Complete Growth Inhibition of Pseudomonas aeruginosa by Organo-Selenium-Incorporated Urinary Catheter Material
Abstract
:1. Introduction
2. Results
2.1. Staphylococcus aureus Growth on Thermoplastic and Tin-Catalyzed Polyurethane
2.2. P. aeruginosa Growth on Polyurethane Using a Tin Catalyst
2.3. P. aeruginosa Growth on Thermoplastic Polyurethane
2.4. Candida albicans Growth on Thermoplastic Polyurethane
3. Discussion
4. Materials and Methods
4.1. Selenium-Incorporated Polyurethane
4.2. Bacterial Strains, Media, and Growth Conditions
4.3. Colony Forming Unit (CFU) Determination
4.4. Biofilm Image Quantification
4.5. Graphing Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singha, P.; Locklin, J.; Handa, H. A Review of the Recent Advances in Antimicrobial Coatings for Urinary Catheters. Acta Biomater. 2017, 50, 20–40. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, L.E. Catheter Associated Urinary Tract Infections. Antimicrob. Resist. Infect. Control 2014, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Majumder, M.M.I.; Ahmed, T.; Ahmed, S.; Khan, A.R. Microbiology of Catheter Associated Urinary Tract Infection. In Microbiology of Urinary Tract Infections-Microbial Agents and Predisposing Factors; IntechOpen: London, UK, 2022; Volume 11, p. 156. [Google Scholar] [CrossRef] [PubMed]
- Wassil, S.K.; Crill, C.M.; Phelps, S.J. Antimicrobial Impregnated Catheters in the Prevention of Catheter-Related Bloodstream Infection in Hospitalized Patients. J. Pediatr. Pharmacol. Ther. 2007, 12, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Gauhar, V.; Castellani, D.; Teoh, J.Y.-C.; Nedbal, C.; Chiacchio, G.; Gabrielson, A.T.; Heldwein, F.L.; Wroclawski, M.L.; de la Rosette, J.; Donalisio da Silva, R.; et al. Catheter-Associated Urinary Infections and Consequences of Using Coated versus Non-Coated Urethral Catheters—Outcomes of a Systematic Review and Meta-Analysis of Randomized Trials. J. Clin. Med. 2022, 11, 4463. [Google Scholar] [CrossRef] [PubMed]
- Jacobo, U.; Vopni, R.; Tran, P.; Patel, S.; Jain, S.; de Riese, C.; Reid, T.W.; de Riese, W. Efficacy of organo-selenium-incorporated urinary catheter tubing for in vitro growth inhibition of E. coli, K. pneumoniae, P. aeruginosa, and H. influenzae. Int. Urol. Nephrol. 2022, 55, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Vatansever, F.; de Melo, W.C.M.A.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; et al. Antimicrobial Strategies Centered around Reactive Oxygen Species–Bactericidal Antibiotics, Photodynamic Therapy, and Beyond. FEMS Microbiol. Rev. 2013, 37, 955–989. [Google Scholar] [CrossRef] [PubMed]
- Mathews, S.M.; Spallholz, J.E.; Grimson, M.J.; Dubielzig, R.R.; Gray, T.; Reid, T.W. Prevention of Bacterial Colonization of Contact Lenses with Covalently Attached Selenium and Effects on the Rabbit Cornea. Cornea 2006, 25, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.L.; Lowry, N.; Campbell, T.; Reid, T.W.; Webster, D.R.; Tobin, E.; Aslani, A.; Mosley, T.; Dertien, J.; Colmer-Hamood, J.A.; et al. An Organoselenium Compound Inhibits Staphylococcus Aureus Biofilms on Hemodialysis CathetersIn Vivo. Antimicrob. Agents Chemother. 2011, 56, 972–978. [Google Scholar] [CrossRef] [PubMed]
- AlMojel, N.; AbdulAzees, P.A.; Lamb, E.M.; Amaechi, B.T. Determining growth inhibition of Candida albicans biofilm on denture materials after application of an organo-selenium containing dental sealant. Prosthet. Dent. 2021, 129, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Geerlings, S. Clinical Presentations and Epidemiology of Urinary Tract Infections. Microbiol. Spectr. 2016, 4, 1128. [Google Scholar] [CrossRef] [PubMed]
- Knetsch, M.L.W.; Koole, L.H. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers 2011, 3, 340–366. [Google Scholar] [CrossRef]
- Amaechi, B.T.; Kasundra, H.; Okoye, L.O.; Tran, P.L.; Reid, T.W. Comparative Efficacy in Preventing Plaque Formation around Pit and Fissure Sealants: A Clinical Trial. J. Contemp. Dent. Pract. 2019, 20, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Webster, T.J. Nanostructred selenium for preventing biofilm formation on polycarbonate medical devices. Biomed. Mater. Res. A. 2012, 100, 3205–3210. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Yuan, L.; Gao, S.; Ji, X.; Shao, W.; Ma, J.; Jiang, D. Development of ZnO/selenium nanoparticles embedded chitosan-based anti-bacterial wound dressing for potential healing ability and nursing care after paediatric fracture surgery. Int. Wound J. 2023, 29, 1819–1831. [Google Scholar] [CrossRef] [PubMed]
- Holinka, J.; Pilz, M.; Kubista, B.; Presterl, E.; Windhager, R. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone Joint J. 2013, 95B, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.A.; O’Brien-Simpson, N.; Palmer, J.A.; Bock, N.; Reynolds, E.C.; Webster, T.J.; Deva, A.; Morrison, W.A.; O’Connor, A.J. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: In vitro and in vivo assessment. Int. J. Nanomed. 2019, 14, 4613–4624. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.A.; Webster, T.J. Antimicrobial selenium nanoparticle coatings on polymeric medical devices. J. Nanotechnol. 2013, 24, 155101. [Google Scholar] [CrossRef] [PubMed]
- Malone, C.L.; Boles, B.R.; Lauderdale, K.J.; Thoendel, M.; Kavanaugh, J.S.; Horswill, A.R. Fluorescent Reporters for Staphylococcus Aureus. J. Microbiol. Methods 2009, 77, 251–260. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, P.L.; Presson, C.L.; Kashem, M.N.H.; Li, W.; Reid, T.W.; de Riese, W.T.W. Complete Growth Inhibition of Pseudomonas aeruginosa by Organo-Selenium-Incorporated Urinary Catheter Material. Antibiotics 2024, 13, 736. https://doi.org/10.3390/antibiotics13080736
Tran PL, Presson CL, Kashem MNH, Li W, Reid TW, de Riese WTW. Complete Growth Inhibition of Pseudomonas aeruginosa by Organo-Selenium-Incorporated Urinary Catheter Material. Antibiotics. 2024; 13(8):736. https://doi.org/10.3390/antibiotics13080736
Chicago/Turabian StyleTran, Phat L., Caroline L. Presson, Md Nayeem Hasan Kashem, Wei Li, Ted W. Reid, and Werner T. W. de Riese. 2024. "Complete Growth Inhibition of Pseudomonas aeruginosa by Organo-Selenium-Incorporated Urinary Catheter Material" Antibiotics 13, no. 8: 736. https://doi.org/10.3390/antibiotics13080736
APA StyleTran, P. L., Presson, C. L., Kashem, M. N. H., Li, W., Reid, T. W., & de Riese, W. T. W. (2024). Complete Growth Inhibition of Pseudomonas aeruginosa by Organo-Selenium-Incorporated Urinary Catheter Material. Antibiotics, 13(8), 736. https://doi.org/10.3390/antibiotics13080736