Association between Extended Meropenem Regimen and Achievement of Aggressive PK/PD in Patients Receiving Continuous Renal Replacement Therapy for Septic AKI
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Collection of Patient Data
2.3. Preparation of Extracorporeal Circulation by CRRT
2.4. Determination of Plasma MEPM Concentrations during CRRT
2.5. PK/PD Parameter Calculation
2.6. Dosing Simulations
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Pharmacokinetic Parameters of MEPM
3.3. Percentage of Target MIC Achieved and %TAM
3.4. Simulation and the Probability of Achieving the Target in Each MIC and the Recommended Dosing Regimen
4. Discussions
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Garnacho-Montero, J.; Gutiérrez-Pizarraya, A.; Escoresca-Ortega, A.; Corcia-Palomo, Y.; Fernández-Delgado, E.; Herrera-Melero, I.; Ortiz-Leyba, C.; Márquez-Vácaro, J.A. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med. 2014, 40, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Alffenaar, J.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.A.; Pea, F.; Sjovall, F.; et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- Chua, N.G.; Loo, L.; Hee, D.K.H.; Lim, T.P.; Ng, T.M.; Hoo, G.S.R.; Soong, J.L.; Ong, J.C.L.; Tang, S.S.L.; Zhou, Y.P.; et al. Therapeutic drug monitoring of meropenem and piperacillin-tazobactam in the Singapore critically ill population—A prospective, multi-center, observational study (BLAST 1). J. Crit. Care 2022, 68, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Cojutti, P.G.; Pascale, R.; Tonetti, T.; Laici, C.; Dell’Olio, A.; Siniscalchi, A.; Giannella, M.; Viale, P.; Pea, F. Assessment of a PK/PD Target of Continuous Infusion beta-lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-negative Infections. Antibiotics 2021, 10, 1311. [Google Scholar] [CrossRef]
- Gatti, M.; Cojutti, P.G.; Pea, F. Impact of attaining aggressive vs. conservative PK/PD target on the clinical efficacy of beta-lactams for the treatment of Gram-negative infections in the critically ill patients: A systematic review and meta-analysis. Crit. Care 2024, 28, 123. [Google Scholar] [CrossRef]
- Imani, S.; Buscher, H.; Marriott, D.; Gentili, S.; Sandaradura, I. Too much of a good thing: A retrospective study of β-lactam concentration-toxicity relationships. J. Antimicrob. Chemother. 2017, 72, 2891–2897. [Google Scholar] [CrossRef]
- Hoste, E.A.J.; Lameire, N.H.; Vanholder, R.C.; Benoit, D.D.; Decruyenaere, J.M.A.; Colardyn, F.A. Acute renal failure in patients with sepsis in a surgical ICU: Predictive factors, incidence, comorbidity, and outcome. J. Am. Soc. Nephrol. 2003, 14, 1022–1030. [Google Scholar] [CrossRef]
- Ronco, C.; Tetta, C.; Mariano, F.; Wratten, M.L.; Bonello, M.; Bordoni, V.; Cardona, X.; Inguaggiato, P.; Pilotto, L.; d’Intini, V.; et al. Interpreting the mechanisms of continuous renal replacement therapy in sepsis: The peak concentration hypothesis. Artif. Organs 2003, 27, 792–801. [Google Scholar] [CrossRef]
- Di Carlo, J.V.; Alexander, S.R. Hemofiltration for cytokine-driven illnesses: The mediator delivery hypothesis. Int. J. Artif. Organs 2005, 28, 777–786. [Google Scholar] [CrossRef]
- RENAL Replacement Therapy Study Investigators; Bellomo, R.; Cass, A.; Cole, L.; Finfer, S.; Gallagher, M.; Lo, S.; McArthur, C.; McGuinness, S.; Myburgh, J.; et al. Intensity of continuous renal-replacement therapy in critically ill patients. N. Engl. J. Med. 2009, 361, 1627–1638. [Google Scholar] [CrossRef]
- Bilgrami, I.; Roberts, J.A.; Wallis, S.C.; Thomas, J.; Davis, J.; Fowler, S.; Goldrick, P.B.; Lipman, J. Meropenem dosing in critically ill patients with sepsis receiving high volume continuous venovenous hemofiltration. Antimicrob. Agents Chemother. 2010, 54, 2974–2978. [Google Scholar] [CrossRef]
- Pistolesi, V.; Morabito, S.; Di Mario, F.; Regolisti, G.; Cantarelli, C.; Fiaccadori, E. A guide to understanding antimicrobial drug dosing in critically ill patients on renal replacement therapy. Antimicrob. Agents Chemother. 2019, 63, e00583-19. [Google Scholar] [CrossRef]
- Beumier, M.; Casu, G.S.; Hites, M.; Seyler, L.; Cotton, F.; Vincent, J.L.; Jacobs, F.; Taccone, F.S. β-lactam antibiotic concentrations during continuous renal replacement therapy. Crit. Care 2014, 18, R105. [Google Scholar] [CrossRef]
- O’Jeanson, A.; Larcher, R.; Le Souder, C.; Djebli, N.; Khier, S. Population pharmacokinetics and pharmacodynamics of meropenem in critically ill patients: How to achieve best dosage regimen according to the clinical situation. Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 695–705. [Google Scholar] [CrossRef]
- Ulldemolins, M.; Soy, D.; Llaurado-Serra, M.; Vaquer, S.; Castro, P.; Rodríguez, A.H.; Pontes, C.; Calvo, G.; Torres, A.; Martín-Loeches, I. Meropenem population pharmacokinetics in critically ill patients with septic shock and continuous renal replacement therapy: Influence of residual diuresis on dose requirements. Antimicrob. Agents Chemother. 2015, 59, 5520–5528. [Google Scholar] [CrossRef]
- Niibe, Y.; Suzuki, T.; Yamazaki, S.; Suzuki, T.; Takahashi, N.; Hattori, N.; Nakada, T.A.; Oda, S.; Ishii, I. Population pharmacokinetic analysis of meropenem in critically ill patients with acute kidney injury treated with continuous hemodiafiltration. Ther. Drug Monit. 2020, 42, 588–594. [Google Scholar] [CrossRef]
- Burger, R.; Guidi, M.; Calpini, V.; Lamoth, F.; Decosterd, L.; Robatel, C.; Buclin, T.; Csajka, C.; Marchetti, O. Effect of renal clearance and continuous renal replacement therapy on appropriateness of recommended meropenem dosing regimens in critically ill patients with susceptible life-threatening infections. J. Antimicrob. Chemother. 2018, 73, 3413–3422. [Google Scholar] [CrossRef]
- Grensemann, J.; Busse, D.; König, C.; Roedl, K.; Jäger, W.; Jarczak, D.; Iwersen-Bergmann, S.; Manthey, C.; Kluge, S.; Kloft, C.; et al. Acute-on-chronic liver failure alters meropenem pharmacokinetics in critically ill patients with continuous hemodialysis: An observational study. Ann. Intensive Care 2020, 10, 48. [Google Scholar] [CrossRef]
- Shekar, K.; Fraser, J.F.; Taccone, F.S.; Welch, S.; Wallis, S.C.; Mullany, D.V.; Lipman, J.; Roberts, J.A. The combined effects of extracorporeal membrane oxygenation and renal replacement therapy on meropenem pharmacokinetics: A matched cohort study. Crit. Care 2014, 18, 565. [Google Scholar] [CrossRef]
- Onichimowski, D.; Będźkowska, A.; Ziółkowski, H.; Jaroszewski, J.; Borys, M.; Czuczwar, M.; Wiczling, P. Population pharmacokinetics of standard-dose meropenem in critically ill patients on continuous renal replacement therapy: A prospective observational trial. Pharmacol. Rep. 2020, 72, 719–729. [Google Scholar] [CrossRef]
- Schatz, L.M.; Brinkmann, A.; Röhr, A.; Frey, O.; Greppmair, S.; Weinelt, F.; Zoller, M.; Scharf, C.; Hempel, G.; Liebchen, U. Systematic evaluation of pharmacokinetic models for model-informed precision dosing of meropenem in critically ill patients undergoing continuous renal replacement therapy. Antimicrob. Agents Chemother. 2023, 67, e0010423. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Meng, X.; Lei, N.; Yu, H.; Zeng, Q.; Huang, Q. Meropenem pharmacokinetics and target attainment in critically ill patients. Infect. Drug Resist. 2023, 16, 3989–3997. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Voulgaris, G.L.; Maliaros, A.; Samonis, G.; Falagas, M.E. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: A systematic review and meta-analysis of randomised trials. Lancet Infect. Dis. 2018, 18, 108–120. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 2013, 41, 580–637. [Google Scholar] [CrossRef]
- Tomio, T.; Nouda, H.; Kohzuki, T.; Kato, M.; Okuda, T.; Fukasawa, M. Assay of meropenem in body fluids and tissues. Chemotherapy 1992, 40, 114–122. [Google Scholar]
- Yumoto, M.; Nishida, O.; Moriyama, K.; Shimomura, Y.; Nakamura, T.; Kuriyama, N.; Hara, Y.; Yamada, S. In vitro evaluation of high mobility group box 1 protein removal with various membranes for continuous hemofiltration. Ther. Apher. Dial. 2011, 15, 385–393. [Google Scholar] [CrossRef]
- Yang, N.; Wang, J.; Xie, Y.; Ding, J.; Wu, C.; Liu, J.; Pei, Q. External evaluation of population pharmacokinetic models to inform precision dosing of meropenem in critically ill patients. Front. Pharmacol. 2022, 13, 838205. [Google Scholar] [CrossRef]
- Peng, Y.; Cheng, Z.; Xie, F. Population pharmacokinetic meta-analysis and dosing recommendation for meropenem in critically ill patients receiving continuous renal replacement therapy. Antimicrob. Agents Chemother 2022, 66, e0082222. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves-Pereira, J.; Póvoa, P. Antibiotics in critically ill patients: A systematic review of the pharmacokinetics of β-lactams. Crit. Care 2011, 15, R206. [Google Scholar] [CrossRef] [PubMed]
- Di Giantomasso, D.; May, C.N.; Bellomo, R. Vital organ blood flow during hyperdynamic sepsis. Chest 2003, 124, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.; Gomersall, C.D.; Tian, Q.; Joynt, G.M.; Freebairn, R.; Lipman, J. Principles of antibacterial dosing in continuous renal replacement therapy. Crit. Care Med. 2009, 37, 2268–2282. [Google Scholar] [CrossRef] [PubMed]
- Pea, F.; Viale, P.; Pavan, F.; Furlanut, M. Pharmacokinetic considerations for antimicrobial therapy in patients receiving renal replacement therapy. Clin. Pharmacokinet. 2007, 46, 997–1038. [Google Scholar] [CrossRef]
- Ulldemolins, M.; Vaquer, S.; Llauradó-Serra, M.; Pontes, C.; Calvo, G.; Soy, D.; Martín-Loeches, I. Beta-lactam dosing in critically ill patients with septic shock and continuous renal replacement therapy. Crit. Care 2014, 18, 227. [Google Scholar] [CrossRef]
- Jamal, J.A.; Udy, A.A.; Lipman, J.; Roberts, J.A. The impact of variation in renal replacement therapy settings on piperacillin, meropenem, and vancomycin drug clearance in the critically ill: An analysis of published literature and dosing regimens*. Crit. Care Med. 2014, 42, 1640–1650. [Google Scholar] [CrossRef]
n = 9 | |
---|---|
Age, years | 63 ± 13 (46–80) |
Female, n (%) | 2 (22%) |
Height, cm | 162.7 ± 8.7 (147.0–175.3) |
Body weight, kg | 70.2 ± 14.1 (47.7–95.0) |
BMI, kg/m2 | 26.4 ± 3.9 (19.5–30.9) |
SOFA score | 9.5 ± 3.0 (5–13) |
APACHE II score | 25.4 ± 10.8 (12–50) |
Laboratory data | |
Albumin, g/dL | 2.5 ± 0.4 (2.2–3.3) |
Creatinine, mg/dL | 3.4 ± 3.2 (1.2–10.6) |
CLcr, mL/min | 41.1 ± 19.8 (7.7–70.7) |
eGFR, mL/min | 22.8 ± 10.0 (4.0–32.8) |
Dialysis type | |
CVVH, n (%) | 9 (100%) |
Total flow rate (mL/h) | 1556 ± 527 (1000–2000) |
Residual diuresis, mL/24 h | 1085 ± 800 (106–2646) |
All (n = 9) | QF of 1000 mL/h (n = 4) | QF of 2000 mL/h (n = 5) | p-Value | |
---|---|---|---|---|
Steady-state trough concentration (mg/L) | 11.9 ± 9.0 (0.9–29.2) | 10.7 ± 3.0 (8.0–14.2) | 12.8 ± 12.4 (0.9–29.2) | 0.713 |
Predicted Css (mg/L) * | 22.7 ± 9.9 (9.0–41.2) | 22.6 ± 3.4 (18.9–27.0) | 22.8 ± 13.7 (9.0–41.2) | 0.624 |
CLtotal (L/h) | 6.6 ± 3.3 (3.0–13.9) | 5.6 ± 0.8 (4.6–6.6) | 7.4 ± 4.4 (3.0–13.9) | 0.713 |
CLCVVH (L/h) | 0.6 ± 0.7 (0.2–2.0) | 0.8 ± 0.9 (0.2–2.0) | 0.5 ± 0.5 (0.2–1.4) | 0.391 |
V1 (L) | 15.0 ± 2.0 (12.4–18.6) | 13.9 ± 1.0 (12.4–14.8) | 15.9 ± 2.3 (13.4–18.6) | 0.391 |
V2 (L) | 11.5 ± 4.2 (6.2–19.3) | 10.5 ± 3.4 (7.8–15.3) | 12.4 ± 4.9 (6.2–19.3) | 0.713 |
Vtotal (L) | 26.6 ± 5.9 (19.6–38.0) | 24.4 ± 3.9 (20.2–29.4) | 28.3 ± 7.1 (19.6–38.0) | 0.540 |
MIC | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 |
---|---|---|---|---|---|---|---|---|---|
%TAM | 100 | 100 | 99.6 ± 1.2 | 97.9 ± 6.2 | 95.6 ± 12.0 | 89.7 ± 20.3 | 65.2 ± 28.7 | 21.8 ± 29.6 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chihara, S.; Ishigo, T.; Kazuma, S.; Matsumoto, K.; Morita, K.; Masuda, Y. Association between Extended Meropenem Regimen and Achievement of Aggressive PK/PD in Patients Receiving Continuous Renal Replacement Therapy for Septic AKI. Antibiotics 2024, 13, 755. https://doi.org/10.3390/antibiotics13080755
Chihara S, Ishigo T, Kazuma S, Matsumoto K, Morita K, Masuda Y. Association between Extended Meropenem Regimen and Achievement of Aggressive PK/PD in Patients Receiving Continuous Renal Replacement Therapy for Septic AKI. Antibiotics. 2024; 13(8):755. https://doi.org/10.3390/antibiotics13080755
Chicago/Turabian StyleChihara, Shinya, Tomoyuki Ishigo, Satoshi Kazuma, Kana Matsumoto, Kunihiko Morita, and Yoshiki Masuda. 2024. "Association between Extended Meropenem Regimen and Achievement of Aggressive PK/PD in Patients Receiving Continuous Renal Replacement Therapy for Septic AKI" Antibiotics 13, no. 8: 755. https://doi.org/10.3390/antibiotics13080755
APA StyleChihara, S., Ishigo, T., Kazuma, S., Matsumoto, K., Morita, K., & Masuda, Y. (2024). Association between Extended Meropenem Regimen and Achievement of Aggressive PK/PD in Patients Receiving Continuous Renal Replacement Therapy for Septic AKI. Antibiotics, 13(8), 755. https://doi.org/10.3390/antibiotics13080755