Staphylococcus aureus Is the Predominant Pathogen in Hospitalised Patients with Diabetes-Related Foot Infections: An Australian Perspective
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Clinical Data
4.3. Key Definitions
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Commons, R.J.; Charles, J.; Cheney, J.; Lynar, S.A.; Malone, M.; Raby, E.; Australian Diabetes-related Foot Disease Guidelines & Pathways Project. Australian guideline on management of diabetes-related foot infection: Part of the 2021 Australian evidence-based guidelines for diabetes-related foot disease. J. Foot Ankle Res. 2022, 15, 47. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, P.A.; Raspovic, A.; Prentice, J.; Commons, R.J.; Fitridge, R.A.; Charles, J.; Cheney, J.; Purcell, N.; Twigg, S.M. Australian evidence-based guidelines for the prevention and management of diabetes-related foot disease: A guideline summary. Med. J. Aust. 2023, 219, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, K.E.; Boeckh, S.; Stacey, H.J.; Jones, J.D. The microbiology of diabetic foot infections: A meta-analysis. BMC. Infect. Dis. 2021, 21, 770. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Penfield, N.W.; Armstrong, D.G.; Brennan, M.B.; Fayfman, M.; Ryder, J.H.; Tan, T.W.; Schechter, M.C. Evaluation and Management of Diabetes-related Foot Infections. Clin. Infect. Dis. 2023, 77, e1–e13. [Google Scholar] [CrossRef]
- Senneville, E.; Albalawi, Z.; van Asten, S.A.; Abbas, Z.G.; Allison, G.; Aragon-Sanchez, J.; Embil, J.M.; Lavery, L.A.; Alhasan, M.; Oz, O.; et al. IWGDF/IDSA guidelines on the diagnosis and treatment of diabetes-related foot infections (IWGDF/IDSA 2023). Diabetes Metab. Res. Rev. 2023, 40, e3687. [Google Scholar] [CrossRef] [PubMed]
- Musuuza, J.; Sutherland, B.L.; Kurter, S.; Balasubramanian, P.; Bartels, C.M.; Brennan, M.B. A systematic review of multidisciplinary teams to reduce major amputations for patients with diabetic foot ulcers. J. Vasc. Surg. 2020, 71, 1433–1446.e3. [Google Scholar] [CrossRef] [PubMed]
- Bureau of Meteorology. Climate Classification Maps: Australian Government. 2024. Available online: http://www.bom.gov.au/climate/maps/averages/climate-classification/?maptype=kpngrp (accessed on 8 January 2024).
- Diabetic Foot Infection. Therapeutic Guidelines Limited. 2019. Available online: https://tgldcdp.tg.org.au/viewTopic?etgAccess=true&guidelinePage=Antibiotic&topicfile=diabetic-foot-infection (accessed on 12 December 2023).
- Commons, R.J.; Robinson, C.H.; Gawler, D.; Davis, J.S.; Price, R.N. High burden of diabetic foot infections in the top end of Australia: An emerging health crisis (DEFINE study). Diabetes Res. Clin. Pract. 2015, 110, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Veve, M.P.; Mercuro, N.J.; Sangiovanni, R.J.; Santarossa, M.; Patel, N. Prevalence and Predictors of Pseudomonas aeruginosa Among Hospitalized Patients With Diabetic Foot Infections. Open Forum Infect. Dis. 2022, 9, ofac297. [Google Scholar] [CrossRef]
- Ertugrul, M.B.; Uyar Gulec, G.; Baktiroglu, S.; Corekli, E.; Ture, M. The Distribution of Causative Microorganisms in Diabetic Foot Infection: Has There Been Any Alterations? Klimik Dergisi/Klimik J. 2017, 30, 27–31. [Google Scholar] [CrossRef]
- Lee, J.; Mashayamombe, M.; Walsh, T.P.; Kuang, B.K.P.; Pena, G.N.; Vreugde, S.; Cooksley, C.; Carda-Dieguez, M.; Mira, A.; Jesudason, D.; et al. The bacteriology of diabetic foot ulcers and infections and incidence of Staphylococcus aureus Small Colony Variants. J. Med. Microbiol. 2023, 72, 001716. [Google Scholar] [CrossRef]
- Stacey, H.J.; Clements, C.S.; Welburn, S.C.; Jones, J.D. The prevalence of methicillin-resistant Staphylococcus aureus among diabetic patients: A meta-analysis. Acta. Diabetol. 2019, 56, 907–921. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.; Wright-Hughes, A.; Backhouse, M.R.; Lipsky, B.A.; Nixon, J.; Bhogal, M.S.; Reynolds, C.; Brown, S. CODIFI (Concordance in Diabetic Foot Ulcer Infection): A cross-sectional study of wound swab versus tissue sampling in infected diabetic foot ulcers in England. BMJ Open 2018, 8, e019437. [Google Scholar] [CrossRef] [PubMed]
- Tascini, C.; Piaggesi, A.; Tagliaferri, E.; Iacopi, E.; Fondelli, S.; Tedeschi, A.; Rizzo, L.; Leonildi, A.; Menichetti, F. Microbiology at first visit of moderate-to-severe diabetic foot infection with antimicrobial activity and a survey of quinolone monotherapy. Diabetes Res. Clin. Pract. 2011, 94, 133–139. [Google Scholar] [CrossRef]
- Ramakant, P.; Verma, A.K.; Misra, R.; Prasad, K.N.; Chand, G.; Mishra, A.; Agarwal, G.; Agarwal, A.; Mishra, S.K. Changing microbiological profile of pathogenic bacteria in diabetic foot infections: Time for a rethink on which empirical therapy to choose? Diabetologia 2011, 54, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Sasikala, R.; Latha, R.; Muruganandam, N.; Senthikumar, K. Surveillance on multi drug resistant organism (MDRO) associated with diabetic foot ulcers in pondicherry. Internet J. Microbiol. 2007, 5, 1–7. [Google Scholar]
- Ahmad, S.; Khan, M.S.A.; Shah, M.H.; Khan, A.; Bano, R.; Qazi, M. Microbial Profile and Antimicrobial Susceptibility Pattern in Diabetic Foot Ulcer Patients Attending a Tertiary Care Hospital. Cureus 2022, 14, e29770. [Google Scholar] [CrossRef] [PubMed]
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; van Dijk, A.; Miralles, D.G. High-resolution (1 km) Koppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef]
- Maurice, N.M.; Bedi, B.; Sadikot, R.T. Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. Am. J. Respir. Cell. Mol. Biol. 2018, 58, 428–439. [Google Scholar] [CrossRef]
- Diban, F.; Di Lodovico, S.; Di Fermo, P.; D’Ercole, S.; D’Arcangelo, S.; Di Giulio, M.; Cellini, L. Biofilms in Chronic Wound Infections: Innovative Antimicrobial Approaches Using the In Vitro Lubbock Chronic Wound Biofilm Model. Int. J. Mol. Sci. 2023, 24, 1004. [Google Scholar] [CrossRef]
- Shumba, P.; Mairpady Shambat, S.; Siemens, N. The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections. Toxins 2019, 11, 332. [Google Scholar] [CrossRef]
- Soft Tissue Infections Following Water Exposure; Wolters Kluwer: Waltham, MA, USA, 2023; Available online: https://www.uptodate.com.acs.hcn.com.au/contents/soft-tissue-infections-following-water-exposure?search=soft%20tissue%20infection%20following%20water%20exposure&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1#H2044943829 (accessed on 6 February 2024).
- Chaudhary, N.; Huda, F.; Roshan, R.; Basu, S.; Rajput, D.; Singh, S. Lower limb amputation rates in patients with diabetes and an infected foot ulcer: A prospective observational study. Wound Manag. Prev. 2021, 67, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.W.; Shih, C.D.; Concha-Moore, K.C.; Diri, M.M.; Hu, B.; Marrero, D.; Zhou, W.; Armstrong, D.G. Disparities in outcomes of patients admitted with diabetic foot infections. PLoS ONE 2019, 14, e0211481. [Google Scholar] [CrossRef]
- Rossel, A.; Lebowitz, D.; Gariani, K.; Abbas, M.; Kressman, B.; Assal, M.; Tscholl, P.; Stafylakis, D.; Uckay, I. Stopping antibiotics after surgical amputation in diabetic foot and ankle infections—A daily practice cohort. Endocrinol. Diabetes Metab. J. 2018, 2, e00059. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.F.; Manning, L.; MKorman, T.M. Utility of proximal bone cultures in diabetes-related foot infections. Clin. Infect. Dis. 2023, 78, 1770–1771. [Google Scholar] [CrossRef] [PubMed]
- Uçkay, I.; Berli, M.; Sendi, P.; Lipsky, B.A. Principles and practice of antibiotic stewardship in the management of diabetic foot infections. Curr. Opin. Infect. Dis. 2019, 32, 95–101. [Google Scholar] [CrossRef]
- McCreery, R.J.; Lyden, E.; Anderson, M.; Van Schooneveld, T.C. Impact of a syndrome-specific antibiotic stewardship intervention on antipseudomonal antibiotic use in inpatient diabetic foot infection management. Antimicrob. Steward. Healthc. Epidemiol. 2023, 3, e39. [Google Scholar] [CrossRef]
Characteristic | Data | |
---|---|---|
Number of episodes of care for DFI (n) | 151 | |
Age, median (IQR), years | 69 (58–74) | |
Sex, N (%) | ||
Male | 104 (69) | |
Female | 47 (31) | |
BMI, median (range), kg/m2 | 29.42 (19.28–63.20) | |
Diabetes type, n (%) | ||
Type I | 11 (7) | |
Type II | 138 (92) | |
Unspecified | 2 (1) | |
Length of stay, median (IQR), days | 7 (4–12) | |
Infection characteristics, n (%) | ||
Acute | 68 (45) | |
Chronic | 73 (48) | |
Not assessable | 10 (7) | |
Severity of infection, n (%) a | ||
Mild | 20 (13) | |
Moderate | 101 (67) | |
Severe | 27 (18) | |
Not assessable | 3 (2) | |
Presence/absence of OM | ||
Yes | 70 (46) | |
No | 74 (49) | |
Not assessable | 7 (5) | |
Type of surgery b | ||
Minor amputation | 66 (44) | |
Major amputation | 13 (9) | |
Surgical debridement | 25 (17) | |
Participants with tissue sample taken during admission, n (%) | ||
Yes | 82 (54) | |
No | 69 (46) | |
Participants with superficial wounds swabs taken during admission, n (%) | ||
Yes | 95 (63) | |
No | 56 (37) | |
Microbiology, n | 163 | |
Monomicrobial, n (%) | 68 (42) | |
Polymicrobial, n (%) | 95 (58) |
Microorganism | Acute, n (%) | Chronic, n (%) | All Superficial and Tissue Samples, n (%) a |
---|---|---|---|
Staphylococcus aureus | 32 (32) | 37 (29) | 84 (33) |
Methicillin-resistant | 3 | 3 | 8 |
Methicillin-sensitive | 29 | 34 | 76 |
Normal skin flora | 12 (12) | 11 (9) | 27 (11) |
Coagulase-negative staphylococci | 3 (3) | 4 (3) | 7 (3) |
β-Haemolytic streptococci | 8 (8) | 7 (6) | 19 (7) |
Group A | 0 | 1 | 1 |
Group B | 4 | 3 | 8 |
Group G | 4 | 3 | 10 |
Viridans group streptococci | 2 (2) | Not applicable | 2 (1) |
Enteric gram-negative rods unspecified | 7 (7) | 6 (5) | 17 (7) |
Klebsiella spp. | 1 (1) | 2 (2) | Not applicable |
Klebsiella oxytoca | Not applicable | Not applicable | 2 (1) |
Klebsiella pneumoniae | Not applicable | Not applicable | 1 (0) |
Enterobacter cloacae complex | 2 (2) | 1 (1) | 3 (1) |
Enterococcus spp. | 7 (7) | 10 (8) | 16 (6) |
Mixed anaerobes | 3 (3) | 10 (8) | 14 (5) |
Morganella morganii | 2 (2) | 3 (2) | 6 (2) |
Providencia spp. | 2 (2) | 1 (1) | 3 (1) |
Pseudomonas aeruginosa | 2 (2) | 13 (10) | 17 (7) |
Serratia marcescens | 3 (3) | 6 (5) | 9 (4) |
Stenotrophomonas maltophilia | Not applicable | 1 (1) | 2 (1) |
Escherichia coli | Not applicable | 2 (2) | 2 (1) |
No growth | 7 (7) | 3 (2) | 12 (5) |
Proteus spp. | 1 (1) | 2 (2) | 3 (1) |
Mixed enteric flora | 3 (3) | 6 (5) | 8 (3) |
Alcaligenes faecalis | 1 (1) | Not applicable | 1 (0) |
Myroides species | 1 (1) | Not applicable | 1 (0) |
Total | 99 | 125 | 256 |
Microorganism | Number (%) |
---|---|
Enterococcus spp. | 3 (15) |
Acinetobacter baumannii | 2 (10) |
Proteus spp. | 2 (10) |
Staphylococcus aureus (including MRSA) | 2 (10) |
Enteric gram-negative rods unspecified | 1 (5) |
Morganella morganii | 1 (5) |
Pseudomonas aeruginosa | 1 (5) |
Aeromonas hydrophila | 1 (5) |
Citrobacter freundii | 1 (5) |
Mixed growth of organisms | 1 (5) |
Normal skin flora | 1 (5) |
Mixed anaerobes | 1 (5) |
Myroides species | 1 (5) |
β-Haemolytic streptococci | 1 (5) |
Coagulase-negative staphylococci | 1 (5) |
Microorganism | Mild, n (%) | Moderate, n (%) | Severe, n (%) |
---|---|---|---|
Staphylococcus aureus (including MRSA) | 9 (41) | 55 (31) | 20 (39) |
Normal skin flora | 4 (18) | 19 (11) | 4 (8) |
β-Haemolytic streptococci | 2 (9) | 6 (3) | 9 (17) |
Viridans group streptococci | Not applicable | 1 (1) | 1 (2) |
Enteric gram-negative rods unspecified | 2 (9) | 12 (7) | 3 (6) |
Enterococcus spp. | 1 (5) | 13 (7) | 3 (6) |
Pseudomonas aeruginosa | Not applicable | 15 (8) | 1 (2) |
Coagulase-negative staphylococci | Not applicable | 5 (3) | 2 (4) |
Morganella morganii | Not applicable | 5 (3) | Not applicable |
Enterobacter cloacae | Not applicable | 3 (2) | Not applicable |
Serratia marscescens | Not applicable | 8 (5) | 1 (2) |
Klebsiella spp. | Not applicable | 2 (1) | 1 (2) |
Proteus spp. | Not applicable | 2 (1) | 1 (2) |
Providencia spp. | Not applicable | 3 (2) | Not applicable |
Escherichia coli | Not applicable | 2 (1) | Not applicable |
Stenotrophomonas maltophilia | Not applicable | 1 (1) | 1 (2) |
Alcaligenes faecalis | 1 (5) | Not applicable | Not applicable |
Mixed enteric flora | Not applicable | 9 (5) | 1 (2) |
Myroides spp. | 1(5) | Not applicable | Not applicable |
Mixed anaerobes | 1(5) | 9 (5) | 3 (6) |
No growth | 1 (5) | 9 (5) | 1 (2) |
Total | 22 | 179 | 52 |
Microorganism | Acute Infections | Chronic Infections | ||
---|---|---|---|---|
Antibiotics Prior to Admission, n (%) | No antibiotics Prior to Admission, n (%) | Antibiotics Prior to Admission, n (%) | No Antibiotics Prior to Admission, n (%) | |
Staphylococcus aureus (including MRSA) | 14 (23) | 18 (46) | 33 (33) | 4 (15) |
Normal skin flora | 10 (17) | 2 (5) | 7 (7) | 4 (15) |
Pseudomonas aeruginosa | 2 (3) | Not applicable | 12 (12) | 1 (4) |
β-Haemolytic streptococci | 2 (3) | 6 (15) | 6 (6) | 1 (4) |
No growth | 5 (8) | 2 (5) | 2 (2) | 1 (4) |
Mixed enteric flora | 2 (3) | 1 (3) | 4 (4) | 2 (4) |
Coagulase-negative staphylococci | 2 (3) | 1 (3) | 3 (3) | 1 (4) |
Morganella morganii | 2 (3) | Not applicable | 3 (3) | Not applicable |
Stenotrophomonas maltophilia | Not applicable | Not applicable | 1 (1) | Not applicable |
Proteus spp. | 1 (2) | Not applicable | 2 (2) | Not applicable |
Serratia marcescens | 3 (5) | Not applicable | 3 (3) | 3 (12) |
Enteric gram-negative rods unspecified | 5 (8) | 2 (5) | 3 (3) | 3 (12) |
Enterococcus spp. | 3 (5) | 4 (10) | 7 (7) | 3 (11) |
Mixed anaerobes | 2 (3) | 1 (3) | 8 (8) | 2 (7) |
Klebsiella spp. | 1 (2) | Not applicable | 1 (1) | 1 (4) |
Providencia spp. | 2 (3) | Not applicable | 1 (1) | Not applicable |
Escherichia coli | Not applicable | Not applicable | 2 (2) | Not applicable |
Enterobacter cloacae | 2 (3) | Not applicable | 1 (1) | Not applicable |
Viridans group streptococci | 2 (3) | Not applicable | Not applicable | Not applicable |
Alcaligenes faecalis | 1 (3) | Not applicable | Not applicable | Not applicable |
Myroides species | 1 (3) | Not applicable | Not applicable | Not applicable |
Total | 60 | 39 | 99 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morton, K.E.; Coghill, S.H. Staphylococcus aureus Is the Predominant Pathogen in Hospitalised Patients with Diabetes-Related Foot Infections: An Australian Perspective. Antibiotics 2024, 13, 594. https://doi.org/10.3390/antibiotics13070594
Morton KE, Coghill SH. Staphylococcus aureus Is the Predominant Pathogen in Hospitalised Patients with Diabetes-Related Foot Infections: An Australian Perspective. Antibiotics. 2024; 13(7):594. https://doi.org/10.3390/antibiotics13070594
Chicago/Turabian StyleMorton, Kate E., and Sarah H. Coghill. 2024. "Staphylococcus aureus Is the Predominant Pathogen in Hospitalised Patients with Diabetes-Related Foot Infections: An Australian Perspective" Antibiotics 13, no. 7: 594. https://doi.org/10.3390/antibiotics13070594
APA StyleMorton, K. E., & Coghill, S. H. (2024). Staphylococcus aureus Is the Predominant Pathogen in Hospitalised Patients with Diabetes-Related Foot Infections: An Australian Perspective. Antibiotics, 13(7), 594. https://doi.org/10.3390/antibiotics13070594