Emergence of Neisseria gonorrhoeae Clone with Reduced Susceptibility to Sitafloxacin in China: An In Vitro and Genomic Study
Abstract
:1. Introduction
2. Results
2.1. The MIC Distributions of Sitafloxacin and Ciprofloxacin in 507 N. gonorrhoeae Clinical Isolates
2.2. N. gonorrhoeae Strains with Reduced Sitafloxacin Susceptibility Were Isolated from Multiple Regions in Shanghai
2.3. Most of the N. gonorrhoeae Strains with Reduced Susceptibility to Sitafloxacin Belonged to the ST8123 Clone
2.4. GyrA-S91F, D95Y, and ParC-S87N Mutations May Be Associated with the Reduced Sitafloxacin Susceptibility in N. gonorrhoeae
2.5. N. gonorrhoeae Strains with GyrA-S91F, D95Y, and ParC-S87N Were Converged into a Subclade in ST8123
3. Discussion
4. Materials and Methods
4.1. N. gonorrhoeae Strains Isolation
4.2. Antimicrobial Susceptibility Testing
4.3. Whole Genome Sequencing and Bioinformatics Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rowley, J.; Vander Hoorn, S.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. Bull. World Health Organ. 2019, 97, 548–562. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Workowski, K.A.; Bachmann, L.H.; Chan, P.A.; Johnston, C.M.; Muzny, C.A.; Park, I.; Reno, H.; Zenilman, J.M.; Bolan, G.A. Sexually transmitted infections treatment guidelines, 2021. MMWR. Recomm. Rep. 2021, 70, 1–187. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines for the Treatment of Neisseria gonorrhoeae; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Unemo, M.; Lahra, M.M.; Escher, M.; Eremin, S.; Cole, M.J.; Galarza, P.; Ndowa, F.; Martin, I.; Dillon, J.R.; Galas, M.; et al. WHO global antimicrobial resistance surveillance for Neisseria gonorrhoeae 2017–18: A retrospective observational study. Lancet Microbe 2021, 2, e627–e636. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xi, Y.; Gong, X.; Chen, S. Ceftriaxone-resistant gonorrhea-China, 2022. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Nakayama, S.I.; Osawa, K.; Yoshida, H.; Arakawa, S.; Furubayashi, K.I.; Kameoka, H.; Shimuta, K.; Kawahata, T.; Unemo, M.; et al. Clonal expansion and spread of the ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, identified in Japan in 2015, and closely related isolates. J. Antimicrob. Chemother. 2019, 74, 1812–1819. [Google Scholar] [CrossRef] [PubMed]
- Jennison, A.V.; Whiley, D.; Lahra, M.M.; Graham, R.M.; Cole, M.J.; Hughes, G.; Fifer, H.; Andersson, M.; Edwards, A.; Eyre, D. Genetic relatedness of ceftriaxone-resistant and high-level azithromycin resistant Neisseria gonorrhoeae cases, United Kingdom and Australia, February to April 2018. Eurosurveillance 2019, 24, 1900118. [Google Scholar] [CrossRef] [PubMed]
- Otani, T.; Tanaka, M.; Ito, E.; Kurosaka, Y.; Murakami, Y.; Onodera, K.; Akasaka, T.; Sato, K. In vitro and in vivo antibacterial activities of DK-507k, a novel fluoroquinolone. Antimicrob. Agents Chemother. 2003, 47, 3750–3759. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, T.; Munkjargal, M.; Ebinuma, H.; Toyoshima, O.; Suzuki, H. Sitafloxacin for third-line Helicobacter pylori eradication: A systematic review. J. Clin. Med. 2021, 10, 2722. [Google Scholar] [CrossRef] [PubMed]
- Ando, N.; Mizushima, D.; Takano, M.; Mitobe, M.; Kobayashi, K.; Kubota, H.; Miyake, H.; Suzuki, J.; Sadamasu, K.; Aoki, T.; et al. Effectiveness of sitafloxacin monotherapy for quinolone-resistant rectal and urogenital Mycoplasma genitalium infections: A prospective cohort study. J. Antimicrob. Chemother. 2023, 78, 2070–2079. [Google Scholar] [CrossRef]
- Ren, Y.; Weeks, J.; Xue, T.; Rainbolt, J.; de Mesy Bentley, K.L.; Shu, Y.; Liu, Y.; Masters, E.; Cherian, P.; McKenna, C.E.; et al. Evidence of bisphosphonate-conjugated sitafloxacin eradication of established methicillin-resistant S. aureus infection with osseointegration in murine models of implant-associated osteomyelitis. Bone Res. 2023, 11, 51. [Google Scholar] [CrossRef]
- Keating, G.M. Sitafloxacin: In bacterial infections. Drugs 2011, 71, 731–744. [Google Scholar] [CrossRef]
- Okumura, R.; Hirata, T.; Onodera, Y.; Hoshino, K.; Otani, T.; Yamamoto, T. Dual-targeting properties of the 3-aminopyrrolidyl quinolones, DC-159a and sitafloxacin, against DNA gyrase and topoisomerase IV: Contribution to reducing in vitro emergence of quinolone-resistant Streptococcus pneumoniae. J. Antimicrob. Chemother. 2008, 62, 98–104. [Google Scholar] [CrossRef]
- Jonsson, A.; Foerster, S.; Golparian, D.; Hamasuna, R.; Jacobsson, S.; Lindberg, M.; Jensen, J.S.; Ohnishi, M.; Unemo, M. In vitro activity and time-kill curve analysis of sitafloxacin against a global panel of antimicrobial-resistant and multidrug-resistant Neisseria gonorrhoeae isolates. APMIS 2018, 126, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Hamasuna, R.; Ohnishi, M.; Matsumoto, M.; Okumura, R.; Unemo, M.; Matsumoto, T. In vitro activity of sitafloxacin and additional newer generation fluoroquinolones against ciprofloxacin-resistant Neisseria gonorrhoeae isolates. Microb. Drug Resist. 2018, 24, 30–34. [Google Scholar] [CrossRef]
- Wi, T.; Lahra, M.M.; Ndowa, F.; Bala, M.; Dillon, J.R.; Ramon-Pardo, P.; Eremin, S.R.; Bolan, G.; Unemo, M. Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med. 2017, 14, e1002344. [Google Scholar] [CrossRef] [PubMed]
- Hamasuna, R.; Yasuda, M.; Takahashi, S.; Uehara, S.; Kawai, Y.; Miyairi, I.; Arakawa, S.; Kiyota, H. The JAID/JSC guidelines to clinical management of infectious disease 2017 concerning male urethritis and related disorders. J. Infect. Chemother. 2021, 27, 546–554. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Y.; Guo, Y.; Yin, D.; Zheng, Y.; Han, R.; Ding, L.; Zhu, D.; Hu, F. Comparative activities of sitafloxacin against recent clinical isolates in hospitals across China. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2271–2283. [Google Scholar] [CrossRef]
- Hamasuna, R.; Yasuda, M.; Ishikawa, K.; Uehara, S.; Takahashi, S.; Hayami, H.; Yamamoto, S.; Matsumoto, T.; Minamitani, S.; Watanabe, A.; et al. Nationwide surveillance of the antimicrobial susceptibility of Neisseria gonorrhoeae from male urethritis in Japan. J. Infect. Chemother. 2013, 19, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Xiu, L.; Zeng, Y.; Zhang, C.; Sun, L.; Zhang, L.; Wang, F.; Peng, J. Typing of Neisseria gonorrhoeae isolates in Shenzhen, China from 2014–2018 reveals the shift of genotypes associated with antimicrobial resistance. Antimicrob. Agents Chemother. 2021, 65, e02311-20. [Google Scholar] [CrossRef]
- Wu, G.; Wu, L.; Hu, X.; Zhou, H.; Liu, J.; Zhu, M.; Zheng, Y.; Zhai, Y.; Shentu, J. Pharmacokinetics and safety of sitafloxacin after single oral doses in healthy volunteers. Int. J. Clin. Pharmacol. Ther. 2014, 52, 1037–1044. [Google Scholar] [CrossRef]
- Hanao, M.; Aoki, K.; Ishii, Y.; Shimuta, K.; Ohnishi, M.; Tateda, K. Molecular characterization of Neisseria gonorrhoeae isolates collected through a national surveillance programme in Japan, 2013: Evidence of the emergence of a ceftriaxone-resistant strain from a ceftriaxone-susceptible lineage. J. Antimicrob. Chemother. 2021, 76, 1769–1775. [Google Scholar] [CrossRef] [PubMed]
- Lan, P.T.; Golparian, D.; Ringlander, J.; Van Hung, L.; Van Thuong, N.; Unemo, M. Genomic analysis and antimicrobial resistance of Neisseria gonorrhoeae isolates from Vietnam in 2011 and 2015–16. J. Antimicrob. Chemother. 2020, 75, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.C.; Seby, S.; Abrams, A.J.; Cartee, J.; Lucking, S.; Vidyaprakash, E.; Schmerer, M.; Pham, C.D.; Hong, J.; Torrone, E.; et al. Evidence of recent genomic evolution in gonococcal strains with decreased susceptibility to cephalosporins or azithromycin in the United States, 2014–2016. J. Infect. Dis. 2019, 220, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Chen, W.; Xie, Q.; Yu, Y.; Liao, Y.; Feng, Z.; Qin, X.; Wu, X.; Tang, S.; Zheng, H. Dissemination and genome analysis of high-level ceftriaxone-resistant penA 60.001 Neisseria gonorrhoeae strains from the Guangdong Gonococcal Antibiotics Susceptibility Programme (GD-GASP), 2016-2019. Emerg. Microbes Infect. 2022, 11, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Fifer, H.; Hughes, G.; Whiley, D.; Lahra, M.M. Lessons learnt from ceftriaxone-resistant gonorrhoea in the UK and Australia. Lancet Infect. Dis. 2020, 20, 276–278. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Tu, J.; Jiang, J.; Bi, Y.; You, W.; Zhang, Y.; Ren, J.; Zhu, T.; Cao, Z.; Yu, Z.; et al. Clinical and genomic analysis of liver abscess-causing Klebsiella pneumoniae identifies new liver abscess-associated virulence genes. Front. Cell. Infect. Microbiol. 2016, 6, 165. [Google Scholar] [CrossRef] [PubMed]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef] [PubMed]
- Demczuk, W.; Sidhu, S.; Unemo, M.; Whiley, D.M.; Allen, V.G.; Dillon, J.R.; Cole, M.; Seah, C.; Trembizki, E.; Trees, D.L.; et al. Neisseria gonorrhoeae sequence typing for antimicrobial resistance, a novel antimicrobial resistance multilocus typing scheme for tracking global dissemination of N. gonorrhoeae Strains. J. Clin. Microbiol. 2017, 55, 1454–1468. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carrico, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
- Sanchez-Buso, L.; Yeats, C.A.; Taylor, B.; Goater, R.J.; Underwood, A.; Abudahab, K.; Argimon, S.; Ma, K.C.; Mortimer, T.D.; Golparian, D.; et al. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med. 2021, 13, 61. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
Antimicrobials (No. of Isolates) | Sitafloxacin MIC (mg/L) | p Value (vs. All) | ||
---|---|---|---|---|
Range | MIC50 | MIC90 | ||
Ceftriaxone-Resistant isolates (57) | 0.03–2 | 0.125 | 0.5 | 0.001 ** |
Ceftriaxone-Susceptible isolates (450) | <0.004–2 | 0.125 | 0.25 | 0.8 |
Azithromycin-Resistant isolates (95) | 0.03–2 | 0.125 | 0.25 | <0.001 *** |
Azithromycin-Susceptible isolates (412) | <0.004–2 | 0.125 | 0.25 | 0.9 |
Ceftriaxone and Azithromycin-Resistant isolates (11) | 0.125–0.5 | 0.125 | 0.25 | 0.014 * |
MLST (No. of Isolates) | Sitafloxacin MIC (mg/L) | p Value | |||
---|---|---|---|---|---|
Range | MIC50 | MIC90 | vs. All | vs. ST8123 | |
ST8123 (66) | 0.03–2 | 0.5 | 2 | <0.001 *** | |
ST7363 (88) | 0.015–0.25 | 0.125 | 0.25 | 0.69 | <0.001 *** |
ST1901 (21) | 0.015–0.25 | 0.125 | 0.25 | 0.96 | <0.001 *** |
ST1903 (9) | 0.03–0.125 | 0.125 | 0.125 | 0.82 | <0.001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, M.; Yao, L.; Lu, X.; Ding, F.; Zou, D.; Tian, T.; Lin, Y.; Ning, Z.; Jiang, J.; Zhou, P. Emergence of Neisseria gonorrhoeae Clone with Reduced Susceptibility to Sitafloxacin in China: An In Vitro and Genomic Study. Antibiotics 2024, 13, 468. https://doi.org/10.3390/antibiotics13050468
Ye M, Yao L, Lu X, Ding F, Zou D, Tian T, Lin Y, Ning Z, Jiang J, Zhou P. Emergence of Neisseria gonorrhoeae Clone with Reduced Susceptibility to Sitafloxacin in China: An In Vitro and Genomic Study. Antibiotics. 2024; 13(5):468. https://doi.org/10.3390/antibiotics13050468
Chicago/Turabian StyleYe, Meiping, Linxin Yao, Xinying Lu, Fangyuan Ding, Danyang Zou, Tingli Tian, Yi Lin, Zhen Ning, Jianping Jiang, and Pingyu Zhou. 2024. "Emergence of Neisseria gonorrhoeae Clone with Reduced Susceptibility to Sitafloxacin in China: An In Vitro and Genomic Study" Antibiotics 13, no. 5: 468. https://doi.org/10.3390/antibiotics13050468
APA StyleYe, M., Yao, L., Lu, X., Ding, F., Zou, D., Tian, T., Lin, Y., Ning, Z., Jiang, J., & Zhou, P. (2024). Emergence of Neisseria gonorrhoeae Clone with Reduced Susceptibility to Sitafloxacin in China: An In Vitro and Genomic Study. Antibiotics, 13(5), 468. https://doi.org/10.3390/antibiotics13050468