New Agents Are Coming, and So Is the Resistance
Abstract
:1. Introduction
2. New Guidance Documents Have Been Established
2.1. ESBL-E
2.2. CRE
2.3. CRAB
3. Epidemiology of Bacterial Resistance in the U.S. and Globally
3.1. Ambler Classification
3.2. How Does Global Resistance Occur and Spread
3.3. The Burden of Global Resistance
3.4. Future Global Challenges with AMR
4. The Future of Drug Development
4.1. Cefepime-Taniborbactam
4.2. Cefepime-Enmetazobactam
4.3. Cefepime-Zidebactam
4.4. Sulopenem
4.5. Aztreonam-Avibactam
4.6. Sulbactam-Durlobactam
5. Other BLI/BL/BLI Combinations
5.1. Xeruborbactam
5.2. Nacubactam
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019.
- Terreni, M.; Taccani, M.; Pregnolato, M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021, 26, 2671. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, J.; Tian, L.; Xin, L.; Liang, C.; Ren, X.; Li, M. A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects. Molecules 2023, 28, 1762. [Google Scholar] [CrossRef]
- Walsh, T.R.; Gales, A.C.; Laxminarayan, R.; Dodd, P.C. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLoS Med. 2023, 20, e1004264. [Google Scholar] [CrossRef] [PubMed]
- Suay-García, B.; Pérez-Gracia, M.T. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 2019, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Dequin, P.-F.; Aubron, C.; Faure, H.; Garot, D.; Guillot, M.; Hamzaoui, O.; Lemiale, V.; Maizel, J.; Mootien, J.Y.; Osman, D.; et al. The place of new antibiotics for Gram-negative bacterial infections in intensive care: Report of a consensus conference. Ann. Intensive Care 2023, 13, 59. [Google Scholar] [CrossRef]
- Hwang, S.; Kwon, K.T. Core Elements for Successful Implementation of Antimicrobial Stewardship Programs. Infect. Chemother. 2021, 53, 421–435. [Google Scholar] [CrossRef]
- Pollack, L.A.; Srinivasan, A. Core Elements of Hospital Antibiotic Stewardship Programs From the Centers for Disease Control and Prevention. Clin. Infect. Dis. 2014, 59, S97–S100. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Core Elements of Hospital Antibiotic Stewardship Programs; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2014.
- Theuretzbacher, U. Global antimicrobial resistance in Gram-negative pathogens and clinical need. Curr. Opin. Microbiol. 2017, 39, 106–112. [Google Scholar] [CrossRef]
- Aljeldah, M.M. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics 2022, 11, 1082. [Google Scholar] [CrossRef]
- Bassetti, M.; Kanj, S.S.; Kiratisin, P.; Rodrigues, C.; Van Duin, D.; Villegas, M.V.; Yu, Y. Early appropriate diagnostics and treatment of MDR Gram-negative infections. JAC-Antimicrob. Resist. 2022, 4, dlac089. [Google Scholar] [CrossRef]
- Shanmugakani, R.K.; Srinivasan, B.; Glesby, M.J.; Westblade, L.F.; Cárdenas, W.B.; Raj, T.; Erickson, D.; Mehta, S. Current state of the art in rapid diagnostics for antimicrobial resistance. Lab A Chip 2020, 20, 2607–2625. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Abdul Azim, A.; Bhatt, P.J.; Uprety, P.; Mohayya, S.; Dixit, D.; Kirn, T.J.; Narayanan, N. Rapid Diagnostics to Enhance Therapy Selection for the Treatment of Bacterial Infections. Curr. Pharmacol. Rep. 2023, 9, 198–216. [Google Scholar] [CrossRef]
- Gupta, E.; Saxena, J.; Kumar, S.; Sharma, U.; Rastogi, S.; Srivastava, V.K.; Kaushik, S.; Jyoti, A. Fast Track Diagnostic Tools for Clinical Management of Sepsis: Paradigm Shift from Conventional to Advanced Methods. Diagnostics 2023, 13, 277. [Google Scholar] [CrossRef] [PubMed]
- Kaprou, G.D.; Bergšpica, I.; Alexa, E.A.; Alvarez-Ordóñez, A.; Prieto, M. Rapid Methods for Antimicrobial Resistance Diagnostics. Antibiotics 2021, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Russell, P.S. Clinical Approach to Infection in the Compromised Host; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bosso, J.A.; Mauldin, P.D.; Salgado, C.D. The association between antibiotic use and resistance: The role of secondary antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1125–1129. [Google Scholar] [CrossRef]
- Jean, S.-S.; Liu, I.M.; Hsieh, P.-C.; Kuo, D.-H.; Liu, Y.-L.; Hsueh, P.-R. Off-label use versus formal recommendations of conventional and novel antibiotics for the treatment of infections caused by multidrug-resistant bacteria. Int. J. Antimicrob. Agents 2023, 61, 106763. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of Infections Due to MDR Gram-Negative Bacteria. Front. Med. 2019, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Corona, A.; De Santis, V.; Agarossi, A.; Prete, A.; Cattaneo, D.; Tomasini, G.; Bonetti, G.; Patroni, A.; Latronico, N. Antibiotic Therapy Strategies for Treating Gram-Negative Severe Infections in the Critically Ill: A Narrative Review. Antibiotics 2023, 12, 1262. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, ciad428. [Google Scholar] [CrossRef]
- Eubank, T.A.; Long, S.W.; Perez, K.K. Role of Rapid Diagnostics in Diagnosis and Management of Patients with Sepsis. J. Infect. Dis. 2020, 222, S103–S109. [Google Scholar] [CrossRef] [PubMed]
- Van Heuverswyn, J.; Valik, J.K.; Desirée van der Werff, S.; Hedberg, P.; Giske, C.; Nauclér, P. Association Between Time to Appropriate Antimicrobial Treatment and 30-day Mortality in Patients with Bloodstream Infections: A Retrospective Cohort Study. Clin. Infect. Dis. 2023, 76, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Hassall, J.; Coxon, C.; Patel, V.C.; Goldenberg, S.D.; Sergaki, C. Limitations of current techniques in clinical antimicrobial resistance diagnosis: Examples and future prospects. npj Antimicrob. Resist. 2024, 2, 16. [Google Scholar] [CrossRef]
- Zasowski, E.J.; Bassetti, M.; Blasi, F.; Goossens, H.; Rello, J.; Sotgiu, G.; Tavoschi, L.; Arber, M.R.; McCool, R.; Patterson, J.V.; et al. A Systematic Review of the Effect of Delayed Appropriate Antibiotic Treatment on the Outcomes of Patients with Severe Bacterial Infections. Chest 2020, 158, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Wenzler, E.; Maximos, M.; Asempa, T.E.; Biehle, L.; Schuetz, A.N.; Hirsch, E.B. Antimicrobial susceptibility testing: An updated primer for clinicians in the era of antimicrobial resistance: Insights from the Society of Infectious Diseases Pharmacists. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2023, 43, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Schinas, G.; Dimopoulos, G.; Akinosoglou, K. Understanding and Implementing Diagnostic Stewardship: A Guide for Resident Physicians in the Era of Antimicrobial Resistance. Microorganisms 2023, 11, 2214. [Google Scholar] [CrossRef] [PubMed]
- Filice, G.A.; Drekonja, D.M.; Thurn, J.R.; Hamann, G.M.; Masoud, B.T.; Johnson, J.R. Diagnostic Errors that Lead to Inappropriate Antimicrobial Use. Infect. Control. Hosp. Epidemiol. 2015, 36, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Curren, E.J.; Lutgring, J.D.; Kabbani, S.; Diekema, D.J.; Gitterman, S.; Lautenbach, E.; Morgan, D.J.; Rock, C.; Salerno, R.M.; McDonald, L.C. Advancing Diagnostic Stewardship for Healthcare-Associated Infections, Antibiotic Resistance, and Sepsis. Clin. Infect. Dis. 2021, 74, 723–728. [Google Scholar] [CrossRef]
- Haddad, M.; Sheybani, F.; Naderi, H.; Sasan, M.S.; Najaf Najafi, M.; Sedighi, M.; Seddigh, A. Errors in Diagnosing Infectious Diseases: A Physician Survey. Front. Med. 2021, 8, 779454. [Google Scholar] [CrossRef]
- Gniadkowski, M. Evolution and epidemiology of extended-spectrum β-lactamases (ESBLs) and ESBL-producing microorganisms. Clin. Microbiol. Infect. 2001, 7, 597–608. [Google Scholar] [CrossRef]
- Pitout, J.D.; Nordmann, P.; Laupland, K.B.; Poirel, L. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J. Antimicrob. Chemother. 2005, 56, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Raphael, E.; Glymour, M.M.; Chambers, H.F. Trends in prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolated from patients with community- and healthcare-associated bacteriuria: Results from 2014 to 2020 in an urban safety-net healthcare system. Antimicrob. Resist. Infect. Control 2021, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Melzer, M.; Petersen, I. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J. Infect. 2007, 55, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Handal, N.; Whitworth, J.; Lyngbakken, M.N.; Berdal, J.E.; Dalgard, O.; Bakken Jørgensen, S. Mortality and length of hospital stay after bloodstream infections caused by ESBL-producing compared to non-ESBL-producing E. coli. Infect. Dis. 2024, 56, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Berger, A.; Altincatal, A.; Wang, R.; Bhagnani, T.; Gillard, P.; Bonine, N.G. Antimicrobial Resistance or Delayed Appropriate Therapy-Does One Influence Outcomes More Than the Other Among Patients with Serious Infections Due to Carbapenem-Resistant versus Carbapenem-Susceptible Enterobacteriaceae? Open Forum. Infect. Dis. 2019, 6, ofz194. [Google Scholar] [CrossRef]
- Barenfanger, J.; Drake, C.; Kacich, G. Clinical and Financial Benefits of Rapid Bacterial Identification and Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 1999, 37, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Kerremans, J.J.; Verboom, P.; Stijnen, T.; Hakkaart-van Roijen, L.; Goessens, W.; Verbrugh, H.A.; Vos, M.C. Rapid identification and antimicrobial susceptibility testing reduce antibiotic use and accelerate pathogen-directed antibiotic use. J. Antimicrob. Chemother. 2007, 61, 428–435. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Global Health; Board on Health Sciences Policy; Forum on Drug Discovery, Development, and Translation; Forum on Medical and Public Health Preparedness for Disasters and Emergencies; Forum on Microbial Threats; Erin Hammers Forstag and Carolyn Shore, Rapporteurs. The National Academies Collection: Reports funded by National Institutes of Health. In Accelerating the Development and Uptake of Rapid Diagnostics to Address Antibiotic Resistance: Proceedings of a Workshop; Shore, C., Forstag, E.H., Eds.; National Academies Press (US): Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Medina, E.; Pieper, D.H. Tackling Threats and Future Problems of Multidrug-Resistant Bacteria. Curr. Top. Microbiol. Immunol. 2016, 398, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Jhaveri, T.A.; Weiss, Z.F.; Winkler, M.L.; Pyden, A.D.; Basu, S.S.; Pecora, N.D. A decade of clinical microbiology: Top 10 advances in 10 years: What every infection preventionist and antimicrobial steward should know. Antimicrob. Steward. Healthc. Epidemiol. 2024, 4, e8. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Andini, R.; Zampino, R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin. Microbiol. Infect. 2019, 25, 943–950. [Google Scholar] [CrossRef]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [PubMed]
- Strich, J.R.; Mishuk, A.; Diao, G.; Lawandi, A.; Li, W.; Demirkale, C.Y.; Babiker, A.; Mancera, A.; Swihart, B.J.; Walker, M.; et al. Assessing Clinician Utilization of Next-Generation Antibiotics against Resistant Gram-Negative Infections in U.S. Hospitals. Ann. Intern. Med. 2024, 177, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Giani, T.; Bovo, F.; Lombardo, D.; Amadesi, S.; Lazzarotto, T.; Coppi, M.; Rossolini, G.M.; Ambretti, S. Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. Antibiotics 2022, 11, 628. [Google Scholar] [CrossRef] [PubMed]
- European Congress of Clinical Microbiology & Infectious Diseases. Not Enough New Antibiotics in the Pipeline, Concludes WHO Review—Especially Those Targeting Deadly Drug-Resistant Microbes; European Congress of Clinical Microbiology & Infectious Diseases: Basel, Switzerland, 2023. [Google Scholar]
- Miller, E.; Sikes, H.D. Addressing Barriers to the Development and Adoption of Rapid Diagnostic Tests in Global Health. Nanobiomedicine 2015, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Yimer, S.A.; Booij, B.B.; Tobert, G.; Hebbeler, A.; Oloo, P.; Brangel, P.; L’Azou Jackson, M.; Jarman, R.; Craig, D.; Avumegah, M.S.; et al. Rapid diagnostic test: A critical need for outbreak preparedness and response for high priority pathogens. BMJ Glob. Health 2024, 9, e014386. [Google Scholar] [CrossRef] [PubMed]
- Trevas, D.; Caliendo, A.M.; Hanson, K.; Levy, J.; Ginocchio, C.C. Diagnostic Tests Can Stem the Threat of Antimicrobial Resistance: Infectious Disease Professionals Can Help. Clin. Infect. Dis. 2020, 72, e893–e900. [Google Scholar] [CrossRef] [PubMed]
- Ferreyra, C.; Gleeson, B.; Kapona, O.; Mendelson, M. Diagnostic tests to mitigate the antimicrobial resistance pandemic—Still the problem child. PLoS Glob. Public Health 2022, 2, e0000710. [Google Scholar] [CrossRef] [PubMed]
- Yip, A.Y.G.; King, O.G.; Omelchenko, O.; Kurkimat, S.; Horrocks, V.; Mostyn, P.; Danckert, N.; Ghani, R.; Satta, G.; Jauneikaite, E.; et al. Antibiotics promote intestinal growth of carbapenem-resistant Enterobacteriaceae by enriching nutrients and depleting microbial metabolites. Nat. Commun. 2023, 14, 5094. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.; Guarner, F.; Bustos Fernandez, L.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as Major Disruptors of Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 572912. [Google Scholar] [CrossRef]
- Tan, S.Y.; Khan, R.A.; Khalid, K.E.; Chong, C.W.; Bakhtiar, A. Correlation between antibiotic consumption and the occurrence of multidrug-resistant organisms in a Malaysian tertiary hospital: A 3-year observational study. Sci. Rep. 2022, 12, 3106. [Google Scholar] [CrossRef]
- Peeters, P.; Ryan, K.; Karve, S.; Potter, D.; Baelen, E.; Rojas-Farreras, S.; Rodríguez-Baño, J. The impact of initial antibiotic treatment failure: Real-world insights in patients with complicated, health care-associated intra-abdominal infection. Infect. Drug Resist. 2019, 12, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.; Karve, S.; Peeters, P.; Baelen, E.; Potter, D.; Rojas-Farreras, S.; Pascual, E.; Rodríguez-Baño, J. The impact of initial antibiotic treatment failure: Real-world insights in healthcare-associated or nosocomial pneumonia. J. Infect. 2018, 77, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-J.; Xiao, Z.-G.; Lv, X.-J.; Huang, H.-T.; Liao, C.; Hui, C.-Y.; Xu, Y.; Li, H.-F. Drug-resistant Acinetobacter baumannii: From molecular mechanisms to potential therapeutics (Review). Exp. Ther. Med. 2023, 25, 209. [Google Scholar] [CrossRef] [PubMed]
- Bartal, C.; Rolston, K.V.I.; Nesher, L. Carbapenem-resistant Acinetobacter baumannii: Colonization, Infection and Current Treatment Options. Infect. Dis. Ther. 2022, 11, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Paterson, D.L.; Tamma, P.D. Navigating Available Treatment Options for Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus Complex Infections. Clin. Infect. Dis. 2023, 76, S179–S193. [Google Scholar] [CrossRef] [PubMed]
- Karruli, A.; Migliaccio, A.; Pournaras, S.; Durante-Mangoni, E.; Zarrilli, R. Cefiderocol and Sulbactam-Durlobactam against Carbapenem-Resistant Acinetobacter baumannii. Antibiotics 2023, 12, 1729. [Google Scholar] [CrossRef] [PubMed]
- Nutman, A.; Temkin, E.; Lellouche, J.; Ben David, D.; Schwartz, D.; Carmeli, Y. Detecting carbapenem-resistant Acinetobacter baumannii (CRAB) carriage: Which body site should be cultured? Infect. Control Hosp. Epidemiol. 2020, 41, 965–967. [Google Scholar] [CrossRef] [PubMed]
- Anwer, R. Molecular epidemiology and molecular typing methods of Acinetobacter baumannii: An updated review. Saudi Med. J. 2024, 45, 458–467. [Google Scholar] [CrossRef]
- Ajao, A.O.; Robinson, G.; Lee, M.S.; Ranke, T.D.; Venezia, R.A.; Furuno, J.P.; Harris, A.D.; Johnson, J.K. Comparison of culture media for detection of Acinetobacter baumannii in surveillance cultures of critically-ill patients. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1425–1430. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Giani, T.; Bassetti, M.; Marchese, A.; Viscoli, C.; Rossolini, G.M. Rapid microbiological tests for bloodstream infections due to multidrug resistant Gram-negative bacteria: Therapeutic implications. Clin. Microbiol. Infect. 2020, 26, 713–722. [Google Scholar] [CrossRef]
- Serapide, F.; Guastalegname, M.; Gullì, S.P.; Lionello, R.; Bruni, A.; Garofalo, E.; Longhini, F.; Trecarichi, E.M.; Russo, A. Antibiotic Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections in View of the Newly Developed β-Lactams: A Narrative Review of the Existing Evidence. Antibiotics 2024, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.; Thompson, R.N.; Moon, S.H.; Keck, J.M.; Lowry, M.S.; Melero, J.; Jun, S.R.; Rosenbaum, E.R.; Dare, R.K. Treatment-emergent cefiderocol resistance in carbapenem-resistant Acinetobacter baumannii is associated with insertion sequence ISAba36 in the siderophore receptor pirA. Antimicrob. Agents Chemother. 2024, 68, e00290-24. [Google Scholar] [CrossRef]
- Desmoulin, A.; Sababadichetty, L.; Kamus, L.; Daniel, M.; Feletti, L.; Allou, N.; Potron, A.; Leroy, A.-G.; Jaffar-Bandjee, M.-C.; Belmonte, O.; et al. Adaptive resistance to cefiderocol in carbapenem-resistant Acinetobacter baumannii (CRAB): Microbiological and clinical issues. Heliyon 2024, 10, e30365. [Google Scholar] [CrossRef]
- Findlay, J.; Bianco, G.; Boattini, M.; Nordmann, P. In vivo development of cefiderocol resistance in carbapenem-resistant Acinetobacter baumannii associated with the downregulation of a TonB-dependent siderophore receptor, PiuA. J. Antimicrob. Chemother. 2024, 79, 928–930. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Cosentino, F.; Giannella, M.; Viale, P.; Pea, F. Clinical efficacy of cefiderocol-based regimens in patients with carbapenem-resistant Acinetobacter baumannii infections: A systematic review with meta-analysis. Int. J. Antimicrob. Agents 2024, 63, 107047. [Google Scholar] [CrossRef]
- Kollef, M.; Dupont, H.; Greenberg, D.E.; Viale, P.; Echols, R.; Yamano, Y.; Nicolau, D.P. Prospective role of cefiderocol in the management of carbapenem-resistant Acinetobacter baumannii infections: Review of the evidence. Int. J. Antimicrob. Agents 2023, 62, 106882. [Google Scholar] [CrossRef]
- Wong, D.; Holtom, P.; Spellberg, B. Osteomyelitis Complicating Sacral Pressure Ulcers: Whether or Not to Treat with Antibiotic Therapy. Clin. Infect. Dis. 2019, 68, 338–342. [Google Scholar] [CrossRef]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef]
- Peterson, E.; Kaur, P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef]
- Zhang, F.; Cheng, W. The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics 2022, 11, 1215. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Sawa, T.; Kooguchi, K.; Moriyama, K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J. Intensive Care 2020, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Husna, A.; Rahman, M.M.; Badruzzaman, A.T.M.; Sikder, M.H.; Islam, M.R.; Rahman, M.T.; Alam, J.; Ashour, H.M. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 2023, 11, 2937. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Bradford, P.A. Interplay between β-lactamases and new β-lactamase inhibitors. Nat. Rev. Microbiol. 2019, 17, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Bush, K. Classification for β-lactamases: Historical perspectives. Expert Rev. Anti-Infect. Ther. 2023, 21, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef] [PubMed]
- Zakhour, J.; El Ayoubi, L.E.W.; Kanj, S.S. Metallo-beta-lactamases: Mechanisms, treatment challenges, and future prospects. Expert Rev. Anti-Infect. Ther. 2024, 22, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Kim, H.S.; Baugh, K.; Huang, Y.; Kadiyala, N.; Wences, M.; Singh, N.; Wenzler, E.; Bulman, Z.P. Therapeutic Options for Metallo-β-Lactamase-Producing Enterobacterales. Infect. Drug Resist. 2021, 14, 125–142. [Google Scholar] [CrossRef]
- Tamma, P.D.; Doi, Y.; Bonomo, R.A.; Johnson, J.K.; Simner, P.J. A Primer on AmpC β-Lactamases: Necessary Knowledge for an Increasingly Multidrug-resistant World. Clin. Infect. Dis. 2019, 69, 1446–1455. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin. Microbiol. Rev. 2018, 31. [Google Scholar] [CrossRef] [PubMed]
- Mathers, A.J.; Hazen, K.C.; Carroll, J.; Yeh, A.J.; Cox, H.L.; Bonomo, R.A.; Sifri, C.D. First clinical cases of OXA-48-producing carbapenem-resistant Klebsiella pneumoniae in the United States: The “menace” arrives in the new world. J. Clin. Microbiol. 2013, 51, 680–683. [Google Scholar] [CrossRef] [PubMed]
- Isler, B.; Aslan, A.T.; Akova, M.; Harris, P.; Paterson, D.L. Treatment strategies for OXA-48-like and NDM producing Klebsiella pneumoniae infections. Expert Rev. Anti-Infect. Ther. 2022, 20, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Pungartnik, P.C.; Abreu, A.; dos Santos, C.V.B.; Cavalcante, J.R.; Faerstein, E.; Werneck, G.L. The interfaces between One Health and Global Health: A scoping review. One Health 2023, 16, 100573. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, J.S.; Jeggo, M. The One Health Approach-Why Is It So Important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Mendelson, M.; Laxminarayan, R.; Limmathurotsakul, D.; Kariuki, S.; Gyansa-Lutterodt, M.; Charani, E.; Singh, S.; Walia, K.; Gales, A.C.; Mpundu, M. Antimicrobial resistance and the great divide: Inequity in priorities and agendas between the Global North and the Global South threatens global mitigation of antimicrobial resistance. Lancet Glob. Health 2024, 12, e516–e521. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One Health approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef]
- Ma, L.; Li, B.; Jiang, X.-T.; Wang, Y.-L.; Xia, Y.; Li, A.-D.; Zhang, T. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome 2017, 5, 154. [Google Scholar] [CrossRef] [PubMed]
- Leonard, A.F.C.; Zhang, L.; Balfour, A.J.; Garside, R.; Hawkey, P.M.; Murray, A.K.; Ukoumunne, O.C.; Gaze, W.H. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ. Int. 2018, 114, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 2017, 42, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Al-Tawfiq, J.A.; Ebrahim, S.H.; Memish, Z.A. Preventing Antimicrobial Resistance Together: Reflections on AMR Week 2023. J. Epidemiol. Glob. Health 2024, 14, 249–251. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.E.M.; Schreier, H.J.; Lanska, L.; Hale, M.S. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.C.; Rodrigues, S.; Afonso, A.; Nogueira, A.; Coutinho, P. Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Pharmaceuticals 2022, 15, 393. [Google Scholar] [CrossRef] [PubMed]
- Amin, V.P.; Dhanani, M.; Patel, J.; Dhawan, A.; Mahesh, G.; Chenna, V.S.H.; Kyada, S.; Dekhne, A.; Desai, H.D. 2233. Burden of Bacterial Antimicrobial Resistance in United States in 2019: A Systematic Analysis. Open Forum Infect. Dis. 2023, 10, ofad500-1855. [Google Scholar] [CrossRef]
- World Heath Organization (WHO). The Burden of Antimicrobial Resistance (AMR) in Mali; Institute for Health Metrics and Evaluation: Seattle, WA, USA, 2023. [Google Scholar]
- Institute for Health Metrics and Evaluation. Bacterial Antimicrobial Resistance Burden Estimates 2019; Institute for Health Metrics and Evaluation: Seattle, WA, USA, 2022. [Google Scholar]
- Pokharel, S.; Raut, S.; Adhikari, B. Tackling antimicrobial resistance in low-income and middle-income countries. BMJ Glob. Health 2019, 4, e002104. [Google Scholar] [CrossRef]
- Adebisi, Y.A.; Ogunkola, I.O. The global antimicrobial resistance response effort must not exclude marginalised populations. Trop. Med. Health 2023, 51, 33. [Google Scholar] [CrossRef]
- Combes, A.; Luyt, C.E.; Fagon, J.Y.; Wolff, M.; Trouillet, J.L.; Chastre, J. Impact of piperacillin resistance on the outcome of Pseudomonas ventilator-associated pneumonia. Intensive Care Med. 2006, 32, 1970–1978. [Google Scholar] [CrossRef]
- Amer, W. Effect of Carbapenem Resistant Metallo-Beta-Lactamase Positive Pseudomonas aeruginosa on Mortality and Morbidity of Intensive Care Unit Nosocomial Infections. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 167–176. [Google Scholar]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, j.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis; The Ottawa Hospital: Ottawa, ON, Canada, 2000. [Google Scholar]
- Idris, F.N.; Nadzir, M.M. Multi-drug resistant ESKAPE pathogens and the uses of plants as their antimicrobial agents. Arch. Microbiol. 2023, 205, 115. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.M.P.D.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33. [Google Scholar] [CrossRef] [PubMed]
- Ravi, K.; Singh, B. ESKAPE: Navigating the Global Battlefield for Antimicrobial Resistance and Defense in Hospitals. Bacteria 2024, 3, 76–98. [Google Scholar] [CrossRef]
- Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0189621. [Google Scholar] [CrossRef] [PubMed]
- Palmer GH, B.G. Combating Antimicrobial Resistance and Protecting the Miracle of Modern Medicine; National Academies Press (US): Washington, DC, USA, 2021. [Google Scholar]
- World Heath Organization (WHO). WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Heath Organization (WHO): Geneva, Switzerland, 2024.
- Toner, E.; Adalja, A.; Gronvall, G.K.; Cicero, A.; Inglesby, T.V. Antimicrobial resistance is a global health emergency. Health Secur. 2015, 13, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Lessa, F.C.; Sievert, D.M. Antibiotic Resistance: A Global Problem and the Need to Do More. Clin. Infect. Dis. 2023, 77, S1–S3. [Google Scholar] [CrossRef]
- Mestrovic, T.; Robles Aguilar, G.; Swetschinski, L.R.; Ikuta, K.S.; Gray, A.P.; Davis Weaver, N.; Han, C.; Wool, E.E.; Gershberg Hayoon, A.; Hay, S.I.; et al. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: A cross-country systematic analysis. Lancet Public Health 2022, 7, e897–e913. [Google Scholar] [CrossRef]
- Planta, M.B. The role of poverty in antimicrobial resistance. J. Am. Board Fam. Med. 2007, 20, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Obua, C.; Talib, Z.; Haberer, J.E. Poverty and antibiotic misuse: A complex association. Lancet Glob. Health 2023, 11, e6–e7. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Harant, A.; Fernandes, G.; Mwamelo, A.J.; Hein, W.; Dekker, D.; Sridhar, D. Measuring the global response to antimicrobial resistance, 2020–2021: A systematic governance analysis of 114 countries. Lancet Infect. Dis. 2023, 23, 706–718. [Google Scholar] [CrossRef]
- Jinks, T.; Lee, N.; Sharland, M.; Rex, J.; Gertler, N.; Diver, M.; Jones, I.; Jones, K.; Mathewson, S.; Chiara, F.; et al. A time for action: Antimicrobial resistance needs global response. Bull. World Health Organ. 2016, 94, 558–558A. [Google Scholar] [CrossRef] [PubMed]
- Dutescu, I.A.; Hillier, S.A. Encouraging the Development of New Antibiotics: Are Financial Incentives the Right Way Forward? A Systematic Review and Case Study. Infect. Drug Resist. 2021, 14, 415–434. [Google Scholar] [CrossRef] [PubMed]
- Cars, O.; Chandy, S.J.; Mpundu, M.; Peralta, A.Q.; Zorzet, A.; So, A.D. Resetting the agenda for antibiotic resistance through a health systems perspective. Lancet Glob. Health 2021, 9, e1022–e1027. [Google Scholar] [CrossRef] [PubMed]
- Bloom, G.; Merrett, G.B.; Wilkinson, A.; Lin, V.; Paulin, S. Antimicrobial resistance and universal health coverage. BMJ Glob. Health 2017, 2, e000518. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.; Panteli, D.; van Kessel, R.; Ljungqvist, G.; Colombo, F.; Mossialos, E. Challenges and opportunities for incentivising antibiotic research and development in Europe. Lancet Reg. Health Eur. 2023, 33, 100705. [Google Scholar] [CrossRef]
- Morel, C.M.; Lindahl, O.; Harbarth, S.; de Kraker, M.E.A.; Edwards, S.; Hollis, A. Industry incentives and antibiotic resistance: An introduction to the antibiotic susceptibility bonus. J. Antibiot. 2020, 73, 421–428. [Google Scholar] [CrossRef]
- Hyun, D. Antibiotic Development Needs Economic Incentives; The Pew Charitable Trusts: Philadelphia, PA, USA, 2021. [Google Scholar]
- Brogan, D.M.; Mossialos, E. Incentives for new antibiotics: The Options Market for Antibiotics (OMA) model. Globalization and Health 2013, 9, 58. [Google Scholar] [CrossRef]
- Hayes, J.F. Fighting Back against Antimicrobial Resistance with Comprehensive Policy and Education: A Narrative Review. Antibiotics 2022, 11, 644. [Google Scholar] [CrossRef] [PubMed]
- Bankar, N.J.; Ugemuge, S.; Ambad, R.S.; Hawale, D.V.; Timilsina, D.R. Implementation of Antimicrobial Stewardship in the Healthcare Setting. Cureus 2022, 14, e26664. [Google Scholar] [CrossRef]
- Calvo-Villamañán, A.; San Millán, Á.; Carrilero, L. Tackling AMR from a multidisciplinary perspective: A primer from education and psychology. Int. Microbiol. 2023, 26, 1–9. [Google Scholar] [CrossRef]
- Mullins, L.P.; Mason, E.; Winter, K.; Sadarangani, M. Vaccination is an integral strategy to combat antimicrobial resistance. PLoS Pathog. 2023, 19, e1011379. [Google Scholar] [CrossRef]
- Ren, M.; So, A.D.; Chandy, S.J.; Mpundu, M.; Peralta, A.Q.; Åkerfeldt, K.; Sjöblom, A.K.; Cars, O. Equitable Access to Antibiotics: A Core Element and Shared Global Responsibility for Pandemic Preparedness and Response. J. Law Med. Ethics 2022, 50, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Boyd, N.K.; Teng, C.; Frei, C.R. Brief Overview of Approaches and Challenges in New Antibiotic Development: A Focus On Drug Repurposing. Front. Cell. Infect. Microbiol. 2021, 11, 684515. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.F.; Mobashery, S. Endless Resistance. Endless Antibiotics? Medchemcomm 2016, 7, 37–49. [Google Scholar] [CrossRef]
- Klug, D.M.; Idiris, F.I.M.; Blaskovich, M.A.T.; von Delft, F.; Dowson, C.G.; Kirchhelle, C.; Roberts, A.P.; Singer, A.C.; Todd, M.H. There is no market for new antibiotics: This allows an open approach to research and development. Wellcome Open Res. 2021, 6, 146. [Google Scholar] [CrossRef]
- Nathan, C.; Goldberg, F.M. The profit problem in antibiotic R&D. Nat. Rev. Drug Discov. 2005, 4, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, N.; Pandey, A.K.; Malhotra, S.; Holmes, A.; Mendelson, M.; Malpani, R.; Balasegaram, M.; Charani, E. Shortage of essential antimicrobials: A major challenge to global health security. BMJ Glob. Health 2021, 6, e006961. [Google Scholar] [CrossRef] [PubMed]
- Årdal, C.; Røttingen, J.-A.; Opalska, A.; Van Hengel, A.J.; Larsen, J. Pull Incentives for Antibacterial Drug Development: An Analysis by the Transatlantic Task Force on Antimicrobial Resistance. Clin. Infect. Dis. 2017, 65, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.A.; Wright, G.D. The past, present, and future of antibiotics. Sci. Transl. Med. 2022, 14, eabo7793. [Google Scholar] [CrossRef] [PubMed]
- Wasan, H.; Singh, D.; Reeta, K.H.; Gupta, Y.K. Landscape of Push Funding in Antibiotic Research: Current Status and Way Forward. Biology 2023, 12, 101. [Google Scholar] [CrossRef]
- Schneider, M. New Rules Expand Application of the NTAP Program for Innovative Antibiotics. Contagion 2020, 5, 19–20. [Google Scholar]
- Schurer, M.; Patel, R.; van Keep, M.; Horgan, J.; Matthijsse, S.; Madin-Warburton, M. Recent advances in addressing the market failure of new antimicrobials: Learnings from NICE’s subscription-style payment model. Front. Med. Technol. 2023, 5, 1010247. [Google Scholar] [CrossRef] [PubMed]
- Towse, A.; Hoyle, C.K.; Goodall, J.; Hirsch, M.; Mestre-Ferrandiz, J.; Rex, J.H. Time for a change in how new antibiotics are reimbursed: Development of an insurance framework for funding new antibiotics based on a policy of risk mitigation. Health Policy 2017, 121, 1025–1030. [Google Scholar] [CrossRef]
- Abdel Hadi, H.; Eltayeb, F.; Al Balushi, S.; Daghfal, J.; Ahmed, F.; Mateus, C. Evaluation of Hospital Antimicrobial Stewardship Programs: Implementation, Process, Impact, and Outcomes, Review of Systematic Reviews. Antibiotics 2024, 13, 253. [Google Scholar] [CrossRef]
- Shively, N.R.; Morgan, D.J. The CDC antimicrobial use measure is not ready for public reporting or value-based programs. Antimicrob. Steward Healthc. Epidemiol. 2023, 3, e77. [Google Scholar] [CrossRef]
- Kern, W.V. Organization of antibiotic stewardship in Europe: The way to go. Wien. Med. Wochenschr. 2021, 171, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Simjee, S.; Ippolito, G. European regulations on prevention use of antimicrobials from january 2022. Braz. J. Vet. Med. 2022, 44, e000822. [Google Scholar] [CrossRef] [PubMed]
- Pierce, J.; Apisarnthanarak, A.; Schellack, N.; Cornistein, W.; Maani, A.A.; Adnan, S.; Stevens, M.P. Global Antimicrobial Stewardship with a Focus on Low- and Middle-Income Countries. Int. J. Infect. Dis. 2020, 96, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Gigante, V.; Sati, H.; Beyer, P. Recent advances and challenges in antibacterial drug development. Admet Dmpk 2022, 10, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Nguyen, M.H. Buying Time: The AMR Action Fund and the State of Antibiotic Development in the United States 2020. Open Forum Infect. Dis. 2020, 7, ofaa464. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. Pharmaceutical firms commit US$1 billion to antibiotic development. Nat. Rev. Drug Discov. 2020, 19, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Outterson, K. A Perspective on Incentives for Novel Inpatient Antibiotics: No One-Size-Fits-All. J. Law Med. Ethics 2018, 46, 59–65. [Google Scholar]
- Quinn, G.A.; Dyson, P.J. Going to extremes: Progress in exploring new environments for novel antibiotics. NPJ Antimicrob. Resist. 2024, 2, 8. [Google Scholar] [CrossRef]
- Hamrick, J.C.; Docquier, J.D.; Uehara, T.; Myers, C.L.; Six, D.A.; Chatwin, C.L.; John, K.J.; Vernacchio, S.F.; Cusick, S.M.; Trout, R.E.L.; et al. VNRX-5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine- and Metallo-β-Lactamases, Restores Activity of Cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64, e01963-19. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hackel, M.A.; Wise, M.G.; Six, D.A.; Uehara, T.; Daigle, D.M.; Cusick, S.M.; Pevear, D.C.; Moeck, G.; Sahm, D.F. In Vitro Activity of Cefepime-Taniborbactam and Comparators against Clinical Isolates of Gram-Negative Bacilli from 2018 to 2020: Results from the Global Evaluation of Antimicrobial Resistance via Surveillance (GEARS) Program. Antimicrob. Agents Chemother. 2023, 67, e01281-22. [Google Scholar] [CrossRef]
- Gerges, B.; Rosenblatt, J.; Truong, Y.-L.; Jiang, Y.; Shelburne, S.A.; Chaftari, A.-M.; Hachem, R.; Raad, I. In vitro activity of cefepime/taniborbactam and comparator agents against Gram-negative bacterial bloodstream pathogens recovered from patients with cancer. JAC-Antimicrob. Resist. 2024, 6, dlae060. [Google Scholar] [CrossRef] [PubMed]
- Meletiadis, J.; Paranos, P.; Georgiou, P.-C.; Vourli, S.; Antonopoulou, S.; Michelaki, A.; Vagiakou, E.; Pournaras, S. In vitro comparative activity of the new beta-lactamase inhibitor taniborbactam with cefepime or meropenem against Klebsiella pneumoniae and cefepime against Pseudomonas aeruginosa metallo-beta-lactamase-producing clinical isolates. Int. J. Antimicrob. Agents 2021, 58, 106440. [Google Scholar] [CrossRef] [PubMed]
- Abdelraouf, K.; Nicolau, D.P. In vivo pharmacokinetic/pharmacodynamic evaluation of cefepime/taniborbactam combination against cefepime-non-susceptible Enterobacterales and Pseudomonas aeruginosa in a murine pneumonia model. J. Antimicrob. Chemother. 2023, 78, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.M.; Gasink, L.B.; McGovern, P.C.; Moeck, G.; McLeroth, P.; Dorr, M.; Dane, A.; Henkel, T. Cefepime-Taniborbactam in Complicated Urinary Tract Infection. N. Engl. J. Med. 2024, 390, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Dowell, J.A.; Marbury, T.C.; Smith, W.B.; Henkel, T. Safety and Pharmacokinetics of Taniborbactam (VNRX-5133) with Cefepime in Subjects with Various Degrees of Renal Impairment. Antimicrob. Agents Chemother. 2022, 66, e00253-22. [Google Scholar] [CrossRef] [PubMed]
- Dowell James, A.; Dickerson, D.; Henkel, T. Safety and Pharmacokinetics in Human Volunteers of Taniborbactam (VNRX-5133), a Novel Intravenous β-Lactamase Inhibitor. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Abbott, C.; Satola, S.W.; Weiss, D.S. Heteroresistance to cefepime-taniborbactam in metallo-β-lactamase-encoding Enterobacterales. Lancet Infect. Dis. 2023, 23, e277–e278. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M.; Bethel, C.R.; Caillon, J.; Barnes, M.D.; Potel, G.; Bajaksouzian, S.; Rutter, J.D.; Reghal, A.; Shapiro, S.; Taracila, M.A.; et al. Beyond Piperacillin-Tazobactam: Cefepime and AAI101 as a Potent β-Lactam-β-Lactamase Inhibitor Combination. Antimicrob. Agents Chemother. 2019, 63, e00105-19. [Google Scholar] [CrossRef]
- Vázquez-Ucha, J.C.; Lasarte-Monterrubio, C.; Guijarro-Sánchez, P.; Oviaño, M.; Álvarez-Fraga, L.; Alonso-García, I.; Arca-Suárez, J.; Bou, G.; Beceiro, A. Assessment of Activity and Resistance Mechanisms to Cefepime in Combination with the Novel β-Lactamase Inhibitors Zidebactam, Taniborbactam, and Enmetazobactam against a Multicenter Collection of Carbapenemase-Producing Enterobacterales. Antimicrob. Agents Chemother. 2022, 66, e01676-21. [Google Scholar] [CrossRef]
- Kaye, K.S.; Belley, A.; Barth, P.; Lahlou, O.; Knechtle, P.; Motta, P.; Velicitat, P. Effect of Cefepime/Enmetazobactam vs Piperacillin/Tazobactam on Clinical Cure and Microbiological Eradication in Patients with Complicated Urinary Tract Infection or Acute Pyelonephritis: A Randomized Clinical Trial. JAMA 2022, 328, 1304–1314. [Google Scholar] [CrossRef]
- Morrissey, I.; Magnet, S.; Hawser, S.; Shapiro, S.; Knechtle, P. In Vitro Activity of Cefepime-Enmetazobactam against Gram-Negative Isolates Collected from U.S. and European Hospitals during 2014–2015. Antimicrob. Agents Chemother. 2019, 63, e00514-19. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Mendes, R.E.; Duncan, L.R.; Carvalhaes, C.G.; Castanheria, M. Antimicrobial activity of cefepime/zidebactam (WCK 5222), a β-lactam/β-lactam enhancer combination, against clinical isolates of Gram-negative bacteria collected worldwide (2018–19). J. Antimicrob. Chemother. 2022, 77, 2642–2649. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M.; Nguyen, N.Q.; Jacobs, M.R.; Bethel, C.R.; Barnes, M.D.; Kumar, V.; Bajaksouzian, S.; Rudin, S.D.; Rather, P.N.; Bhavsar, S.; et al. Strategic Approaches to Overcome Resistance against Gram-Negative Pathogens Using β-Lactamase Inhibitors and β-Lactam Enhancers: Activity of Three Novel Diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234. J. Med. Chem. 2018, 61, 4067–4086. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, S.; Garello, P.; Vickers, A.; Woodford, N.; Livermore, D.M. Activity of cefepime/zidebactam (WCK 5222) against p‘roblem’ antibiotic-resistant Gram-negative bacteria sent to a national reference laboratory. J. Antimicrob. Chemother. 2021, 76, 1511–1522. [Google Scholar] [CrossRef] [PubMed]
- Le Terrier, C.; Nordmann, P.; Sadek, M.; Poirel, L. In vitro activity of cefepime/zidebactam and cefepime/taniborbactam against aztreonam/avibactam-resistant NDM-like-producing Escherichia coli clinical isolates. J. Antimicrob. Chemother. 2023, 78, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Moya, B.; Barcelo, I.M.; Bhagwat, S.; Patel, M.; Bou, G.; Papp-Wallace, K.M.; Bonomo, R.A.; Oliver, A. Potent β-Lactam Enhancer Activity of Zidebactam and WCK 5153 against Acinetobacter baumannii, Including Carbapenemase-Producing Clinical Isolates. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Moya, B.; Barcelo, I.M.; Bhagwat, S.; Patel, M.; Bou, G.; Papp-Wallace, K.M.; Bonomo, R.A.; Oliver, A. WCK 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent “β-Lactam Enhancer” Activity against Pseudomonas aeruginosa, Including Multidrug-Resistant Metallo-β-Lactamase-Producing High-Risk Clones. Antimicrob Agents Chemother 2017, 61. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hackel, M.A.; Bouchillon, S.K.; Sahm, D.F. In Vitro Activity of WCK 5222 (Cefepime-Zidebactam) against Worldwide Collected Gram-Negative Bacilli Not Susceptible to Carbapenems. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Dubey, D.; Roy, M.; Shah, T.H.; Bano, N.; Kulshrestha, V.; Mitra, S.; Sangwan, P.; Dubey, M.; Imran, A.; Jain, B.; et al. Compassionate use of a novel β-lactam enhancer-based investigational antibiotic cefepime/zidebactam (WCK 5222) for the treatment of extensively-drug-resistant NDM-expressing Pseudomonas aeruginosa infection in an intra-abdominal infection-induced sepsis patient: A case report. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 55. [Google Scholar] [CrossRef]
- Tirlangi, P.K.; Wanve, B.S.; Dubbudu, R.R.; Yadav, B.S.; Kumar, L.S.; Gupta, A.; Sree, R.A.; Challa, H.P.R.; Reddy, P.N. Successful Use of Cefepime-Zidebactam (WCK 5222) as a Salvage Therapy for the Treatment of Disseminated Extensively Drug-Resistant New Delhi Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Infection in an Adult Patient with Acute T-Cell Leukemia. Antimicrob. Agents Chemother. 2023, 67, e00500-23. [Google Scholar] [CrossRef]
- Gootz, T.; Retsema, J.; Girard, A.; Hamanaka, E.; Anderson, M.; Sokolowski, S. In vitro activity of CP-65,207, a new penem antimicrobial agent, in comparison with those of other agents. Antimicrob. Agents Chemother. 1989, 33, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Komoto, A.; Otsuki, M.; Nishino, T. In vitro and in vivo antibacterial activities of sulopenem, a new penem antibiotic. Jpn. J. Antibiot. 1996, 49, 352–366. [Google Scholar] [PubMed]
- Karlowsky, J.A.; Adam, H.J.; Baxter, M.R.; Denisuik, A.J.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; Puttagunta, S.; Dunne, M.W.; Zhanel, G.G. In Vitro Activity of Sulopenem, an Oral Penem, against Urinary Isolates of Escherichia coli. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Pozdirca, M.; Golden, A.R.; Lawrence, C.K.; Zelenitsky, S.; Berry, L.; Schweizer, F.; Bay, D.; Adam, H.; Zhanel, M.A.; et al. Sulopenem: An Intravenous and Oral Penem for the Treatment of Urinary Tract Infections Due to Multidrug-Resistant Bacteria. Drugs 2022, 82, 533–557. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Gotoh, N.; Nishino, T. Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: Penem resistance mechanisms and their interplay. Antimicrob. Agents Chemother. 2001, 45, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.; Hazra, A.; Skogerboe, T.; Labadie, R.; Kirby, D.; Soma, K.; Dunne, M. Pharmacokinectics (PK), safety, and tolerability of single doses of PF-03709270, with and without co-administration of probenecid Pfizer Global Research & Development. In Abstracts Book, Interscience Conference On Antimicrobial Agents & Chemotherapy (Icaac); American Society For Microbiology: Washington, DC, USA, 2008. [Google Scholar]
- Dunne, M.; Dunzo, E.; Puttagunta, S. A Phase 1 Study to Assess the Pharmacokinetics of Sulopenem Etzadroxil (PF-03709270). Open Forum Infect. Dis. 2017, 4, S525–S526. [Google Scholar] [CrossRef]
- Dunne, M.W.; Das, A.F.; Zelasky, M.; Akinapelli, K.; Boucher, H.; Aronin, S.I. LB-1. Efficacy and Safety of Oral Sulopenem Etzadroxil/Probenecid Versus Oral Ciprofloxacin in the Treatment of Uncomplicated Urinary Tract Infections (uUTI) in Adult Women: Results from the SURE-1 Trial. Open Forum Infect. Dis. 2020, 7, S844. [Google Scholar] [CrossRef]
- Dunne, M.W.; Aronin, S.I.; Das, A.F.; Akinapelli, K.; Zelasky, M.T.; Puttagunta, S.; Boucher, H.W. Sulopenem or Ciprofloxacin for the Treatment of Uncomplicated Urinary Tract Infections in Women: A Phase 3, Randomized Trial. Clin. Infect. Dis. 2023, 76, 66–77. [Google Scholar] [CrossRef]
- Dunne, M.W.; Aronin, S.I. 1232. Efficacy and Safety of Intravenous Sulopenem Followed by Oral Sulopenem etzadroxil/Probenecid Versus Intravenous Ertapenem Followed by Oral Ciprofloxacin or Amoxicillin-clavulanate in the Treatment of Complicated Urinary Tract Infections (cUTI): Results from the SURE-2 Trial. Open Forum Infect. Dis. 2020, 7, S636. [Google Scholar]
- Dunne, M.W.; Aronin, S.I.; Das, A.F.; Akinapelli, K.; Breen, J.; Zelasky, M.T.; Puttagunta, S. Sulopenem for the Treatment of Complicated Urinary Tract Infections Including Pyelonephritis: A Phase 3, Randomized Trial. Clin. Infect. Dis. 2023, 76, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Ehmann, D.E.; Jahic, H.; Ross, P.L.; Gu, R.F.; Hu, J.; Durand-Réville, T.F.; Lahiri, S.; Thresher, J.; Livchak, S.; Gao, N.; et al. Kinetics of avibactam inhibition against Class A, C, and D β-lactamases. J. Biol. Chem. 2013, 288, 27960–27971. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Daikos, G.L.; Tiseo, G.; Bassoulis, D.; Giordano, C.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Barnini, S.; Sani, S.; et al. Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients with Bloodstream Infections Caused by Metallo-β-lactamase-Producing Enterobacterales. Clin. Infect. Dis. 2021, 72, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Sempere, A.; Viñado, B.; Los-Arcos, I.; Campany, D.; Larrosa, N.; Fernández-Hidalgo, N.; Rodríguez-Pardo, D.; González-López, J.J.; Nuvials, X.; Almirante, B.; et al. Ceftazidime-Avibactam plus Aztreonam for the Treatment of Infections by VIM-Type-Producing Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2022, 66, e00751-22. [Google Scholar] [CrossRef] [PubMed]
- Mauri, C.; Maraolo, A.E.; Di Bella, S.; Luzzaro, F.; Principe, L. The Revival of Aztreonam in Combination with Avibactam against Metallo-β-Lactamase-Producing Gram-Negatives: A Systematic Review of In Vitro Studies and Clinical Cases. Antibiotics 2021, 10, 1012. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Carvalhaes, C.G.; Arends, S.J.R.; Castanheira, M.; Mendes, R.E. Aztreonam/avibactam activity against clinical isolates of Enterobacterales collected in Europe, Asia and Latin America in 2019. J. Antimicrob. Chemother. 2021, 76, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Principe, L.; Lupia, T.; Andriani, L.; Campanile, F.; Carcione, D.; Corcione, S.; De Rosa, F.G.; Luzzati, R.; Stroffolini, G.; Steyde, M.; et al. Microbiological, Clinical, and PK/PD Features of the New Anti-Gram-Negative Antibiotics: β-Lactam/β-Lactamase Inhibitors in Combination and Cefiderocol-An All-Inclusive Guide for Clinicians. Pharmaceuticals 2022, 15, 463. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Cisneros, J.M.; Torre-Cisneros, J.; Rodríguez-Hernández, M.J.; Tallón-Aguilar, L.; Calbo, E.; Horcajada, J.P.; Queckenberg, C.; Zettelmeyer, U.; Arenz, D.; et al. Pharmacokinetics and safety of aztreonam/avibactam for the treatment of complicated intra-abdominal infections in hospitalized adults: Results from the REJUVENATE study. J. Antimicrob. Chemother. 2020, 75, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Penwell, W.F.; Shapiro, A.B.; Giacobbe, R.A.; Gu, R.F.; Gao, N.; Thresher, J.; McLaughlin, R.E.; Huband, M.D.; DeJonge, B.L.; Ehmann, D.E.; et al. Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 1680–1689. [Google Scholar] [CrossRef]
- Chu, H.; Zhao, L.; Wang, M.; Liu, Y.; Gui, T.; Zhang, J. Sulbactam-based therapy for Acinetobacter baumannii infection: A systematic review and meta-analysis. Braz. J. Infect. Dis. 2013, 17, 389–394. [Google Scholar] [CrossRef]
- Ibrahim, S.; Al-Saryi, N.; Al-Kadmy, I.M.S.; Aziz, S.N. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol. Biol. Rep. 2021, 48, 6987–6998. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Villoria, A.M.; Valverde-Garduno, V. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen. J. Pathog. 2016, 2016, 7318075. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, Y.; Wei, Y.; Jian, C.; Liu, J.; Zeng, Z. Carbapenem-resistant Acinetobacter baumannii: A challenge in the intensive care unit. Front. Microbiol. 2022, 13, 1045206. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L.; et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar] [CrossRef] [PubMed]
- Watkins, R.R.; Bonomo, R.A. Sulbactam-durlobactam: A Step Forward in Treating Carbapenem-Resistant Acinetobacter baumannii (CRAB) Infections. Clin. Infect. Dis. 2023, 76, S163–S165. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M.; McLeod, S.M.; Miller, A.A. Durlobactam, a Broad-Spectrum Serine β-lactamase Inhibitor, Restores Sulbactam Activity Against Acinetobacter Species. Clin. Infect. Dis. 2023, 76, S194–S201. [Google Scholar] [CrossRef] [PubMed]
- Durand-Réville, T.F.; Guler, S.; Comita-Prevoir, J.; Chen, B.; Bifulco, N.; Huynh, H.; Lahiri, S.; Shapiro, A.B.; McLeod, S.M.; Carter, N.M.; et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol. 2017, 2, 17104. [Google Scholar] [CrossRef] [PubMed]
- McLeod, S.M.; Shapiro, A.B.; Moussa, S.H.; Johnstone, M.; McLaughlin, R.E.; de Jonge, B.L.M.; Miller, A.A. Frequency and Mechanism of Spontaneous Resistance to Sulbactam Combined with the Novel β-Lactamase Inhibitor ETX2514 in Clinical Isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- McLeod, S.M.; Moussa, S.H.; Hackel, M.A.; Miller, A.A. In Vitro Activity of Sulbactam-Durlobactam against Acinetobacter baumannii-calcoaceticus Complex Isolates Collected Globally in 2016 and 2017. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Principe, L.; Di Bella, S.; Conti, J.; Perilli, M.; Piccirilli, A.; Mussini, C.; Decorti, G. Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review. Antibiotics 2022, 11, 1793. [Google Scholar] [CrossRef]
- Sun, D.; Tsivkovski, R.; Pogliano, J.; Tsunemoto, H.; Nelson, K.; Rubio-Aparicio, D.; Lomovskaya, O. Intrinsic Antibacterial Activity of Xeruborbactam In Vitro: Assessing Spectrum and Mode of Action. Antimicrob. Agents Chemother. 2022, 66, e00879-22. [Google Scholar] [CrossRef]
- Lomovskaya, O.; Castanheira, M.; Lindley, J.; Rubio-Aparicio, D.; Nelson, K.; Tsivkovski, R.; Sun, D.; Totrov, M.; Loutit, J.; Dudley, M. In vitro potency of xeruborbactam in combination with multiple β-lactam antibiotics in comparison with other β-lactam/β-lactamase inhibitor (BLI) combinations against carbapenem-resistant and extended-spectrum β-lactamase-producing Enterobacterales. Antimicrob. Agents Chemother. 2023, 67, e00440-23. [Google Scholar] [CrossRef] [PubMed]
- Terrier, C.L.; Freire, S.; Viguier, C.; Findlay, J.; Nordmann, P.; Poirel, L. Relative inhibitory activities of the broad-spectrum β-lactamase inhibitor xeruborbactam in comparison with taniborbactam against metallo-β-lactamases produced in Escherichia coli and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2024, 68, e01570-23. [Google Scholar] [CrossRef] [PubMed]
- Lomovskaya, O.; Castanheira, M.; Lindley, J. 1693. Meropenem-Xeruborbactam: In Vitro Potency against Gram-Negative Bacteria in Comparison with Marketed and Investigational Beta-lactam (BL)/Beta-lactamase Inhibitor (BLI) Combinations. Open Forum Infect. Dis. 2022, 9, ofac492-1323. [Google Scholar] [CrossRef]
- Griffith, D.; Roberts, J.; Wallis, S.; Hernandez-Mitre, M.P.; Morgan, E.; Dudley, M.; Loutit, J. 218. A Phase 1 Study of the Single-Dose Safety, Tolerability, and Pharmacokinetics of the Beta-lactamase inhibitor Xeruborbactam Administered as the Isobutyryloxymethyl Oral Prodrug to Healthy Adult Subjects. Open Forum Infect. Dis. 2022, 9, ofac492-296. [Google Scholar] [CrossRef]
- Tarazi, Z.; Roos, N.; Page, T.; Griffith, D. 614. Pharmacodynamics (PD) of the Beta-Lactamase Inhibitor Xeruborbactam When Administered as the Oral Prodrug in Combination with Ceftibuten. Open Forum Infect. Dis. 2022, 9, ofac492-666. [Google Scholar] [CrossRef]
- Mallalieu, N.L.; Winter, E.; Fettner, S.; Patel, K.; Zwanziger, E.; Attley, G.; Rodriguez, I.; Kano, A.; Salama, S.M.; Bentley, D.; et al. Safety and Pharmacokinetic Characterization of Nacubactam, a Novel β-Lactamase Inhibitor, Alone and in Combination with Meropenem, in Healthy Volunteers. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Igarashi, Y.; Takemura, W.; Liu, X.; Kojima, N.; Morita, T.; Chuang, V.T.G.; Enoki, Y.; Taguchi, K.; Matsumoto, K. Development of an optimized and practical pharmacokinetics/pharmacodynamics analysis method for aztreonam/nacubactam against carbapenemase-producing K. pneumoniae. J. Antimicrob. Chemother. 2023, 78, 991–999. [Google Scholar] [CrossRef]
- Kaushik, A.; Ammerman, N.C.; Parrish, N.M.; Nuermberger, E.L. New β-Lactamase Inhibitors Nacubactam and Zidebactam Improve the In Vitro Activity of β-Lactam Antibiotics against Mycobacterium abscessus Complex Clinical Isolates. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- Barnes, M.D.; Taracila, M.A.; Good, C.E.; Bajaksouzian, S.; Rojas, L.J.; van Duin, D.; Kreiswirth, B.N.; Jacobs, M.R.; Haldimann, A.; Papp-Wallace, K.M.; et al. Nacubactam Enhances Meropenem Activity against Carbapenem-Resistant Klebsiella pneumoniae Producing KPC. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- Gaynes, R. The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerg. Infect. Dis. 2017, 23, 849–853. [Google Scholar] [CrossRef]
- Fleming, A. The Discovery of Penicillin. Br. Med. Bull. 1944, 2, 4–5. [Google Scholar] [CrossRef]
- Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro da Cunha, B.; Fonseca, L.P.; Calado, C.R.C. Antibiotic Discovery: Where Have We Come from, Where Do We Go? Antibiotics 2019, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Caron, W.P.; Mousa, S.A. Prevention strategies for antimicrobial resistance: A systematic review of the literature. Infect. Drug Resist. 2010, 3, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Uchil, R.R.; Kohli, G.S.; Katekhaye, V.M.; Swami, O.C. Strategies to combat antimicrobial resistance. J. Clin. Diagn. Res. 2014, 8, Me01–Me04. [Google Scholar] [CrossRef]
- Diaz, A.; Antonara, S.; Barton, T. Prevention Strategies to Combat Antimicrobial Resistance in Children in Resource-Limited Settings. Curr. Trop. Med. Rep. 2018, 5, 5–15. [Google Scholar] [CrossRef]
- Rump, B.; Timen, A.; Hulscher, M.; Verweij, M. Infection control measures in times of antimicrobial resistance: A matter of solidarity. Monash Bioeth. Rev. 2020, 38, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Drwiega, E.N.; Griffith, N.; Herald, F.; Badowski, M.E. How to design and implement an outpatient antimicrobial stewardship programme. Drugs Context 2023, 12. [Google Scholar] [CrossRef]
- Amin, A.N.; Dellinger, E.P.; Harnett, G.; Kraft, B.D.; LaPlante, K.L.; LoVecchio, F.; McKinnell, J.A.; Tillotson, G.; Valentine, S. It’s about the patients: Practical antibiotic stewardship in outpatient settings in the United States. Front. Med. 2022, 9, 901980. [Google Scholar] [CrossRef]
ESBL-E | CRE | CRAB | DTR Pseudomonas | |
---|---|---|---|---|
Common Pathogens Harboring Beta-lactamase | Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis | Klebsiella pneumoniae, Escherichia coli, Proteus mirabilis | Acinetobacter baumannii | Pseudomonas aeruginosa |
CDC Threat Level | Serious | Urgent | Urgent | Serious |
Common Phenotype | Resistant to ceftriaxone | Resistant to meropenem or ertapenem | Resistant to carbapenems | Resistant to Psa covering cephalosporins and/or carbapenems |
Common Genotype (Ambler Class) | CTX-M-15, GES-1, SHV-2 (A) | KPC-2, IMI-1, SME-1 (A/D) | OXA-48, OXA-51, OXA-23/24 (A/C/D) | AmpC, OXA-10, VIM, GES (A/B/C/D) |
Cystitis Treatment (mild infection) | Oral (PO)
Intravenous (IV)
| Oral (PO)
Intravenous (IV)
| Intravenous (IV)
| Oral (PO)
Intravenous (IV)
|
Non-Cystitis Treatment (moderate-severe infection) | Oral (PO)
Intravenous (IV)
| Oral (PO)
Intravenous (IV)
| Intravenous (IV)
| Oral (PO)
Intravenous (IV)
|
Class | Catalytic Center | Examples (Enzymes) | Substrate (Target) | Inhibited by (Treatment) |
---|---|---|---|---|
A | Serine | TEM-1, SHV-1 (penicillinases) | Penicillins |
|
CTX-M (ESBL) | Cephalosporins |
| ||
KPC (Carbapenemases) | Carbapenems |
| ||
B | Zinc | IMP, VIM, NDM | All beta-lactam antibiotics (not aztreonam) |
|
C | Serine | AmpC | Penicillins and most cephalosporins |
|
D | Serine | OXA | Penicillins, cephalosporins, and carbapenems (depends on OXA subtype) |
|
Drug | Trial Name | Intervention | Source of Infection | Primary Endpoint | Results | Conclusion |
---|---|---|---|---|---|---|
CEF-TANI | CERTAIN-1 | CEF-TANI (2 g + 0.5 g) or meropenem (1 g) q8h | cUTI | Microbiologic and clinical success on trial days 19 to 23 in the microITT population | 70.6% in the CEF-TANI group and 58.0% in the meropenem group (treatment difference, 12.6 percentage points; 95% CI, 3.1 to 22.2; p = 0.009) | CEF-TANI was superior to meropenem for the treatment of cUTI |
CEF-TANI | CERTAIN-2 | CEF-TANI (2 g + 0.5 g) or meropenem (1 g) q8h | HAP/VAP | 28-day all-cause mortality in the ITT population | Pending | Pending |
CEF-EM | ALLIUM | CEF-EM (2 g + 0.5 g) or 4.5 g piperacillin-tazobactam q8h | cUTI or AP | Overall treatment success (clinical cure combined with microbiological eradication of infection) | 79.1% in the CEF-EM group and 58.9% in the piperacillin-tazobactam group, (treatment difference, 21.2 percentage points; 95% CI, 14.3 to 27.9) | CEF-EM was non-inferior to piperacillin-tazobactam for the treatment of cUTI or AP |
CEF-ZIDE | NCT04979806 | CEF-ZIDE 3 g (2 g + 1 g) q8h or meropenem 1 g q8h | cUTI or AP | TOC for cUTI or AP at day 17 +/− 2 days | Pending | Pending |
SUL-DUR | ATTACK | SUL-DUR (1 g each component) q6h or colistin 2.5 mg/kg q12h All patients received imipenem-cilastatin 1 g each component q6h | HAP/VAP, or BSI | 28-day all-cause mortality the mMITT population NI margin was set at upper bound 95% CI of less than 20% | 19% in the sul-dur group and 32% in the colistin group, (treatment difference of −13.2 percentage points; 95% CI, −30.0 to 3.5) | SUL-DUR was non-inferior to colistin, when each are given in combination with imipenem-cilastatin for the treatment of HAP, VAP, or BSI |
Sulopenem | SURE 1 | Sulopenem 500 mg/probenecid 500 mg PO twice daily for 5 days or ciprofloxacin 250 mg PO twice daily | Uncomplicated UTI | Combined clinical and microbiological response at day 12 in the mMITT population | 65.6% in the sulopenem group and 67.9% in the ciprofloxacin group, (treatment difference −2.3 percentage points; 95% CI, −7.9 to 3.3) | Sulopenem was non-inferior to ciprofloxacin for the treatment of uncomplicated UTI |
SURE 2 | Sulopenem 1000 mg IV once daily followed by oral sulopenem 500 mg/probenecid 500 mg or ertapenem 1000 mg IV once daily followed by oral ciprofloxacin 500 mg or amox/clav 875 mg twice daily | cUTI | Composite clinical and microbiologic outcomes at TOC in the mMITT population | 67.8% in the sulopenem group and 73.9% in the ertapenem group, (treatment difference of −6.1 percentage points; 95% CI, −12 to −0.1) | Non-inferiority was not achieved by the sulopenem group for the treatment of cUTI | |
AZT-AVI | REVISIT | AZT-AVI (loading, extended loading and maintenance doses) ± MTZ 500 mg IV q 8 h vs. meropenem 1 g q 8 h ± colistin 9 million IU IV loading dose, followed by 9 million IU given IV daily in 2 or 3 divided doses | cIAI or HAP/VAP due to Gram-negative bacteria, including MBL-producing organisms | Clinical cure at TOC visit in ITT and clinically evaluable analysis sets | ITT: 68.4% in the AZT-AVI ± MTZ group and 65.7% in the meropenem ± colistin Clinically evaluable analysis set: 77% in the AZT-AVI ± MTZ group and 74.3% in the meropenem ± colistin group | AZT-AVI ± MTZ displayed similar efficacy compared to meropenem ± colistin for the treatment of cIAI and HAP/VAP |
ASSEMBLE | AZT-AVI (loading, extended loading and maintenance doses) ± MTZ 500 mg IV q 8 h or BAT | cIAI, HAP/VAP, cUTI or BSI with MBL Gram-negative bacteria isolated within 7 days prior to screening | Clinical cure at TOC in Micro-ITT analysis set at day 28 | 41.7% in the AZT-AVI ± MTZ group and 0% in the BAT group | Enrollment terminated early due to limited numbers of MBL associated infections (n = 15), no conclusions drawn from study results |
Ambler Class | CEF-TANI | CEF-EM | CEF-ZIDE | SUL-DUR | Sulopenem | AZT-AVI |
---|---|---|---|---|---|---|
Class A: | ||||||
CTX-M | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
KPC | ✓ | ✓ | ✓ | ✓ | — | ✓ |
Class B: | ||||||
NDM | ✓ | — | ✓ | — | — | ✓ |
VIM | ✓ | — | ✓ | — | — | ✓ |
IMP | — | — | ✓ | — | — | ✓ |
Class C: | ||||||
AmpC | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Class D: | ||||||
OXA-48 | ✓ | ✓ | ✓ | ✓ | — | ✓ |
Pathogens of Interest | ||||||
CRE | ✓ | ✓ | ✓ | — | — | ✓ |
DTR Pseudomonas | ✓ | ✓ | ✓ | — | — | ✓ |
CRAB | — | — | — | ✓ | — | — |
Stenotrophomonas | — | — | — | — | — | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keck, J.M.; Viteri, A.; Schultz, J.; Fong, R.; Whitman, C.; Poush, M.; Martin, M. New Agents Are Coming, and So Is the Resistance. Antibiotics 2024, 13, 648. https://doi.org/10.3390/antibiotics13070648
Keck JM, Viteri A, Schultz J, Fong R, Whitman C, Poush M, Martin M. New Agents Are Coming, and So Is the Resistance. Antibiotics. 2024; 13(7):648. https://doi.org/10.3390/antibiotics13070648
Chicago/Turabian StyleKeck, J. Myles, Alina Viteri, Jacob Schultz, Rebecca Fong, Charles Whitman, Madeline Poush, and Marlee Martin. 2024. "New Agents Are Coming, and So Is the Resistance" Antibiotics 13, no. 7: 648. https://doi.org/10.3390/antibiotics13070648
APA StyleKeck, J. M., Viteri, A., Schultz, J., Fong, R., Whitman, C., Poush, M., & Martin, M. (2024). New Agents Are Coming, and So Is the Resistance. Antibiotics, 13(7), 648. https://doi.org/10.3390/antibiotics13070648