Impact of Manual Addition of Vancomycin to Polymethylmethacrylate (PMMA) Cements
Abstract
:1. Introduction
2. Results
3. Discussions
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kühn, K.D. PMMA Cements Are We Aware What We Are Using? Springer: Berlin/Heidelberg, Germany, 2014; ISBN 13 978-3-642-41535-7. [Google Scholar] [CrossRef]
- Chaiyakit, P.; Meknavin, S.; Honku, N.; Onklin, I. Debridement, antibiotics, and implant retention combined with direct intra-articular antibiotic infusion in patients with acute hematogenous periprosthetic joint infection of the knee. BMC Musculoskelet. Disord. 2021, 18, 557. [Google Scholar] [CrossRef]
- Choe, H.; Maruo, A.; Hieda, Y.; Abe, K.; Kobayashi, N.; Ike, H.; Kumagai, K.; Takeyama, M.; Kawabata, Y.; Inaba, Y. Novel local antibiotic antifungal treatment for fungal periprosthetic joint infection with continous local antibiotic perfusion: A surgical technique. Arthroplast. Today 2023, 24, 101245. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Takagi, T. Treatment experience with continous local antibiotic perfusion for periprosthetic joint infection. J. Orthop. Sci. 2023. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Frank, B.; Simon, S.; Aichmair, A.; Dominkus, M.; Hofstaetter, J. Clinical impact of microbiology results in two-stage revision arthroplasty with spacer exchange. Arch. Orthop. Trauma Surg. 2023, 143, 4741–4754. [Google Scholar] [CrossRef]
- Trampuz, A.; Zimmerli, W. Prosthetic joint infections: Update in diagnosis and treatment. Swiss. Med. Wkly. 2005, 17–18, 243–251. [Google Scholar]
- Zimmerli, W.; Trampuz, A.; Ochsner, P.E. Prosthetic-joint infections. N. Engl. J. Med. 2004, 16, 1645–1654. [Google Scholar] [CrossRef]
- George, J.; Newman, J.; Klika, A.; Miller, E.; Tan, T.; Parvizi, J.; Higuera, C. Changes in antibiotic susceptibility of staphylococcus aureus between the stages of 2-stage revision arthroplasty. J. Arthroplast. 2018, 33, 1844–1849. [Google Scholar] [CrossRef] [PubMed]
- Renz, N.; Trebse, R.; Akgün, D.; Perka, C.; Trampuz, A. Enterococcal periprosthetic joint infection: Clinical and microbiological findings from 8-year retrospective cohort study. BMC Infect. Dis. 2019, 19, 1083. [Google Scholar] [CrossRef]
- Frommelt, L. Antibiotic choices in bone surgery-local therapy using antibiotic-loaded bone cement. In Local Antibiotics in Arthroplasty; Walenkamp, G., Ed.; Georg Thieme Verlag: Stuttgart, Germany, 2007; pp. 59–64. [Google Scholar]
- Parvizi, J.; Gehrke, T. International consensus on periprosthetic joint infection: Let cumulative wisdom be a guide. J. Bone Jt. Surg. Am. 2014, 6, 441. [Google Scholar] [CrossRef]
- Paz, E.; Sanz-Ruiz, P.; Abenojar, J.; Vaquero-Martin, J.; Forriol, F.; Del Real, J.C. Evaluation of elution and mechanical properties of high-dose antibiotic-loaded bone cement: Comparative “in vitro” study of the influence of vancomycin and cefazolin. J. Arthroplast. 2015, 8, 1423–1429. [Google Scholar] [CrossRef]
- Malhotra, A.; Lieb, E.; Berberich, C.; Kühn, K.D. PMMA cements in revision surgery. In Management of Periprosthetic Joint Infection. A Global Perspective on Diagnosis, Treatment Options, Prevention Strategies and Their Economic Impact; Kühn, K.D., Ed.; Springer: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Winkler, T.; Stuhlert, M.; Lieb, E.; Müller, M.; von Roth, P.; Preininger, B.; Trampuz, A.; Perka, C. Outcome of short versus long interval in two-stage exchange of periprosthetic joint infection: A prospective cohort study. Arch. Orthop. Trauma Surg. 2019, 139, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.; Carvalho, A.; Soares, D.; Abreu, M. Interval between two-stage exchanges: What is optimal and how do we know? Arthroplasty 2023, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, S.; Miola, M.; Bistolfi, A.; Fucale, G.; Crova, M.; Masse, A.; Verne, E. In vitro comparison between commercially and manually mixed antibiotic-loaded bone cements. J. Appl. Biomater. Biomech. 2010, 3, 166–174. [Google Scholar] [CrossRef]
- Miola, M.; Bistolfi, A.; Valsania, M.C.; Bianco, C.; Fucale, G.; Verne, E. Antibiotic-loaded acrylic bone cements: An in vitro study on the release mechanism and its efficacy. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 5, 3025–3032. [Google Scholar] [CrossRef] [PubMed]
- Neut, D.; van de Belt, H.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J. The effect of mixing on gentamicin release from polymethylmethacrylate bone cements. Acta Orthop. Scand. 2003, 6, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Dunne, N.J.; Hill, J.; McAfee, P.; Kirkpatrick, R.; Patrick, S.; Tunney, M. Incorporation of large amounts of gentamicin sulphate into acrylic bone cement: Effect on handling and mechanical properties, antibiotic release, and biofilm formation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2008, 3, 355–365. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Trotignon, J.P.; Loty, B.; Tcharkhtchi, A.; Verdu, J. Effect of antibiotics on the properties of poly(methylmethacrylate)-based bone cement. J. Biomed. Mater. Res. 2002, 6, 800–806. [Google Scholar] [CrossRef]
- Lautenschlager, E.P.; Jacobs, J.J.; Marshall, G.W.; Meyer, P.R., Jr. Mechanical properties of bone cements containing large doses of antibiotic powders. J. Biomed. Mater. Res. 1976, 6, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Lautenschlager, E.P.; Marshall, G.W.; Marks, K.E.; Schwartz, J.; Nelson, C.L. Mechanical strength of acrylic bone cements impregnated with antibiotics. J. Biomed. Mater. Res. 1976, 6, 837–845. [Google Scholar] [CrossRef]
- Lilikakis, A.; Sutcliffe, M.P. The effect of vancomycin addition to the compression strength of antibiotic-loaded bone cements. Int. Orthop. 2009, 3, 815–819. [Google Scholar] [CrossRef]
- Armstrong, M.S.; Spencer, R.F.; Cunningham, J.L.; Gheduzzi, S.; Miles, A.W.; Learmonth, I.D. Mechanical characteristics of antibiotic-laden bone cement. Acta Orthop. Scand. 2002, 6, 688–690. [Google Scholar] [CrossRef]
- Gallo, J.; Bogdanova, K.; Siller, M.; Svabova, M.; Lostak, J.; Kolar, M. Microbial and pharmacological characteristics of VancogenX. Acta Chir. Orthop. Traumatol. Cech. 2013, 1, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Schmolders, J.; Hischebeth, G.T.; Friedrich, M.J.; Randau, T.M.; Wimmer, M.D.; Kohlhof, H.; Molitor, E.; Gravius, S. Evidence of MRSE on a gentamicin and vancomycin impregnated polymethyl-methacrylate (PMMA) bone cement spacer after two-stage exchange arthroplasty due to periprosthetic joint infection of the knee. BMC Infect. Dis. 2014, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Watanakunakorn, C. Treatment of infections due to methicillin-resistant staphylococcus aureus. Ann. Intern. Med. 1982, 3, 376–378. [Google Scholar] [CrossRef] [PubMed]
- Amerstorfer, F.; Fischerauer, S.; Sadoghi, P.; Schwantzer, G.; Kühn, K.D.; Leithner, A.; Glehr, M. Superficial vancomycin coating of bone cement in orthopedic revision surgery: A safe technique to enhance local antibiotic concentrations. J. Arthroplast. 2017, 5, 1618–1624. [Google Scholar] [CrossRef]
- Anagnostakos, K.; Furst, O.; Kelm, J. Antibiotic-impregnated PMMA hip spacers: Current status. Acta Orthop. 2006, 4, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Anagnostakos, K.; Kelm, J.; Regitz, T.; Schmitt, E.; Jung, W. In vitro evaluation of antibiotic release from and bacteria growth inhibition by antibiotic-loaded acrylic bone cement spacers. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 2, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Deresinski, S. Vancomycin in combination with other antibiotics for the treatment of serious methicillin-resistant staphylococcus aureus infections. Clin. Infect. Dis. 2009, 7, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.H.; Chang, Y.H.; Chen, S.H.; Ueng, S.W.; Shih, C.H. High concentration and bioactivity of vancomycin and aztreonam eluted from simplex cement spacers in two-stage revision of infected hip implants: A study of 46 patients at an average follow-up of 107 days. J. Orthop. Res. 2006, 8, 1615–1621. [Google Scholar] [CrossRef]
- Kuechle, D.K.; Landon, G.C.; Musher, D.M.; Noble, P.C. Elution of vancomycin, daptomycin, and amikacin from acrylic bone cement. Clin. Orthop. Relat. Res. 1991, 264, 302–308. [Google Scholar] [CrossRef]
- Penner, M.J.; Duncan, C.P.; Masri, B.A. The in vitro elution characteristics of antibiotic-loaded CMW and palacos-R bone cements. J. Arthroplast. 1999, 2, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Brien, W.W.; Salvati, E.A.; Klein, R.; Brause, B.; Stern, S. Antibiotic impregnated bone cement in total hip arthroplasty: An in vivo comparison of the elution properties of tobramycin and vancomycin. Clin. Orthop. Relat. Res. 1993, 296, 242–248. [Google Scholar] [CrossRef]
- Klekamp, J.; Dawson, J.M.; Haas, D.W.; DeBoer, D.; Christie, M. The use of vancomycin and tobramycin in acrylic bone cement: Biomechanical effects and elution kinetics for use in joint arthroplasty. J. Arthroplast. 1999, 3, 339–346. [Google Scholar] [CrossRef]
- Stevens, C.M.; Tetsworth, K.D.; Calhoun, J.H.; Mader, J.T. An articulated antibiotic spacer used for infected total knee arthroplasty: A comparative in vitro elution study of simplex and palacos bone cements. J. Orthop. Res. 2005, 1, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Ruiz, P.; Matas-Diez, J.; Villanueva-Martinez, M.; Dos Santos-Vaquinha Blanco, A.; Vaquero, J. Is dual antibiotic-loaded bone cement more effective and cost-efficient than a single antibiotic-loaded bone cement to reduce the risk of periprosthetic joint infection in aseptic revision knee arthroplasty? J. Arthroplast. 2020, 35, 3724–3729. [Google Scholar] [CrossRef]
- Blersch, B.; Barthels, M.; Schuster, P.; Fink, B. A low rate of periprosthetic infections after aseptic knee prosthesis revision using dual-antibiotic-impregnated bone cement. Antibiotics 2023, 12, 1368. [Google Scholar] [CrossRef]
- Ho, J.L.; Klempner, M.S. In vitro evaluation of clindamycin in combination with oxacillin, rifampin, or vancomycin against staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 1986, 2, 133–138. [Google Scholar] [CrossRef]
- Smith, P.F.; Booker, B.M.; Ogundele, A.B.; Kelchin, P. Comparative in vitro activities of daptomycin, linezolid, and quinupristin/dalfopristin against gram-positive bacterial isolates from a large cancer center. Diagn. Microbiol. Infect. Dis. 2005, 3, 255–259. [Google Scholar] [CrossRef]
- Kühn, K.D.; Lieb, E.; Berberich, C. PMMA bone cement: What is the role of local antibiotics. In Matrise Orthopaedic, Proceeding of N°243, Commission Paritaire 1218T86410; Heraeus: Lyon, France, 2016; pp. 12–18. ISSN 1148-2362. [Google Scholar]
- Frommelt, L. Guidelines on antimicrobial therapy in situations of periprosthetic THR infection. Orthopade 2004, 7, 822–828. [Google Scholar]
- Cherednichenko, K.; Sayfutdinova, A.; Rimashevskiy, D.; Malik, B.; Panchenko, A.; Kopitsyna, M.; Ragnaev, S.; Vinokurov, V.; Voronin, D.; Kopitsyn, D. Composite bone cements with enhanced drug elution. Polymers 2023, 15, 3757. [Google Scholar] [CrossRef]
- Bertazzoni Minelli, E.; Benini, A.; Samaila, E.; Bondi, M.; Magnan, B. Antimicrobial activity of gentamicin and vancomycin combination in joint fluids after antibiotic-loaded cement spacer implantation in two-stage revision surgery. J. Chemother. 2014, 27, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Streuli, J.C.; Exner, G.U.; Reize, C.L.; Merkofer, C.; Scott, C.P.; Zbinden, R. In vitro inhibition of coagulase-negative staphylococci by vancomycin/aminoglycoside-loaded cement spacers. Infection 2006, 2, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Frommelt, L. Diagnosis and treatment of foreign-body-associated infection in orthopaedic surgery. Orthopade 2009, 9, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Metsemakers, W.J.; Morgenstern, M.; McNally, M.A.; Moriarty, T.F.; McFadyen, I.; Scarborough, M.; Athanasou, N.A.; Ochsner, P.E.; Kuehl, R.; Raschke, M.; et al. Fracture-related infection: A consensus on definition from an international expert group. Injury 2018, 3, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Fink, B.; Grossmann, A.; Fuerst, M.; Schafer, P.; Frommelt, L. Two-stage cementless revision of infected hip endoprostheses. Clin. Orthop. Relat. Res. 2009, 7, 1848–1858. [Google Scholar] [CrossRef] [PubMed]
- Qadir, R.; Sidhu, S.; Ochsner, J.L.; Meyer, M.S.; Chimento, G.F. Risk stratified usage of antibiotic-loaded bone cement for primary total knee arthroplasty: Short term infection outcomes with a standardized cement protocol. J. Arthroplast. 2014, 8, 1622–1624. [Google Scholar] [CrossRef] [PubMed]
- Mulazimoglu, L.; Drenning, S.D.; Muder, R.R. Vancomycin-gentamicin synergism revisited: Effect of gentamicin susceptibility of methicillin-resistant staphylococcus aureus. Antimicrob. Agents Chemother. 1996, 6, 1534–1535. [Google Scholar] [CrossRef] [PubMed]
- Watanakunakorn, C.; Bakie, C. Synergism of vancomycin-gentamicin and vancomycin-streptomycin against enterococci. Antimicrob. Agents Chemother. 1973, 2, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Watanakunakorn, C.; Tisone, J.C. Effects of a vancomycin-rifampin combination on enterococci. Antimicrob. Agents Chemother. 1982, 5, 915–916. [Google Scholar] [CrossRef]
- Hansen, E.; Kühn, K.D. (Eds.) Essentials of Cemented Knee Arthroplasty; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Bistolfi, A.; Massazza, G.; Verné, E.; Massè, A.; Deledda, D.; Ferraris, S.; Miola, M.; Galetto, F.; Crova, M. Antibiotic loaded cement in orthopaedic surgery: A review. Int. Sch. Res. Not. Orthop. 2011, 2011, 290851. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fink, B.; Vogt, S.; Reinsch, M.; Buchner, H. Sufficient release of antibiotic by a spacer 6 weeks after implantation in two-stage revision of infected hip prostheses. Clin. Orthop. Relat. Res. 2011, 11, 3141–3147. [Google Scholar] [CrossRef] [PubMed]
- Anagnostakos, K.; Wilmes, P.; Schmitt, E.; Kelm, J. Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo. Acta Orthop. 2009, 2, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Anagnostakos, K. Therapeutic use of antibiotic-loaded bone cement in the treatment of hip and knee joint infections. J. Bone Jt. Infect. 2017, 1, 29–37. [Google Scholar] [CrossRef]
- Bertazzoni Minelli, E.; Della Bora, T.; Benini, A. Different microbial biofilm formation on polymethylmethacrylate (PMMA) bone cement loaded with gentamicin and vancomycin. Anaerobe 2011, 6, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Golge, U.H.; Oztemur, Z.; Parlak, M.; Tezeren, G.; Ozturk, H.; Bulut, O. Investigation of mechanical strength of teicoplanin and ciprofloxacin impregnated bone cement on day 1 and day 15. Acta Orthop. Traumatol. Turc. 2014, 3, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Meeker, D.; Cooper, K.; Renard, R.; Mears, S.; Smeltzer, M.; Barnes, C. Comparative study of antibiotic elution profiles from alternative formulations of polymethylmethacrylate bone cement. J. Arthroplast. 2019, 34, 1458–1461. [Google Scholar] [CrossRef] [PubMed]
- Krampitz, B.; Steiner, J.; Trampuz, A.; Kühn, K.-D. Voriconazole Admixed with PMMA-Impact on Mechanical Properties and Efficacy. Antibiotics 2023, 12, 848. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G. Not all approved antibiotic-loaded PMMA bone cement brands are the same: Ranking using the utility materials selection concept. J. Mater. Sci. Mater. Med. 2015, 1, 48. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.; Janna, S. Estimation of the optimum loading of an antibiotic powder in an acrylic bone cement: Gentamicin sulfate in SmartSet HV. Acta Orthop. 2006, 4, 622–627. [Google Scholar] [CrossRef]
- Humez, M.; Domann, E.; Thormann, K.M.; Fölsch, C.; Strathausen, R.; Vogt, S.; Alt, V.; Kühn, K.-D. Daptomycin-Impregnated PMMA Cement against Vancomycin-Resistant Germs: Dosage, Handling, Elution, Mechanical Stability, and Effectiveness. Antibiotics 2023, 12, 1567. [Google Scholar] [CrossRef]
- Villanueva-Martinez, M.; Sanz, P.; Berberich, C. Spacer management. In Management of Periprosthetic Joint Infection. A Global Perspective on Diagnosis, Treatment Options, Prevention Strategies and Their Economic Impact; Kühn, K.D., Ed.; Springer: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Hsieh, P.H.; Huang, K.C.; Tai, C.L. Liquid gentamicin in bone cement spacers: In vivo antibiotic release and systemic safety in two-stage revision of infected hip arthroplasty. J. Trauma 2009, 3, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.H.; Tai, C.L.; Lee, P.C.; Chang, Y.H. Liquid gentamicin and vancomycin in bone cement: A potentially more cost-effective regimen. J. Arthroplast. 2009, 1, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Rosslenbroich, S.B.; Raschke, M.J.; Kreis, C.; Tholema-Hans, N.; Uekoetter, A.; Reichelt, R.; Fuchs, T.F. Daptomycin: Local application in implant-associated infection and complicated osteomyelitis. Sci. World J. 2012, 2012, 578251. [Google Scholar] [CrossRef] [PubMed]
- Heller, D.N.; Peggins, J.O.; Nochetto, C.B.; Smith, M.L.; Chiesa, O.A.; Moulton, K. LC/MS/MS measurement of gentamicin in bovine plasma, urine, milk, and biopsy samples taken from kidneys of standing animals. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 821, 22–30. [Google Scholar] [CrossRef]
Cement Tested | Industrial Added Antibiotics (Per 40 g PMMA) | Additionally (Manually) Added Vancomycin |
---|---|---|
Test group | ||
T1: Smartset® GHV | 1.0 g Gentamicin | +2.0 g Vancomycin Hexal (CT1631) |
T2: Antibiotic Simplex® T | 1.0 g Tobramycin | +2.0 g vancomycin Hexal (CT1631) |
Reference group | ||
R1: VancogenX® | 1.0 g Gentamicin plus 1.0 g Vancomycin | no |
R2: Copal® G+V | 0.5 g Gentamicin plus 2.0 g Vancomycin | no |
Antibiotic | Methicillin-Resistant S. aureus (MRSA 02/39) | Methicillin-Resistant S. Aureus (MRSA 06/10) | Methicillin-Susceptible S. aureus (DSM 799) |
---|---|---|---|
Gentamicin | >256 µg/mL (R) | 0.5 µg/mL (S) | 0.5 µg/mL (S) |
Vancomycin | 0.75 µg/mL (S) | 1 µg/mL (S) | 0.5 µg/mL (S) |
Tobramycin | >256 µg/mL (R) | 0.5 µg/mL (R) | 0.5 µg/mL (S) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kittinger, C.; Eder-Halbedl, M.; Kühn, K.D. Impact of Manual Addition of Vancomycin to Polymethylmethacrylate (PMMA) Cements. Antibiotics 2024, 13, 721. https://doi.org/10.3390/antibiotics13080721
Kittinger C, Eder-Halbedl M, Kühn KD. Impact of Manual Addition of Vancomycin to Polymethylmethacrylate (PMMA) Cements. Antibiotics. 2024; 13(8):721. https://doi.org/10.3390/antibiotics13080721
Chicago/Turabian StyleKittinger, Clemens, Michael Eder-Halbedl, and Klaus Dieter Kühn. 2024. "Impact of Manual Addition of Vancomycin to Polymethylmethacrylate (PMMA) Cements" Antibiotics 13, no. 8: 721. https://doi.org/10.3390/antibiotics13080721
APA StyleKittinger, C., Eder-Halbedl, M., & Kühn, K. D. (2024). Impact of Manual Addition of Vancomycin to Polymethylmethacrylate (PMMA) Cements. Antibiotics, 13(8), 721. https://doi.org/10.3390/antibiotics13080721