Supra- and Subgingival Microbiome in Gingivitis and Impact of Biofilm Control: A Comprehensive Review
Abstract
:1. Introduction
2. Results
2.1. Study Characteristics
2.2. Microbiome Changes in Experimental Gingivitis
2.2.1. Alpha Diversity
2.2.2. Beta Diversity
2.2.3. Phyla
2.2.4. Genera and Species
Bacteroidota
Fusobacteriota
Spirochaetota
Patescibacteria Group
Firmicutes
Proteobacteria
Actinobacteriota
2.3. Impact of Oral Hygiene Products
2.3.1. Toothpastes
2.3.2. Mouth Rinses
3. Discussion
3.1. Higher Microbiome Diversity in Gingivitis Than in Periodontal Health
3.2. Development of a More Complex Microbiome in Gingivitis
3.3. Stability of the Gingivitis Microbiome
3.4. Use of Antiseptic Mouth Rinses
3.5. Limitations and Future Considerations
4. Materials and Methods
4.1. Information Sources and Search Strategy
4.1.1. Inclusion Criteria
- Articles published in English;
- Clinical studies in humans, both clinical trials and experimental models;
- Systemically healthy adult individuals ≥ 18 years of age;
- Studies evaluating the oral microbiome in biofilm-induced gingivitis and/or assessing changes after toothbrushing with toothpaste and/or mouth rinses in this condition (they could also include professional mechanical plaque removal (PMPR) or subgingival instrumentation);
- Evaluation of the composition of the oral microbiome by metabarcoding (amplification and sequencing of 16S rRNA gene) or metagenomics (whole shotgun metagenomic sequencing).
4.1.2. Exclusion Criteria
- Studies assessing the composition of the oral microbiota by culture-dependent, immunological, polymerase chain reaction (PCR), checkerboard DNA hybridization, or microarray techniques;
- Subjects with other periodontal conditions, such as periodontal health (except in experimental gingivitis studies), periodontitis, peri-implantitis, and peri-implant mucositis;
- Subjects with relevant systemic diseases.
4.2. Data Extraction
4.3. Taxonomic Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kozak, M.; Pawlik, A. The Role of the Oral Microbiome in the Development of Diseases. Int. J. Mol. Sci. 2023, 24, 5231. [Google Scholar] [CrossRef] [PubMed]
- Chapple, I.L.C.; Mealey, B.L.; Van Dyke, T.E.; Bartold, P.M.; Dommisch, H.; Eickholz, P.; Geisinger, M.L.; Genco, R.J.; Glogauer, M.; Goldstein, M.; et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S68–S77. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, M.S.; Eickholz, P.; Loos, B.G.; Papapanou, P.; van der Velden, U.; Armitage, G.; Bouchard, P.; Deinzer, R.; Dietrich, T.; Hughes, F.; et al. Principles in prevention of periodontal diseases: Consensus report of group 1 of the 11th European Workshop on Periodontology on effective prevention of periodontal and peri-implant diseases. J. Clin. Periodontol. 2015, 42 (Suppl. S16), S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Darveau, R.P.; Curtis, M.A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 2012, 10, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Darveau, R.P.; Pham, T.T.; Lemley, K.; Reife, R.A.; Bainbridge, B.W.; Coats, S.R.; Howald, W.N.; Way, S.S.; Hajjar, A.M. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4. Infect. Immun. 2004, 72, 5041–5051. [Google Scholar] [CrossRef] [PubMed]
- Iniesta, M.; Chamorro, C.; Ambrosio, N.; Marín, M.J.; Sanz, M.; Herrera, D. Subgingival microbiome in periodontal health, gingivitis and different stages of periodontitis. J. Clin. Periodontol. 2023, 50, 905–920. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G. Periodontitis: From microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 2015, 15, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Gunsolley, J.C. Clinical efficacy of antimicrobial mouthrinses. J. Dent. 2010, 38, S6–S10. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.; Escribano, M.; Roldán, S.; Martín, C.; Herrera, D. Efficacy of adjunctive anti-plaque chemical agents in managing gingivitis: A systematic review and meta-analysis. J. Clin. Periodontol. 2015, 42, S106–S138. [Google Scholar] [CrossRef]
- do Amaral, G.; Hassan, M.A.; Sloniak, M.C.; Pannuti, C.M.; Romito, G.A.; Villar, C.C. Effects of antimicrobial mouthwashes on the human oral microbiome: Systematic review of controlled clinical trials. Int. J. Dent. Hyg. 2023, 21, 128–140. [Google Scholar] [CrossRef]
- Abusleme, L.; Hoare, A.; Hong, B.Y.; Diaz, P.I. Microbial signatures of health, gingivitis, and periodontitis. Periodontol. 2000 2021, 86, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Schincaglia, G.P.; Hong, B.Y.; Rosania, A.; Barasz, J.; Thompson, A.; Sobue, T.; Panagakos, F.; Burleson, J.A.; Dongari-Bagtzoglou, A.; Diaz, P.I. Clinical, Immune, and Microbiome Traits of Gingivitis and Peri-implant Mucositis. J. Dent. Res. 2017, 96, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Bamashmous, S.; Kotsakis, G.A.; Kerns, K.A.; Leroux, B.G.; Zenobia, C.; Chen, D.; Trivedi, H.M.; McLean, J.S.; Darveau, R.P. Human variation in gingival inflammation. Proc. Natl. Acad. Sci. USA 2021, 118, e2012578118. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.W.; Wellappuli, N.C.; Huang, R.C.; Wu, K.; Lam, D.K.; Glogauer, M.; Beiko, R.G.; Senadheera, D.B. Suspension of oral hygiene practices highlights key bacterial shifts in saliva, tongue, and tooth plaque during gingival inflammation and resolution. ISME Commun. 2023, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Fine, N.; Barbour, A.; Kaura, K.; Kerns, K.A.; Chen, D.; Trivedi, H.M.; Gomez, J.; Sabharwal, A.; McLean, J.S.; Darveau, R.P.; et al. Effects of a stabilized stannous fluoride dentifrice on clinical, immunomodulatory, and microbial outcomes in a human experimental gingivitis model. J. Periodontol. 2023, 95, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, R.; Zeng, X.; He, T.; Zhao, H.; Chang, A.; Bo, C.; Chen, J.; Yang, F.; Knight, R.; et al. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J. 2014, 8, 1768–1780. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.; He, T.; Huang, S.; Bo, C.P.; Li, Z.; Chang, J.L.; Liu, J.Q.; Charbonneau, D.; Xu, J.; Li, R.; et al. Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by inhibiting dental plaque maturation. Int. J. Oral Sci. 2016, 8, 182–190. [Google Scholar] [CrossRef]
- Nowicki, E.M.; Shroff, R.; Singleton, J.A.; Renaud, D.E.; Wallace, D.; Drury, J.; Zirnheld, J.; Colleti, B.; Ellington, A.D.; Lamont, R.J.; et al. Microbiota and Metatranscriptome Changes Accompanying the Onset of Gingivitis. mBio 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; He, T.; Yue, F.; Xu, X.; Wang, L.; Zhu, P.; Teng, F.; Sun, Z.; Liu, X.; Jing, G.; et al. Longitudinal Multi-omics and Microbiome Meta-analysis Identify an Asymptomatic Gingival State That Links Gingivitis, Periodontitis, and Aging. mBio 2021, 12, e03281-20. [Google Scholar] [CrossRef]
- Belstrøm, D.; Sembler-Møller, M.L.; Grande, M.A.; Kirkby, N.; Cotton, S.L.; Paster, B.J.; Twetman, S.; Holmstrup, P. Impact of Oral Hygiene Discontinuation on Supragingival and Salivary Microbiomes. JDR Clin. Trans. Res. 2018, 3, 57–64. [Google Scholar] [CrossRef]
- Al-Kamel, A.; Baraniya, D.; Al-Hajj, W.A.; Halboub, E.; Abdulrab, S.; Chen, T.; Al-Hebshi, N.N. Subgingival microbiome of experimental gingivitis: Shifts associated with the use of chlorhexidine and N-acetyl cysteine mouthwashes. J. Oral Microbiol. 2019, 11, 1608141. [Google Scholar] [CrossRef] [PubMed]
- Kistler, J.O.; Booth, V.; Bradshaw, D.J.; Wade, W.G. Bacterial community development in experimental gingivitis. PLoS ONE 2013, 8, e71227. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, Z.; He, T.; Bo, C.; Chang, J.; Li, L.; He, Y.; Liu, J.; Charbonneau, D.; Li, R.; et al. Microbiota-based Signature of Gingivitis Treatments: A Randomized Study. Sci. Rep. 2016, 6, 24705. [Google Scholar] [CrossRef] [PubMed]
- Keijser, B.J.F.; van den Broek, T.J.; Slot, D.E.; van Twillert, L.; Kool, J.; Thabuis, C.; Ossendrijver, M.; van der Weijden, F.A.; Montijn, R.C. The Impact of Maltitol-Sweetened Chewing Gum on the Dental Plaque Biofilm Microbiota Composition. Front. Microbiol. 2018, 9, 381. [Google Scholar] [CrossRef] [PubMed]
- Newman, B.A.; Rosebrough, C.N.; Tamashiro, R.A.; Dias Ribeiro, A.P.; Whitlock, J.A.; Sidhu, G.; Aukhil, I.; Porral, D.Y.; Progulske-Fox, A.; Myntti, M.F.; et al. A randomized controlled trial to evaluate the effectiveness of a novel mouth rinse in patients with gingivitis. BMC Oral Health 2022, 22, 461. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.T.; Hug, L.A.; Thomas, B.C.; Sharon, I.; Castelle, C.J.; Singh, A.; Wilkins, M.J.; Wrighton, K.C.; Williams, K.H.; Banfield, J.F. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 2015, 523, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Alauzet, C.; Marchandin, H.; Courtin, P.; Mory, F.; Lemée, L.; Pons, J.L.; Chapot-Chartier, M.P.; Lozniewski, A.; Jumas-Bilak, E. Multilocus analysis reveals diversity in the genus Tissierella: Description of Tissierella carlieri sp. nov. in the new class Tissierellia classis nov. Syst. Appl. Microbiol. 2014, 37, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.; Yu, W.H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [PubMed]
- The Forsyth Institute. Genus: Haemophilus. Available online: https://www.homd.org/taxa/ecology?rank=genus&name=Haemophilus (accessed on 23 March 2024).
- The Forsyth Institute. Expanded Human Oral Microbiome Database (eHOMD). Available online: https://www.homd.org/ (accessed on 10 April 2024).
- Bhandary, R.; Venugopalan, G.; Ramesh, A.; Tartaglia, G.M.; Singhal, I.; Khijmatgar, S. Microbial Symphony: Navigating the Intricacies of the Human Oral Microbiome and Its Impact on Health. Microorganisms 2024, 12, 571. [Google Scholar] [CrossRef]
- Gomez, A.; Espinoza, J.L.; Harkins, D.M.; Leong, P.; Saffery, R.; Bockmann, M.; Torralba, M.; Kuelbs, C.; Kodukula, R.; Inman, J.; et al. Host Genetic Control of the Oral Microbiome in Health and Disease. Cell Host Microbe 2017, 22, 269–278. [Google Scholar] [CrossRef]
- Mukherjee, C.; Moyer, C.O.; Steinkamp, H.M.; Hashmi, S.B.; Beall, C.J.; Guo, X.; Ni, A.; Leys, E.J.; Griffen, A.L. Acquisition of oral microbiota is driven by environment, not host genetics. Microbiome 2021, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.L.; Johnston, W.; Delaney, C.; Rajendran, R.; Butcher, J.; Khan, S.; Bradshaw, D.; Ramage, G.; Culshaw, S. Biofilm-stimulated epithelium modulates the inflammatory responses in co-cultured immune cells. Sci. Rep. 2019, 9, 15779. [Google Scholar] [CrossRef] [PubMed]
- Szafrański, S.P.; Deng, Z.L.; Tomasch, J.; Jarek, M.; Bhuju, S.; Meisinger, C.; Kühnisch, J.; Sztajer, H.; Wagner-Döbler, I. Functional biomarkers for chronic periodontitis and insights into the roles of Prevotella nigrescens and Fusobacterium nucleatum; a metatranscriptome analysis. NPJ Biofilms Microbiomes 2015, 1, 15017. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, M.S.; Chapple, I.L.; Jepsen, S.; Sanz, M. Primary and secondary prevention of periodontal and peri-implant diseases: Introduction to, and objectives of the 11th European Workshop on Periodontology consensus conference. J. Clin. Periodontol. 2015, 42 (Suppl. S16), S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Mason, M.R.; Preshaw, P.M.; Nagaraja, H.N.; Dabdoub, S.M.; Rahman, A.; Kumar, P.S. The subgingival microbiome of clinically healthy current and never smokers. ISME J. 2015, 9, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Peters, B.A.; Dominianni, C.; Zhang, Y.; Pei, Z.; Yang, L.; Ma, Y.; Purdue, M.P.; Jacobs, E.J.; Gapstur, S.M.; et al. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016, 10, 2435–2446. [Google Scholar] [CrossRef] [PubMed]
- Mazurel, D.; Carda-Diéguez, M.; Langenburg, T.; Žiemytė, M.; Johnston, W.; Martínez, C.P.; Albalat, F.; Llena, C.; Al-Hebshi, N.; Culshaw, S.; et al. Nitrate and a nitrate-reducing Rothia aeria strain as potential prebiotic or synbiotic treatments for periodontitis. NPJ Biofilms Microbiomes 2023, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Cook, G.S.; Costerton, J.W.; Bruce, G.; Rose, T.M.; Lamont, R.J. Intergeneric communication in dental plaque biofilms. J. Bacteriol. 2000, 182, 7067–7069. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.H.; Lamont, R.J.; Xie, H. A novel peptidic inhibitor derived from Streptococcus cristatus ArcA attenuates virulence potential of Porphyromonas gingivalis. Sci. Rep. 2017, 7, 16217. [Google Scholar] [CrossRef]
- Wang, B.Y.; Wu, J.; Lamont, R.J.; Lin, X.; Xie, H. Negative correlation of distributions of Streptococcus cristatus and Porphyromonas gingivalis in subgingival plaque. J. Clin. Microbiol. 2009, 47, 3902–3906. [Google Scholar] [CrossRef]
- Uranga, C.C.; Arroyo, P., Jr.; Duggan, B.M.; Gerwick, W.H.; Edlund, A. Commensal Oral Rothia mucilaginosa Produces Enterobactin, a Metal-Chelating Siderophore. mSystems 2020, 5, e00161-20. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Haiminen, N.; Carrieri, A.P.; Hu, R.; Jiang, L.; Parida, L.; Russell, B.; Allaband, C.; Zarrinpar, A.; Vázquez-Baeza, Y.; et al. Human Skin, Oral, and Gut Microbiomes Predict Chronological Age. mSystems 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Jockel-Schneider, Y.; Schlagenhauf, U.; Stölzel, P.; Goßner, S.; Carle, R.; Ehmke, B.; Prior, K.; Hagenfeld, D. Nitrate-rich diet alters the composition of the oral microbiota in periodontal recall patients. J. Periodontol. 2021, 92, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Thurnheer, T.; Belibasakis, G.N. Effect of sodium fluoride on oral biofilm microbiota and enamel demineralization. Arch. Oral Biol. 2018, 89, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Panagakos, F.S.; Volpe, A.R.; Petrone, M.E.; DeVizio, W.; Davies, R.M.; Proskin, H.M. Advanced oral antibacterial/anti-inflammatory technology: A comprehensive review of the clinical benefits of a triclosan/copolymer/fluoride dentifrice. J. Clin. Dent. 2005, 16, S1–S19. [Google Scholar] [PubMed]
- McBain, A.J.; Bartolo, R.G.; Catrenich, C.E.; Charbonneau, D.; Ledder, R.G.; Gilbert, P. Effects of a chlorhexidine gluconate-containing mouthwash on the vitality and antimicrobial susceptibility of in vitro oral bacterial ecosystems. Appl. Environ. Microbiol. 2003, 69, 4770–4776. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.P.; Boches, S.K.; Cotton, S.L.; Goodson, J.M.; Kent, R.; Haffajee, A.D.; Socransky, S.S.; Hasturk, H.; Van Dyke, T.E.; Dewhirst, F.; et al. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J. Periodontol. 2009, 80, 1421–1432. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.; Darveekaran Nair, S.S.; Zhu, P.; Li, S.; Huang, S.; Li, X.; Xu, J.; Yang, F. Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci. Rep. 2018, 8, 16321. [Google Scholar] [CrossRef]
- Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome Datasets Are Compositional: And This Is Not Optional. Front. Microbiol. 2017, 8, 2224. [Google Scholar] [CrossRef]
- Hawinkel, S.; Mattiello, F.; Bijnens, L.; Thas, O. A broken promise: Microbiome differential abundance methods do not control the false discovery rate. Brief. Bioinform. 2019, 20, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Herrera, D.; Contreras, A.; Gamonal, J.; Oteo, A.; Jaramillo, A.; Silva, N.; Sanz, M.; Botero, J.E.; León, R. Subgingival microbial profiles in chronic periodontitis patients from Chile, Colombia and Spain. J. Clin. Periodontol. 2008, 35, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Chen, F.; Cai, Y.; Chen, Z.; Luan, Q.; Yu, X. Measuring the subgingival microbiota in periodontitis patients: Comparison of the surface layer and the underlying layers. Microbiol. Immunol. 2020, 64, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Oren, A.; Garrity, G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 2021, 71, 005056. [Google Scholar] [CrossRef]
- Whitman, W.B.; Oren, A.; Chuvochina, M.; da Costa, M.S.; Garrity, G.M.; Rainey, F.A.; Rossello-Mora, R.; Schink, B.; Sutcliffe, I.; Trujillo, M.E.; et al. Proposal of the suffix-ota to denote phyla. Addendum to ‘Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes’. Int. J. Syst. Evol. Microbiol. 2018, 68, 967–969. [Google Scholar] [CrossRef]
Phylum | Genus | Subgingival | Supragingival | ||
---|---|---|---|---|---|
Increase | Decrease | Increase | Decrease | ||
Bacteroidota | Prevotella | Prevotella shahii, Prevotella loescheii, Prevotella saccharolytica, Prevotella micans, Prevotella maculosa, Prevotella oulorum, Prevotella marshii, Prevotella nigrescens | P. loescheii, P. saccharolytica, P. micans, P. maculosa, P. oulorum, Prevotella melaninogenica, Prevotella intermedia | ||
Porphyromonas | Porphyromonas catoniae, Porphyromonas endodontalis | P. catoniae | |||
Tannerella | Tannerella sp. HOT_286 | Tannerella sp. HOT_286 | |||
Alloprevotella | Alloprevotella tannerae, Alloprevotella rava | ||||
Bergeyella | uncultured Bergeyella sp. | uncultured Bergeyella sp. | |||
Capnocytophaga | Capnocytophaga gingivalis, Capnocytophaga leadbetteri | Capnocytophaga granulosa, Capnocytophaga sp. HOT_B29 | Capnocytophaga sputigena, C. gingivalis | ||
Fusobacteriota | Fusobacterium | Fusobacterium nucleatum subsp. vincentii, Fusobacterium nucleatum subsp. animalis, Fusobacterium nucleatum subsp. polymorphum | F. nucleatum subsp. polymorphum | ||
Leptotrichia | Leptotrichia buccalis, Leptotrichia sp. HOT_392 | L. buccalis, Leptotrichia sp. HOT_212, Leptotrichia sp. HOT_223, Leptotrichia sp. HOT_225, Leptotrichia sp. HOT_417, Leptotrichia hofstadii, Leptotrichia wadei, Leptotrichia shahii | |||
Spirochaetota | Treponema | Treponema medium, Treponema socranskii, Treponema maltophilum, Treponema vincentii | T. vincentii | T. socranskii | |
Patescibacteria group a | Gracilibacteria b | Gracilibacteria bacterium | |||
Absconditabacteria_(SR1)_[G-1] c | Absconditabacteria_(SR1)_[G-1] sp. HOT_345 | Absconditabacteria_(SR1)_[G-1] bacterium | |||
Saccharibacteria_(TM7)_[G-1] d | Saccharibacteria_(TM7)_[G-1] bacterium_HOT_346, Saccharibacteria_(TM7)_[G-1] bacterium_HOT_349 | Saccharibacteria_(TM7)_[G-1] bacterium_HOT_347, Saccharibacteria_(TM7)_[G-1] bacterium_HOT_348, Saccharibacteria_(TM7)_[G-1] bacterium_HOT_349 |
Genus | Subgingival | Supragingival | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Schincaglia et al., (2017) [12] | Al-Kamel et al., (2018) [21] | Bamashmou et al., (2021) [13] | Hall et al., (2023) [14] | Nowicki et al., (2018) [18] | Huang et al., (2014) [16] | Teng et al., (2016) [17] | Belstrøm et al., (2018) [20] | Huang et al., (2021) [19] | Hall et al., (2023) [14] | |
Streptococcus a | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | |
Granulicatella a | ↓ | ↓ | ↓ | |||||||
Selenomonas b | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ||||
Dialister b | ↑ | NS | ||||||||
Johnsonella c | ↑ | ↑ | ↑ | |||||||
Gemella a | ↓ | NS | NS | ↑ | ||||||
Parvimonas d | ↑ | NS | ||||||||
Catonella c | ↑ | ↑ | ↑ | |||||||
Centipeda b | ↑ | ↑ | ||||||||
Clostridia_UCG-014 c | ↑ | ↑ | ||||||||
Peptostreptococcaceae_[G-7] and [G-9] c | ↑ | ↑ | NS | |||||||
Clostridia_vadinBB60_group c | NS | ↓ | ||||||||
Peptococcus c | ↑ | ↑ | ↑ | NS |
Phylum | Genus | Subgingival | Supragingival | ||
---|---|---|---|---|---|
Increase | Decrease | Increase | Decrease | ||
Firmicutes | Streptococcus | Streptococcus mitis, Streptococcus sanguinis, Streptococcus gordonii, Streptococcus sp. HOT_423, Streptococcus sp. HOT_064, Streptococcus australis | Streptococcus cristatus, Streptococcus anginosus | S. mitis, S. sanguinis | |
Peptostreptococcaceae_[G-9] | [Eubacterium] brachy a | ||||
Clostridiales | Clostridiales bacterium | C. bacterium | |||
Oribacterium | Oribacterium parvum | ||||
Selenomonas | Selenomonas sputigena, Selenomonas flueggei, Selenomonas infelix, Selenomonas sp. HOT_G51 | S. sputigena, Selenomonas dianae, S. infelix, Selenomonas noxia | |||
Peptostreptococcus | Peptostreptococcus stomatis | ||||
Peptococcus | Peptococcus sp. HOT_167 | ||||
Johnsonella | Johnsonella ignava | ||||
Gemella | Gemella morbillorum | ||||
Dialister | Dialister invisus | ||||
Catonella | Catonella morbi | ||||
Granulicatella | Granulicatella elegans | ||||
Solobacterium | Solobacterium moorei | ||||
Lachnospiraceae_[G-3] | Lachnospiraceae_[G-3] sp. HOT_100 | ||||
Mitsuokella | Mitsuokella sp. HOT_521 | ||||
Staphylococcus | Staphylococcus hominis, Staphylococcus epidermidis | ||||
Proteobacteria | Neisseria | Neisseria bacilliformis | Neisseria flavescens | N. bacilliformis, Neisseria elongata | |
Haemophilus | Haemophilus parainfluenzae, Haemophilus haemolyticus | H. parainfluenzae | |||
Campylobacter | Campylobacter gracilis | Campylobacter showae | |||
Cardiobacterium | Cardiobacterium valvarum, Cardiobacterium hominis | C. valvarum | |||
Lautropia | Lautropia sp. oral clone AP009 | ||||
Kingella | Kingella oralis | Kingella oralis | |||
Aggregatibacter | Aggregatibacter sp. HOT_513 | ||||
Pseudomonas | Pseudomonas otitidis | ||||
Actinobacteriota | Propionibacterium | Propionibacterium propionicum | P. propionicum | ||
Corynebacterium | Corynebacterium durum | C. durum | |||
Rothia | Rothia areia, Rothia dentocariosa, Rothia mucilaginosa | R. dentocariosa, R. aeria | |||
Actinomyces | Actinomyces dentalis | Actinomyces viscosus, Actinomyces naeslundii | |||
Actinobaculum | Actinobaculum sp. HOT_848 | ||||
Brevibacterium | Brevibacterium casei |
Phylum | Subgingival (CHX) | Supragingival (CPC Plus Essential Oils) | ||
---|---|---|---|---|
Increase | Decrease | Increase | Decrease | |
Bacteroidota | Capnocytophaga sputigena, Capnocytophaga gingivalis | Prevotella micans, Porphyromonas sp. HOT_279, Tannerella sp. HOT_286 | Prevotella maculosa, Prevotella salivae, Prevotella sp._HMT_292, Prevotella sp._HMT_376, Prevotella tannerae, Tannerella forsythia | Bergeyella sp. HMT_322, Capnocytophaga leadbetteri, C. gingivalis, Porphyromonas pasteri |
Fusobacteriota | Leptotrichia wadei, Leptotrichia sp._HOT_225, Leptotrichia sp._HOT_392 | Fusobacterium nucleatum subsp. animalis, Fusobacterium nucleatum subsp. vincentii | Fusobacterium periodonticum, Fusobacterium nucleatum subsp. polymorphum, Fusobacterium sp._HMT_370, Leptotrichia hofstadii, Leptotrichia sp._HMT_225 | |
Spirochaetota | Treponema parvum, Treponema lecithinolyticum, Treponema socranskii, Treponema sp._HMT_231, Treponema sp._HMT_270 | |||
Candidatus Saccharibacteria | Saccharibacteria_(TM7)_[G-1] bacterium_HOT_346, Saccharibacteria_(TM7)_[G-1] bacterium_HOT_349 | |||
Firmicutes | Streptococcus sp. HOT_423 | Gemella haemolysans, Gemella morbillorum, Lachnoanaerobaculum umeaense, Lachnospiraceae_[G-3] sp._HOT_100, Mogibacterium diversum, Selenomonas infelix, Selenomonas noxia, Streptococcus cristatus, Streptococcus dentisani, Streptococcus sanguinis, Veillonella parvula group | Clostridiales_[G-2] bacterium_HMT_085, Dialister invisus, Mogibacterium timidum, Parvimonas sp._HMT_110, Peptococcus sp._HMT_168, Peptostreptococcaceae_[G-4] bacterium_HMT_369, Streptococcus constellatus, Streptococcus intermedius, Streptococcus sp._HMT_066, Veillonellaceae_[G-1] bacterium_HMT_132 | S. dentisani, Streptococcus mitis, Streptococcus sinensis |
Proteobacteria | Kingella oralis | Cardiobacterium hominis, Cardiobacterium valvarum | Campylobacter gracilis, Campylobacter sp._HMT_044 | Aggregatibacter sp._HMT_458, Aggregatibacter sp._HMT_513, C. valvarum, Haemophilus parainfluenzae, Lautropia mirabilis, Neisseria flavescens, Neisseria subflava, Neisseria bacilliformis, Neisseria pharyngis |
Actinobacteriota | Actinomyces johnsonii, Actinomyces naeslundii, Atopobium parvulum, Corynebacterium matruchotii | Actinomyces gerencseriae, Actinomyces naeslundii, Actinomyces sp._HMT_169, Actinomyces sp._HMT_175, Actinomyces sp._HMT_525, Rothia mucilaginosa | Actinomyces sp._HMT_171, Corynebacterium durum, Corynebacterium matruchotii | |
Synergistota | Fretibacterium sp._HMT_359 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iniesta, M.; Vasconcelos, V.; Sanz, M.; Herrera, D. Supra- and Subgingival Microbiome in Gingivitis and Impact of Biofilm Control: A Comprehensive Review. Antibiotics 2024, 13, 571. https://doi.org/10.3390/antibiotics13060571
Iniesta M, Vasconcelos V, Sanz M, Herrera D. Supra- and Subgingival Microbiome in Gingivitis and Impact of Biofilm Control: A Comprehensive Review. Antibiotics. 2024; 13(6):571. https://doi.org/10.3390/antibiotics13060571
Chicago/Turabian StyleIniesta, Margarita, Viviane Vasconcelos, Mariano Sanz, and David Herrera. 2024. "Supra- and Subgingival Microbiome in Gingivitis and Impact of Biofilm Control: A Comprehensive Review" Antibiotics 13, no. 6: 571. https://doi.org/10.3390/antibiotics13060571
APA StyleIniesta, M., Vasconcelos, V., Sanz, M., & Herrera, D. (2024). Supra- and Subgingival Microbiome in Gingivitis and Impact of Biofilm Control: A Comprehensive Review. Antibiotics, 13(6), 571. https://doi.org/10.3390/antibiotics13060571