Comparison of Hypervirulent and Non-Hypervirulent Carbapenem-Resistant Acinetobacter baumannii Isolated from Bloodstream Infections: Mortality, Potential Virulence Factors, and Combination Therapy In Vitro
Abstract
:1. Introduction
2. Results
2.1. General Characteristics of CRAB-BSI
2.2. Grouping of CRAB-BSI and ST Type
2.3. Differences in Clinical Characteristics between Hv-CRAB-BSI and Non-Hv-CRAB-BSI
2.4. Differences in Toxome between Hv-CRAB-BSI and Non-Hv-CRAB-BSI
2.5. Differences in Resistome between Hv-CRAB-BSI and Non-Hv-CRAB-BSI
2.6. Differences in Antimicrobial Susceptibility and Synergistic Effect between Hv-CRAB-BSI and Non-Hv-CRAB-BSI
3. Discussion
4. Materials and Methods
4.1. Strains and Ethics
4.2. Galleria mellonella Infection Model and Grouping
4.3. Whole-Genome Sequencing (WGS) and Bioinformatic Analysis
4.4. Antimicrobial Susceptibility Testing
4.5. Checkerboard Broth Microdilution
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mea, H.J.; Yong, P.V.C.; Wong, E.H. An overview of Acinetobacter baumannii pathogenesis: Motility, adherence and biofilm formation. Microbiol. Res. 2021, 247, 126722. [Google Scholar] [CrossRef]
- Perez, F.; Endimiani, A.; Ray, A.J.; Decker, B.K.; Wallace, C.J.; Hujer, K.M.; Ecker, D.J.; Adams, M.D.; Toltzis, P.; Dul, M.J.; et al. Carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae across a hospital system: Impact of post-acute care facilities on dissemination. J. Antimicrob. Chemother. 2010, 65, 1807–1818. [Google Scholar] [CrossRef] [PubMed]
- Ikuta, K.S.; Swetschinski, L.R.; Aguilar, G.R.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Weaver, N.D.; Wool, E.E.; Han, C.; Hayoon, A.G.; et al. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed]
- Eliopoulos, G.M.; Maragakis, L.L.; Perl, T.M. Antimicrobial Resistance: Acinetobacter baumannii: Epidemiology, Antimicrobial Resistance, and Treatment Options. Clin. Infect. Dis. 2008, 46, 1254–1263. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Huang, C.-W.; Chen, C.-L.; Wang, Y.-H.; Chang, C.-J.; Chiu, C.-H. Emergence in Taiwan of novel imipenem-resistant Acinetobacter baumannii ST455 causing bloodstream infection in critical patients. J. Microbiol. Immunol. Infect. 2015, 48, 588–596. [Google Scholar] [CrossRef]
- Tal-Jasper, R.; Katz, D.E.; Amrami, N.; Ravid, D.; Avivi, D.; Zaidenstein, R.; Lazarovitch, T.; Dadon, M.; Kaye, K.S.; Marchaim, D. Clinical and Epidemiological Significance of Carbapenem Resistance in Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2016, 60, 3127–3131. [Google Scholar] [CrossRef] [PubMed]
- Esterly, J.S.; Griffith, M.; Qi, C.; Malczynski, M.; Postelnick, M.J.; Scheetz, M.H. Impact of Carbapenem Resistance and Receipt of Active Antimicrobial Therapy on Clinical Outcomes of Acinetobacter baumannii Bloodstream Infections. Antimicrob. Agents Chemother. 2011, 55, 4844–4849. [Google Scholar] [CrossRef]
- Li, J.; Yu, T.; Luo, Y.; Peng, J.-Y.; Li, Y.-J.; Tao, X.-Y.; Hu, Y.-M.; Wang, H.-C.; Zou, M.-X. Characterization of carbapenem-resistant hypervirulent Acinetobacter baumannii strains isolated from hospitalized patients in the mid-south region of China. BMC Microbiol. 2020, 20, 281. [Google Scholar] [CrossRef]
- Singh, M.; De Silva, P.M.; Al-Saadi, Y.; Switala, J.; Loewen, P.C.; Hausner, G.; Chen, W.; Hernandez, I.; Castillo-Ramirez, S.; Kumar, A. Characterization of Extremely Drug-Resistant and Hypervirulent Acinetobacter baumannii AB030. Antibiotics 2020, 9, 328. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, H.; Yao, Y.; Chen, H.; Yang, Z.; Xie, H.; Cui, R.; Liu, H.; Li, C.; Gong, W.; et al. Emergence of novel hypervirulent Acinetobacter baumannii strain and herpes simplex type 1 virus in a case of community-acquired pneumonia in China. J. Infect. Public Health 2024, 17, 102456. [Google Scholar] [CrossRef]
- Zhou, K.; Tang, X.; Wang, L.; Guo, Z.; Xiao, S.; Wang, Q.; Zhuo, C. An Emerging Clone (ST457) of Acinetobacter baumannii Clonal Complex 92 With Enhanced Virulence and Increasing Endemicity in South China. Clin. Infect. Dis. 2018, 67, S179–S188. [Google Scholar] [CrossRef] [PubMed]
- Ou, H.-Y.; Kuang, S.N.; He, X.; Molgora, B.M.; Ewing, P.J.; Deng, Z.; Osby, M.; Chen, W.; Xu, H.H. Complete genome sequence of hypervirulent and outbreak-associated Acinetobacter baumannii strain LAC-4: Epidemiology, resistance genetic determinants and potential virulence factors. Sci. Rep. 2015, 5, 8643. [Google Scholar] [CrossRef]
- Jones, C.L.; Clancy, M.; Honnold, C.; Singh, S.; Snesrud, E.; Onmus-Leone, F.; McGann, P.; Ong, A.C.; Kwak, Y.; Waterman, P.; et al. Fatal Outbreak of an Emerging Clone of Extensively Drug-Resistant Acinetobacter baumannii With Enhanced Virulence. Clin. Infect. Dis. 2015, 61, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-L.; Yang, C.-J.; Chuang, Y.-C.; Sheng, W.-H.; Chen, Y.-C.; Chang, S.-C. Association of capsular polysaccharide locus 2 with prognosis of Acinetobacter baumannii bacteraemia. Emerg. Microbes Infect. 2022, 11, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhao, D.; Huang, N.; Liu, S.; Zheng, J.; Cao, J.; Zeng, W.; Zheng, X.; Wang, L.; Zhou, T.; et al. Clinical impact of the type VI secretion system on clinical characteristics, virulence and prognosis of Acinetobacter baumannii during bloodstream infection. Microb. Pathog. 2023, 182, 106252. [Google Scholar] [CrossRef]
- Chuang, Y.-C.; Cheng, A.; Sun, H.-Y.; Wang, J.-T.; Chen, Y.-C.; Sheng, W.-H.; Chang, S.-C. Microbiological and clinical characteristics of Acinetobacter baumannii bacteremia: Implications of sequence type for prognosis. J. Infect. 2019, 78, 106–112. [Google Scholar] [CrossRef]
- Nutman, A.; Glick, R.; Temkin, E.; Hoshen, M.; Edgar, R.; Braun, T.; Carmeli, Y. A case-control study to identify predictors of 14-day mortality following carbapenem-resistant Acinetobacter baumannii bacteraemia. Clin. Microbiol. Infect. 2014, 20, O1028–O1034. [Google Scholar] [CrossRef]
- Liu, C.-P.; Lu, H.-P.; Luor, T. Clonal relationship and the association of the ST218 strain harboring blaOXA-72 gene to mortality in carbapenem-resistant Acinetobacter baumannii bacteremia. J. Microbiol. Immunol. Infect. 2019, 52, 297–303. [Google Scholar] [CrossRef]
- Russo, A.; Bruni, A.; Gullì, S.; Borrazzo, C.; Quirino, A.; Lionello, R.; Serapide, F.; Garofalo, E.; Serraino, R.; Romeo, F.; et al. Efficacy of cefiderocol- vs. colistin-containing regimen for treatment of bacteraemic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19. Int. J. Antimicrob. Agents 2023, 62, 106825. [Google Scholar] [CrossRef]
- Kim, S.-H.; Wi, Y.M.; Peck, K.R. Clinical Effectiveness of Tetracycline-Class Agents Based Regimens in Patients With Carbapenem-Resistant Acinetobacter baumannii Bacteremia: A Single-Center Retrospective Cohort Study. J. Korean Med. Sci. 2023, 38, e263. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, A.C.; Thompson, M.G.; Black, C.C.; Kessler, J.L.; Clark, L.P.; McQueary, C.N.; Gancz, H.Y.; Corey, B.W.; Moon, J.K.; Si, Y.; et al. AB5075, a Highly Virulent Isolate of Acinetobacter baumannii, as a Model Strain for the Evaluation of Pathogenesis and Antimicrobial Treatments. mBio 2014, 5, e01076-14. [Google Scholar] [CrossRef]
- Guan, X.; He, L.; Hu, B.; Hu, J.; Huang, X.; Lai, G.; Liu, Y.; Ni, Y.; Qiu, H.; Shao, Z.; et al. Laboratory diagnosis, clinical management and infection control of the infections caused by extensively drug-resistant Gram-negative bacilli: A Chinese consensus statement. Clin. Microbiol. Infect. 2016, 22 (Suppl. 1), S15–S25. [Google Scholar] [CrossRef]
- Cameranesi, M.M.; Kurth, D.; Repizo, G.D. Acinetobacter defence mechanisms against biological aggressors and their use as alternative therapeutic applications. Crit. Rev. Microbiol. 2022, 48, 21–41. [Google Scholar] [CrossRef]
- Yu, K.; Zeng, W.; Xu, Y.; Liao, W.; Xu, W.; Zhou, T.; Cao, J.; Chen, L. Bloodstream infections caused by ST2 Acinetobacter baumannii: Risk factors, antibiotic regimens, and virulence over 6 years period in China. Antimicrob. Resist. Infect. Control 2021, 10, 16. [Google Scholar] [CrossRef]
- Corcione, S.; Longo, B.M.; Scabini, S.; Pivetta, E.; Curtoni, A.; Shbaklo, N.; Costa, C.; De Rosa, F.G. Risk factors for mortality in Acinetobacter baumannii bloodstream infections and development of a predictive mortality model. J. Glob. Antimicrob. Resist. 2024, 38, 317–326. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, W.; Lei, J.; Zhang, L.; Hou, X.; Tao, J.; Wang, H.; Deng, M.; Zhou, M.; Weng, R.; et al. Molecular epidemiology and carbapenem resistance characteristics of Acinetobacter baumannii causing bloodstream infection from 2009 to 2018 in northwest China. Front. Microbiol. 2022, 13, 983963. [Google Scholar] [CrossRef] [PubMed]
- McQueary, C.N.; Kirkup, B.C.; Si, Y.; Barlow, M.; Actis, L.A.; Craft, D.W.; Zurawski, D.V. Extracellular stress and lipopolysaccharide modulate Acinetobacter baumannii surface-associated motility. J. Microbiol. 2012, 50, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Luke, N.R.; Beanan, J.M.; Olson, R.; Sauberan, S.L.; MacDonald, U.; Schultz, L.W.; Umland, T.C.; Campagnari, A.A. The K1 Capsular Polysaccharide of Acinetobacter baumannii Strain 307-0294 Is a Major Virulence Factor. Infect. Immun. 2010, 78, 3993–4000. [Google Scholar] [CrossRef]
- Tang, J.; Chen, Y.; Wang, X.; Ding, Y.; Sun, X.; Ni, Z. Contribution of the AbaI/AbaR Quorum Sensing System to Resistance and Virulence of Acinetobacter baumannii Clinical Strains. Infect. Drug Resist. 2020, 13, 4273–4281. [Google Scholar] [CrossRef]
- Sun, X.; Ni, Z.; Tang, J.; Ding, Y.; Wang, X.; Li, F. The abaI/abaR Quorum Sensing System Effects on Pathogenicity in Acinetobacter baumannii. Front. Microbiol. 2021, 12, 679241. [Google Scholar] [CrossRef]
- He, X.; Lu, F.; Yuan, F.; Jiang, D.; Zhao, P.; Zhu, J.; Cheng, H.; Cao, J.; Lu, G. Biofilm Formation Caused by Clinical Acinetobacter baumannii Isolates Is Associated with Overexpression of the AdeFGH Efflux Pump. Antimicrob. Agents Chemother. 2015, 59, 4817–4825. [Google Scholar] [CrossRef]
- Qu, X.; Bian, X.; Chen, Y.; Hu, J.; Huang, X.; Wang, Y.; Fan, Y.; Wu, H.; Li, X.; Li, Y.; et al. Polymyxin B Combined with Minocycline: A Potentially Effective Combination against blaOXA-23-harboring CRAB in In Vitro PK/PD Model. Molecules 2022, 27, 1085. [Google Scholar] [CrossRef] [PubMed]
- Beganovic, M.; Daffinee, K.E.; Luther, M.K.; LaPlante, K.L. Minocycline Alone and in Combination with Polymyxin B, Meropenem, and Sulbactam against Carbapenem-Susceptible and -Resistant Acinetobacter baumannii in an In Vitro Pharmacodynamic Model. Antimicrob. Agents Chemother. 2021, 65, e01680-20. [Google Scholar] [CrossRef]
- Goff, D.A.; Bauer, K.A.; Mangino, J.E. Bad Bugs Need Old Drugs: A Stewardship Program’s Evaluation of Minocycline for Multidrug-Resistant Acinetobacter baumannii Infections. Clin. Infect. Dis. 2014, 59 (Suppl. 6), S381–S387. [Google Scholar] [CrossRef] [PubMed]
- Seok, H.; Choi, W.S.; Lee, S.; Moon, C.; Park, D.W.; Song, J.Y.; Cheong, H.J.; Kim, J.; Kim, J.Y.; Na Park, M.; et al. What is the optimal antibiotic treatment strategy for carbapenem-resistant Acinetobacter baumannii (CRAB)? A multicentre study in Korea. J. Glob. Antimicrob. Resist. 2021, 24, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Piperaki, E.-T.; Tzouvelekis, L.S.; Miriagou, V.; Daikos, G.L. Carbapenem-resistant Acinetobacter baumannii: In pursuit of an effective treatment. Clin. Microbiol. Infect. 2019, 25, 951–957. [Google Scholar] [CrossRef]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef]
- Cheng, A.; Chuang, Y.-C.; Sun, H.-Y.; Sheng, W.-H.; Yang, C.-J.; Liao, C.-H.; Hsueh, P.-R.; Yang, J.-L.; Shen, N.-J.; Wang, J.-T.; et al. Excess Mortality Associated with Colistin-Tigecycline Compared with Colistin-Carbapenem Combination Therapy for Extensively Drug-Resistant Acinetobacter baumannii Bacteremia: A Multicenter Prospective Observational Study. Crit. Care Med. 2015, 43, 1194–1204. [Google Scholar] [CrossRef]
- Spellberg, B.; Bonomo, R.A. Combination Therapy for Extreme Drug–Resistant Acinetobacter baumannii: Ready for Prime Time? Crit. Care Med. 2015, 43, 1332–1334. [Google Scholar] [CrossRef]
- Zhou, H.; Larkin, P.M.; Huang, J.; Yao, Y.; Zhu, B.; Yang, Q.; Hua, X.; Zhou, J.; Yang, S.; Yu, Y. Discovery of a Novel Hypervirulent Acinetobacter baumannii Strain in a Case of Community-Acquired Pneumonia. Infect. Drug Resist. 2020, 13, 1147–1153. [Google Scholar] [CrossRef]
- Khalil, M.A.F.; Ahmed, F.A.; Elkhateeb, A.F.; Mahmoud, E.E.; Ahmed, M.I.; Ahmed, R.I.; Hosni, A.; Alghamdi, S.; Kabrah, A.; Dablool, A.S.; et al. Virulence Characteristics of Biofilm-Forming Acinetobacter baumannii in Clinical Isolates Using a Galleria mellonella Model. Microorganisms 2021, 9, 2365. [Google Scholar] [CrossRef] [PubMed]
- Trinetta, V.; Magossi, G.; Allard, M.W.; Tallent, S.M.; Brown, E.W.; Lomonaco, S. Characterization of Salmonella enterica Isolates from Selected U.S. Swine Feed Mills by Whole-Genome Sequencing. Foodborne Pathog. Dis. 2020, 17, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Guo, H.; Chen, Y.; He, F.; Xu, J. Genomic and phylogenetic analysis of a multidrug-resistant Pseudomonas aeruginosa ST463 strain co-carrying blaKPC-2, blaOXA-246, and blaOXA-486 in China. J. Glob. Antimicrob. Resist. 2023, 33, 301–303. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, N.; Lin, Z.; Ba, X.; Zhuo, C.; Li, F.; Wang, J.; Li, Y.; Yao, L.; Liu, B.; et al. Mutations in porin LamB contribute to ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae. Emerg. Microbes Infect. 2021, 10, 2042–2051. [Google Scholar] [CrossRef]
- Hamed, S.M.; Hussein, A.F.A.; Al-Agamy, M.H.; Radwan, H.H.; Zafer, M.M. Genetic Configuration of Genomic Resistance Islands in Acinetobacter baumannii Clinical Isolates from Egypt. Front. Microbiol. 2022, 13, 878912. [Google Scholar] [CrossRef]
- Babaei, S.; Haeili, M. Evaluating the performance characteristics of different antimicrobial susceptibility testing methodologies for testing susceptibility of gram-negative bacteria to tigecycline. BMC Infect. Dis. 2021, 21, 709. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; M100S; Thirty-One Informational Supplement; The Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2021. [Google Scholar]
- Sopirala, M.M.; Mangino, J.E.; Gebreyes, W.A.; Biller, B.; Bannerman, T.; Balada-Llasat, J.-M.; Pancholi, P. Synergy Testing by Etest, Microdilution Checkerboard, and Time-Kill Methods for Pan-Drug-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2010, 54, 4678–4683. [Google Scholar] [CrossRef]
Variables | Total (n = 31) | Groups | p-Value | |
---|---|---|---|---|
Hv-CRAB-BSI (n = 24) | Non-hv-CRAB-BSI (n = 7) | |||
Age (yr, X ± S) | 63.5 ± 20.7 | 63.7 ± 20.4 | 63.0 ± 23.3 | 0.94 |
Sex at birth, Male | 25 (80.6%) | 20 (83.3%) | 5 (71.4%) | 0.59 |
ICU admission | 28 (90.3%) | 23 (95.8%) | 5 (71.4%) | 0.12 |
Combined underlying disease | 21 (67.7%) | 15 (62.5%) | 6 (85.7%) | 0.379 |
Hypertension | 14 (45.2%) | 11 (45.8%) | 3 (42.9%) | 1 |
Diabetes | 7 (22.6%) | 6 (25.0%) | 1 (14.3%) | 1 |
Coronary artery disease | 12 (38.7%) | 9 (37.5%) | 3 (42.9%) | 1 |
Cerebral hemorrhage | 6 (19.4%) | 6 (25.0%) | 0 (0.0%) | 0.293 |
COPD # | 3 (9.7%) | 3 (12.5%) | 0 (0.0%) | 1 |
Invasive operation | 24 (77.4%) | 20 (83.3%) | 4 (57.1%) | 0.302 |
Peripherally inserted central catheter | 20 (64.5%) | 17 (70.8%) | 3 (42.9%) | 0.21 |
Tracheal intubation and tracheotomy | 22 (71.0%) | 18 (75.0%) | 4 (57.1%) | 0.384 |
Catheter | 20 (64.5%) | 18 (75.0%) | 2 (28.6%) | 0.067 |
Gastric intubation | 20 (64.5%) | 18 (75.0%) | 2 (28.6%) | 0.067 |
Thoracic and abdominal drainage tube | 8 (25.8%) | 8 (33.3%) | 0 (0.0%) | 0.146 |
Septic shock | 20 (64.5%) | 19 (79.2%) | 1 (14.3%) | 0.004 |
Clinical outcome | ||||
Death | 17 (54.8%) | 16 (66.7%) | 1 (14.3%) | 0.028 |
Recover | 14 (45.2%) | 8 (33.3%) | 6 (85.7%) |
Antimicrobial Agents | Resistance Rate (%) | p-Value * | Resistance Rate (%) | MIC50 (mg/L) | MIC90 (mg/L) | |
---|---|---|---|---|---|---|
Hv-CRAB-BSI (n = 24) | Non-hv-CRAB-BSI (n = 7) | Total (n = 31) | ||||
Imipenem | 24 (100) | 7 (100) | - | 31 (100) | 64 | 128 |
Meropenem | 24 (100) | 7 (100) | - | 31 (100) | 64 | 128 |
Ceftriaxone | 24 (100) | 7 (100) | - | 31 (100) | 128 | 128 |
Ceftazidime | 24 (100) | 7 (100) | - | 31 (100) | 128 | 128 |
Cefepime | 24 (100) | 7 (100) | - | 31 (100) | 128 | 128 |
Cefoperazone/sulbactam | 24 (100) | 6 (85.7) | 0.226 | 30 (96.7) | 128 | 128 |
Tigecycline | 5 (20.8) | 3 (42.9) | 0.335 | 8 (25.8) | 4 | 8 |
Minocycline | 13 (54.2) | 7 (100) | 0.033 | 20 (64.5) | 16 | 32 |
Colistin | 0 (0) | 0 (0) | - | 0 (0) | 0.5 | 1 |
Ampicillin/sulbactam | 24 (100) | 7 (100) | - | 31 (100) | 128/64 | 128/64 |
Piperacillin/tazobactam | 24 (100) | 7 (100) | - | 31 (100) | 128/4 | 128/4 |
Levofloxacin | 24 (100) | 7 (100) | - | 31 (100) | 16 | 64 |
Ciprofloxacin | 24 (100) | 7 (100) | - | 31 (100) | 8 | 8 |
Gentamycin | 24 (100) | 5 (71.4) | 0.045 | 29 (93.5) | 64 | 64 |
Amikacin | 20 (83.3) | 5 (71.4) | 0.596 | 25 (80.6) | 128 | 128 |
Tobramycin | 17 (70.8) | 7 (100) | 0.161 | 24 (77.4) | 16 | 64 |
Trimethoprim/sulfamethoxazole | 24 (100) | 7 (100) | - | 31 (100) | 16/304 | 32/608 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, L.; Liu, N.; Guo, Y.; Zhuo, C.; Yang, X.; Wang, Y.; Wang, J.; Li, F.; Li, J.; He, N.; et al. Comparison of Hypervirulent and Non-Hypervirulent Carbapenem-Resistant Acinetobacter baumannii Isolated from Bloodstream Infections: Mortality, Potential Virulence Factors, and Combination Therapy In Vitro. Antibiotics 2024, 13, 807. https://doi.org/10.3390/antibiotics13090807
Yao L, Liu N, Guo Y, Zhuo C, Yang X, Wang Y, Wang J, Li F, Li J, He N, et al. Comparison of Hypervirulent and Non-Hypervirulent Carbapenem-Resistant Acinetobacter baumannii Isolated from Bloodstream Infections: Mortality, Potential Virulence Factors, and Combination Therapy In Vitro. Antibiotics. 2024; 13(9):807. https://doi.org/10.3390/antibiotics13090807
Chicago/Turabian StyleYao, Likang, Ningjing Liu, Yingyi Guo, Chuyue Zhuo, Xu Yang, Yijing Wang, Jiong Wang, Feifeng Li, Jiahui Li, Nanhao He, and et al. 2024. "Comparison of Hypervirulent and Non-Hypervirulent Carbapenem-Resistant Acinetobacter baumannii Isolated from Bloodstream Infections: Mortality, Potential Virulence Factors, and Combination Therapy In Vitro" Antibiotics 13, no. 9: 807. https://doi.org/10.3390/antibiotics13090807
APA StyleYao, L., Liu, N., Guo, Y., Zhuo, C., Yang, X., Wang, Y., Wang, J., Li, F., Li, J., He, N., Chen, J., Lin, Y., Xiao, S., & Zhuo, C. (2024). Comparison of Hypervirulent and Non-Hypervirulent Carbapenem-Resistant Acinetobacter baumannii Isolated from Bloodstream Infections: Mortality, Potential Virulence Factors, and Combination Therapy In Vitro. Antibiotics, 13(9), 807. https://doi.org/10.3390/antibiotics13090807