. 2013, 174, 71–77. [Google Scholar] [CrossRef]
- Behera, S.K.; Kim, H.W.; Oh, J.E.; Park, H.S. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci. Total Environ. 2011, 409, 4351–4360. [Google Scholar] [CrossRef]
- Leung, H.W.; Minh, T.B.; Murphy, M.B.; Lam, J.C.; So, M.K.; Martin, M.; Lam, P.K.; Richardson, B.J. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environ. Int. 2012, 42, 1–9. [Google Scholar] [CrossRef]
- Diao, J.; Wang, J.; Xie, Y.; Zhang, J.; Wang, T. Spatial distribution, mass flux, and ecological risk of antibiotics in Taiwan and Luzon Straits: A case in the West Pacific Region. Mar. Pollut. Bull. 2024, 201, 16238. [Google Scholar] [CrossRef]
- Wang, T.T.; Shao, S.; Fan, S.D.; Tang, W.Q.; Miao, J.W.; Wang, S.; Cao, X.C.; Liu, C.; Ying, G.G.; Chen, Z.B.; et al. Occurrence, distribution, and risk assessment of antibiotics in a typical aquaculture area around the Dongzhai Harbor mangrove forest on Hainan Island. Sci. Total Environ. 2024, 920, 170558. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 2012, 89, 1307–1315. [Google Scholar] [CrossRef]
- Deng, W.J.; Li, N.; Ying, G.G. Antibiotic distribution, risk assessment, and microbial diversity in river water and sediment in Hong Kong. Environ. Geochem. Health 2018, 40, 2191–2203. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, D.O.; Rigonato, J.; Branco, L.H.Z.; Fiore, M.F. Cyanobacteria in mangrove ecosystems. Biodivers. Conserv. 2015, 24, 799–817. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, M.; Guo, C.; An, D.; Xu, J.; Zhang, Y.; Xi, B. Distribution and ecological risk of antibiotics in a typical effluent–receiving river (Wangyang River) in north China. Chemosphere 2014, 112, 267–274. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, G.; Zheng, Q.; Tang, J.; Chen, Y.; Xu, W.; Zou, Y.; Chen, X. Occurrence and risks of antibiotics in the Laizhou Bay, China: Impacts of river discharge. Ecotoxicol. Environ. Saf. 2012, 80, 208–215. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, R.; Wang, Y.; Pan, X.; Tang, J.; Zhang, G. Occurrence and distribution of antibiotics in the Beibu Gulf, China: Impacts of river discharge and aquaculture activities. Mar. Environ. Res. 2012, 78, 26–33. [Google Scholar] [CrossRef]
- Seifrtová, M.; Nováková, L.; Lino, C.; Pena, A.; Solich, P. An overview of analytical methodologies for the determination of antibiotics in environmental waters. Anal. Chim. Acta 2009, 649, 158–179. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, L.; Rysz, M.; Wang, Y.; Zhang, H.; Alvarez, P.J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 2011, 45, 1827–1833. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Li, L.; Fu, C.; Tu, C.; Huang, Y.; Wu, L.; Tang, J.; Luo, Y.; Christie, P. Levels, distributions and sources of veterinary antibiotics in the sediments of the Bohai Sea in China and surrounding estuaries. Mar. Pollut. Bull. 2016, 109, 597–602. [Google Scholar] [CrossRef]
- Ashraf, A.; Liu, G.; Yousaf, B.; Arif, M.; Ahmed, R.; Irshad, S.; Cheema, A.I.; Rashid, A.; Gulzaman, H. Recent trends in advanced oxidation process-based degradation of erythromycin: Pollution status, eco-toxicity and degradation mechanism in aquatic ecosystems. Sci. Total Environ. 2021, 772, 145389. [Google Scholar] [CrossRef]
- Chabilan, A.; Ledesma, D.G.B.; Horn, H.; Borowska, E. Mesocosm experiment to determine the contribution of adsorption, biodegradation, hydrolysis and photodegradation in the attenuation of antibiotics at the water sediment interface. Sci. Total Environ. 2023, 866, 161385. [Google Scholar] [CrossRef]
- Yang, X.; Shi, Y.; Ying, G.; Li, M.; He, Z.; Shu, L. Cooperation among nitrifying microorganisms promotes the irreversible biotransformation of sulfamonomethoxine. Sci. Total Environ. 2024, 923, 171395. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Wong, M.H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef]
- Lin, X.; Hou, L.; Liu, M.; Li, X.; Zheng, Y.; Yin, G.; Gao, J.; Jiang, X. Nitrogen mineralization and immobilization in sediments of the East China Sea: Spatiotemporal variations and environmental implications. J. Geophys. Res. Biogeosci. 2016, 121, 2842–2855. [Google Scholar] [CrossRef]
- Hedges, J.I.; Turin, H.J.; Ertel, J.R. Sources and distributions of sedimentary organic matter in the Columbia River drainage basin, Washington and Oregon 1. Limnol. Oceanogr. 1984, 29, 35–46. [Google Scholar] [CrossRef]
- Hou, L.; Liu, M.; Xu, S.; Ou, D.; Yu, J.; Cheng, S.; Lin, X.; Yang, Y. The effects of semi-lunar spring and neap tidal change on nitrification, denitrification, and N2O vertical distribution in the intertidal sediments of the Yangtze estuary, China. Estuar. Coast. Shelf Sci. 2007, 73, 607–616. [Google Scholar] [CrossRef]
- Barreca, S.; Forni, C.; Colzani, L.; Clerici, L.; Daverio, D.; Dellavedova, P. Study on the stability of antibiotics, pesticides and drugs in water by using a straightforward procedure applying HPLC-mass spectrometric determination for analytical purposes. Separations 2021, 8, 179. [Google Scholar] [CrossRef]
- Fabregat-Safont, D.; Gracia-Marín, E.; Ibáñez, M.; Pitarch, E.; Hernández, F. Analytical key issues and challenges in the LC-MS/MS determination of antibiotics in wastewater. Anal. Chim. Acta 2023, 1239, 340739. [Google Scholar] [CrossRef]
- Piao, H.; Tao, S.; Hu, H.; Lu, X. Estimation of sorption coefficients of organic compounds with KOW. Environ. Sci. Technol. 1999, 4, 8–13. [Google Scholar]
- Chen, H.; Jing, L.; Teng, Y.; Wang, J. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks. Sci. Total Environ. 2017, 618, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Yang, L.; Chen, L.; Xiang, Q.; Li, S.; Sun, L.; Yu, X.; Fang, L. Soil contamination with antibiotics in a typical peri-urban area in eastern China: Seasonal variation, risk assessment, and microbial responses. J. Environ. Sci. 2019, 79, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tao, H.; Wang, Y.; Ma, Z.; Zhou, Z.Y. Pollution characteristics and risk assessment of tetracycline antibiotics in farmland soil in Yinchuan. Environ. Sci. 2021, 42, 4933–4941. [Google Scholar]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Della Giustina, S.V.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef] [PubMed]
- Zhi, S.; Shen, S.; Zhou, J.; Ding, G.; Zhang, K. Systematic analysis of occurrence, density and ecological risks of 45 veterinary antibiotics: Focused on family livestock farms in Erhai Lake basin, Yunnan, China. Environ. Pollut. 2020, 267, 115539. [Google Scholar] [CrossRef]
- Leps, J.; Smilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Chang, H.; Wan, Y.; Hu, J. Determination and source apportionment of five classes of steroid hormones in urban rivers. Environ. Sci. Technol. 2009, 43, 7691–7698. [Google Scholar] [CrossRef]
- April, A.R.; Jason, B.B.; Michael, J.L. Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ. Toxicol. Chem. 2005, 24, 423–430. [Google Scholar] [CrossRef]
- Ando, T.; Nagase, H.; Eguchi, K.; Hirooka, T.; Nakamura, T.; Miyamoto, K.; Hirata, K. A novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents. Environ. Toxicol. Chem. 2007, 26, 601–606. [Google Scholar] [CrossRef]
- Brain, R.A.; Johnson, D.J.; Richards, S.M.; Sanderson, H.; Sibley, P.K.; Solomon, K.R. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test. Environ. Toxicol. Chem. 2004, 23, 371–382. [Google Scholar] [CrossRef]
- Białk-Bielińska, A.; Stolte, S.; Arning, J.; Uebers, U.; Böschen, A.; Stepnowski, P.; Matzke, M. Ecotoxicity evaluation of selected sulfonamides. Chemosphere 2011, 85, 928–933. [Google Scholar] [CrossRef]
- di Delupis, G.D.; Macrí, A.; Civitareale, C.; Migliore, L. Antibiotics of zootechnical use: Effects of acute high and low dose contamination on Daphnia magna Straus. Aquat. Toxicol. 1992, 22, 53–59. [Google Scholar] [CrossRef]
- De Liguoro, M.; Fioretto, B.; Poltronieri, C.; Gallina, G. The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. Chemosphere 2009, 75, 1519–1524. [Google Scholar] [CrossRef]
- De Liguoro, M.; Di Leva, V.; Dalla Bona, M.; Merlanti, R.; Caporale, G.; Radaelli, G. Sublethal effects of trimethoprim on four freshwater organisms. Ecotoxicol. Environ. Saf. 2012, 82, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, K.; Nagase, H.; Ozawa, M.; Endoh, Y.S.; Goto, K.; Hirata, K.; Miyamoto, K.; Yoshimura, H. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 2004, 57, 1733–1738. [Google Scholar] [CrossRef]
- Halling-Sørensen, B. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 2000, 40, 731–739. [Google Scholar] [CrossRef]
- Harada, A.; Komori, K.; Nakada, N.; Kitamura, K.; Suzuki, Y. Biological effects of PPCPs on aquatic lives. and evaluation of river waters affected by different wastewater treatment levels. Water. Sci. Technol. 2008, 58, 1541–1546. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Hou, J.; Kuo, T.; Lai, H. Toxicity of the veterinary sulfonamide antibiotic sulfamonomethoxine to five aquatic organisms. Environ. Toxicol. Phar. 2014, 38, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Isidori, M.; Lavorgna, M.; Nardelli, A.; Pascarella, L.; Parrella, A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total. Environ. 2005, 346, 87–98. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, K.; Jung, J.Y.; Park, S.; Kim, P.G.; Park, J. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ. Int. 2007, 33, 370–375. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Kim, P.G.; Lee, C.; Choi, K.; Choi, K. Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna. Ecotoxicology 2010, 19, 662–669. [Google Scholar] [CrossRef]
- Laville, N.; Aıt-Aıssa, S.; Gomez, E.; Casellas, C.; Porcher, J.M. Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicology 2004, 196, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Li, Z.; Liu, J. Effects of selected pharmaceuticals on growth, reproduction and feeding of Daphnia Magna. Fresen. Environ. Bull. 2013, 22, 2588–2594. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Yang, L.; Duan, S.; Zhou, F.; Chen, J.; Liu, Y.; Zhang, B. Effects of azithromycin on feeding behavior and nutrition accumulation of Daphnia magna under the different exposure pathways. Ecotox. Environ. Saf. 2020, 197, 110573. [Google Scholar] [CrossRef] [PubMed]
- Müller, H.G. Sensitivity of Daphnia magna Straus against eight chemotherapeutic agents and two dyes. Bull. Environ. Contam. Toxicol. 1982, 28, 1–2. [Google Scholar] [CrossRef]
- Oliveira, R.; McDonough, S.; Ladewig, J.C.; Soares, A.M.; Nogueira, A.J.; Domingues, I. Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 2013, 36, 903–912. [Google Scholar] [CrossRef]
- Park, S.; Choi, K. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 2008, 17, 526–538. [Google Scholar] [CrossRef]
- Park, K.H.; Zeon, S.R.; Lee, J.G.; Choi, S.H.; Shin, Y.K.; Park, K.I. In vitro and in vivo efficacy of drugs against the protozoan parasite Azumiobodo hoyamushi that causes soft tunic syndrome in the edible ascidian Halocynthia roretzi (Drasche). J. Fish. Dis. 2014, 37, 309–317. [Google Scholar] [CrossRef]
- Prata, J.C.; Lavorante, B.R.; Maria da Conceição, B.S.M.; Guilhermino, L. Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat. Toxicol. 2018, 197, 143–152. [Google Scholar] [CrossRef]
- Ramírez-Morales, D.; Fajardo-Romero, D.; Rodríguez-Rodríguez, C.E.; Cedergreen, N. Single and mixture toxicity of selected pharmaceuticals to the aquatic macrophyte Lemna minor. Ecotoxicology 2022, 31, 714–724. [Google Scholar] [CrossRef]
- Valcárcel, Y.; González Alonso, S.; Rodríguez-Gil, J.L.; Gil, A.; Catalá, M. Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere 2011, 84, 1336–1348. [Google Scholar] [CrossRef]
- Williams, R.R.; Bell, T.A.; Lightner, D.V. Shrimp antimicrobial testing. II. Toxicity testing and safety determination for twelve antimicrobials with penaeid shrimp larvae. J. Aquat. Anim. Health 1992, 4, 262–270. [Google Scholar] [CrossRef]
- Wollenberger, L.; Halling-Sorensen, B.; Kusk, K.O. Acute and Chronic Toxicity of Veterinary Antibiotics to Daphnia magna. Chemosphere 2000, 40, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Demeestere, K.; De Schamphelaere, K.A. The influence of pH and dissolved organic carbon on the ecotoxicity of ampicillin and clarithromycin. Sci. Tot. Environ. 2023, 904, 166781. [Google Scholar] [CrossRef] [PubMed]
High Tidal Zone | Middle Tidal Zone | Low Tidal Zone | |
---|---|---|---|
pH | 6.85 a ± 0.16 | 7.14 b ± 0.15 | 7.15 b ± 0.22 |
NO3−-N(μmol/L) | 1.64 a ± 0.54 | 1.31 ab ± 0.39 | 1.09 b ± 0.19 |
NO2−-N (μmol/L) | 2.0 × 10−2 ± 0.6 × 10−3 | 2.2 × 10−2 ± 9.0 × 10−3 | 1.9 × 10−2 ± 0.6 × 10−3 |
NH4+-N (μmol/L) | 0.39 ± 0.14 | 0.50 ± 0.48 | 0.43 ± 0.34 |
TOC (%) | 1.74 ± 0.57 | 1.68 ± 1.15 | 1.11 ± 0.58 |
Particle size (μm) | 10.59 ± 5.75 | 25.52 ± 43.51 | 17.28 ± 13.51 |
Antibiotics | Rotated Component Number a | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
NOR | −0.321 | −0.066 | −0.819 | −0.010 | 0.183 |
CIP | 0.778 | 0.177 | −0.190 | −0.226 | 0.083 |
LOM | 0.812 | −0.112 | 0.287 | −0.23 | 0.286 |
ERX | −0.304 | 0.118 | 0.167 | 0.804 | −0.222 |
OFX | 0.668 | 0.458 | 0.330 | 0.107 | −0.171 |
AZM | 0.003 | 0.556 | 0.018 | 0.646 | −0.366 |
ROX | 0.689 | 0.093 | 0.377 | 0.268 | 0.190 |
CLI | −0.58 | −0.404 | −0.142 | −0.302 | 0.162 |
ERY | 0.288 | 0.731 | −0.023 | 0.401 | 0.111 |
SA | 0.145 | 0.817 | 0.090 | −0.092 | 0.425 |
SPD | 0.754 | 0.307 | 0.528 | 0.061 | 0.102 |
SDZ | 0.249 | 0.389 | 0.511 | 0.676 | −0.038 |
SMX | 0.585 | −0.454 | 0.530 | 0.104 | −0.053 |
SMZ | −0.045 | 0.872 | 0.230 | 0.171 | −0.046 |
SMT | −0.259 | −0.291 | −0.783 | −0.369 | 0.151 |
SMD | 0.022 | −0.048 | 0.161 | 0.914 | 0.170 |
SMM | 0.500 | 0.574 | 0.392 | −0.388 | 0.131 |
OXY | 0.603 | 0.197 | 0.253 | −0.007 | 0.250 |
CTE | 0.648 | 0.073 | 0.305 | −0.008 | 0.560 |
TC | 0.715 | −0.411 | −0.052 | −0.095 | −0.351 |
DOX | 0.123 | 0.138 | −0.254 | −0.072 | 0.839 |
PEN G | −0.041 | −0.103 | −0.884 | −0.206 | −0.067 |
Percentage variance explained (%) | 24.663 | 17.391 | 17.127 | 14.501 | 8.555 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.; Tan, Y.; Zhu, Z.; Yang, T.; Thevarajan, S.; Zhang, L. Occurrence, Source Apportionment, and Risk Assessment of Antibiotics in Mangrove Sediments from the Lianzhou Bay, China. Antibiotics 2024, 13, 820. https://doi.org/10.3390/antibiotics13090820
Sun P, Tan Y, Zhu Z, Yang T, Thevarajan S, Zhang L. Occurrence, Source Apportionment, and Risk Assessment of Antibiotics in Mangrove Sediments from the Lianzhou Bay, China. Antibiotics. 2024; 13(9):820. https://doi.org/10.3390/antibiotics13090820
Chicago/Turabian StyleSun, Pengfei, Yongyu Tan, Zuhao Zhu, Tinglong Yang, Shalini Thevarajan, and Li Zhang. 2024. "Occurrence, Source Apportionment, and Risk Assessment of Antibiotics in Mangrove Sediments from the Lianzhou Bay, China" Antibiotics 13, no. 9: 820. https://doi.org/10.3390/antibiotics13090820
APA StyleSun, P., Tan, Y., Zhu, Z., Yang, T., Thevarajan, S., & Zhang, L. (2024). Occurrence, Source Apportionment, and Risk Assessment of Antibiotics in Mangrove Sediments from the Lianzhou Bay, China. Antibiotics, 13(9), 820. https://doi.org/10.3390/antibiotics13090820