Antimicrobial Use Survey and Detection of ESBL-Escherichia coli in Commercial and Medium-/Small-Scale Poultry Farms in Selected Districts of Zambia
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Use (AMU) Differed between Commercial and Medium-/Small-Scale Poultry Farmers
2.2. Antimicrobial Resistance of E. coli Isolates
2.3. Phenotypic ESBL Prevalence Varied by Production Scale
2.4. Whole-Genome Sequence Characteristics of ESBL
3. Discussion
4. Materials and Methods
4.1. Study Area, Sampling Techniques, Sample Size, and Design
4.2. Ethical Approval and Informed Consent
4.3. Identification and Antimicrobial Susceptibility Testing of E. coli
4.4. Phenotypic and Genotypic Detection of ESBL
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallace, M.J.; Fishbein, S.R.S.; Dantas, G. Antimicrobial Resistance in Enteric Bacteria: Current State and next-Generation Solutions. Gut Microbes 2020, 12, 1799654. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. CDC’s Antibiotic Resistance Threats Report. In CDC’s Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019; pp. 1–113. [Google Scholar]
- Drieux, L.; Brossier, F.; Sougakoff, W.; Jarlier, V. Phenotypic Detection of Extended-Spectrum β-Lactamase Production in Enterobacteriaceae: Review and Bench Guide. Clin. Microbiol. Infect. 2008, 14, 90–103. [Google Scholar] [CrossRef]
- Ghafourian, S.; Sadeghifard, N.; Soheili, S.; Sekawi, Z. Extended Spectrum Beta-Lactamases: Definition, Classification and Epidemiology. Curr. Issues Mol. Biol. 2014, 17, 11–22. [Google Scholar] [CrossRef]
- Rahman, M.M.; Husna, A.; Elshabrawy, H.A.; Alam, J.; Runa, N.Y.; Badruzzaman, A.T.M.; Banu, N.A.; Al Mamun, M.; Paul, B.; Das, S.; et al. Isolation and Molecular Characterization of Multidrug-Resistant Escherichia coli from Chicken Meat. Sci. Rep. 2020, 10, 21999. [Google Scholar] [CrossRef]
- Shakil, S.; Ali, H.M.; Zarrilli, R.; Khan, A.U. Extended Spectrum Beta Lactamases: A Critical Update. Multidrug Resist. A Glob. Concern 2012, 18, 115–129. [Google Scholar] [CrossRef]
- Munk, P.; Knudsen, B.E.; Lukjacenko, O.; Duarte, A.S.R.; Van Gompel, L.; Luiken, R.E.C.; Smit, L.A.M.; Schmitt, H.; Garcia, A.D.; Hansen, R.B.; et al. Abundance and Diversity of the Faecal Resistome in Slaughter Pigs and Broilers in Nine European Countries. Nat. Microbiol. 2018, 3, 898–908. [Google Scholar] [CrossRef]
- Peng, Z.; Hu, Z.; Li, Z.; Zhang, X.; Jia, C.; Li, T.; Dai, M.; Tan, C.; Xu, Z.; Wu, B.; et al. Antimicrobial Resistance and Population Genomics of Multidrug-Resistant Escherichia coli in Pig Farms in Mainland China. Nat. Commun. 2022, 13, 1116. [Google Scholar] [CrossRef]
- Subbiah, M.; Caudell, M.A.; Mair, C.; Davis, M.A.; Matthews, L.; Quinlan, R.J.; Quinlan, M.B.; Lyimo, B.; Buza, J.; Keyyu, J.; et al. Antimicrobial Resistant Enteric Bacteria Are Widely Distributed amongst People, Animals and the Environment in Tanzania. Nat. Commun. 2020, 11, 228. [Google Scholar] [CrossRef]
- Atlaw, N.A.; Keelara, S.; Correa, M.; Foster, D.; Gebreyes, W.; Aidara-Kane, A.; Harden, L.; Thakur, S.; Fedorka Cray, P.J. Identification of Ctx-m Type Esbl E. coli from Sheep and Their Abattoir Environment Using Whole-Genome Sequencing. Pathogens 2021, 10, 1480. [Google Scholar] [CrossRef]
- Abdallah, R.; Kuete Yimagou, E.; Hadjadj, L.; Mediannikov, O.; Ibrahim, A.; Davoust, B.; Barciela, A.; Hernandez-Aguilar, R.A.; Diatta, G.; Sokhna, C.; et al. Population Diversity of Antibiotic Resistant Enterobacterales in Samples from Wildlife Origin in Senegal: Identification of a Multidrug Resistance Transposon Carrying BlaCTX–M–15 in Escherichia coli. Front. Microbiol. 2022, 13, 838392. [Google Scholar] [CrossRef]
- Ahasan, M.S.; Picard, J.; Elliott, L.; Kinobe, R.; Owens, L.; Ariel, E. Evidence of Antibiotic Resistance in Enterobacteriales Isolated from Green Sea Turtles, Chelonia Mydas on the Great Barrier Reef. Mar. Pollut. Bull. 2017, 120, 18–27. [Google Scholar] [CrossRef]
- Kipkorir, K.C.; Ang’ienda, P.O.; Onyango, D.M.; Onyango, P.O. Antibiotic Resistance of Escherichia coli from Humans and Black Rhinoceroses in Kenya. EcoHealth 2020, 17, 41–51. [Google Scholar] [CrossRef]
- CSO Republic of Zambia. Preliminary Livestock and Aquaculture Census Results; CSO Republic of Zambia: Lusaka, Zambia, 2017; pp. 1–6.
- AgriProFocus. Investors Guide on Poultry in Zambia; CSO Republic of Zambia: Lusaka, Zambia, 2015.
- Selaledi, L.A.; Hassan, Z.M.; Manyelo, T.G.; Mabelebele, M. The Current Status of the Alternative Use to Antibiotics in Poultry Production: An African Perspective. Antibiotics 2020, 9, 594. [Google Scholar] [CrossRef]
- Aidara-Kane, A.; Angulo, F.J.; Conly, J.; Minato, Y.; Silbergeld, E.K.; McEwen, S.A.; Collignon, P.J.; Balkhy, H.; Collignon, P.; Friedman, C.; et al. World Health Organization (WHO) Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals. Antimicrob. Resist. Infect. Control. 2018, 7, 1–8. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 14. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Cao, J.; Bi, Y.; Lv, N.; Liu, F.; Liang, S.; Shi, Y.; Jiao, X.; Gao, G.F.; et al. Antibiotic Resistance Gene Reservoir in Live Poultry Markets. J. Infect. 2019, 78, 445–453. [Google Scholar] [CrossRef]
- Chishimba, K.; Hang’Ombe, B.M.; Muzandu, K.; Mshana, S.E.; Matee, M.I.; Nakajima, C.; Suzuki, Y. Detection of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Market-Ready Chickens in Zambia. Int. J. Microbiol. 2016, 2016, 5275724. [Google Scholar] [CrossRef]
- Muonga, E.M.; Mainda, G.; Mukuma, M.; Kwenda, G.; Hang’ombe, B.; Phiri, N.; Mwansa, M.; Munyeme, M.; Muma, J.B. Antimicrobial Resistance of Escherichia coli and Salmonella Isolated from Raw Retail Broiler Chickens in Zambia. Res. Sq. 2019, 6, 1–18. [Google Scholar]
- Mwansa, M.; Mukuma, M.; Mulilo, E.; Kwenda, G.; Mainda, G.; Yamba, K.; Bumbangi, F.N.; Muligisa-Muonga, E.; Phiri, N.; Silwamba, I.; et al. Determination of Antimicrobial Resistance Patterns of Escherichia coli Isolates from Farm Workers in Broiler Poultry Production and Assessment of Antibiotic Resistance Awareness Levels among Poultry Farmers in Lusaka, Zambia. Front. Public Health 2023, 10, 8860. [Google Scholar] [CrossRef]
- Shawa, M.; Furuta, Y.; Paudel, A.; Kabunda, O.; Mulenga, E.; Mubanga, M.; Kamboyi, H.; Zorigt, T.; Chambaro, H.; Simbotwe, M.; et al. Clonal Relationship between Multidrug-Resistant Escherichia coli ST69 from Poultry and Humans in Lusaka, Zambia. FEMS Microbiol. Lett. 2021, 368, fnac004. [Google Scholar] [CrossRef]
- Shawa, M.; Furuta, Y.; Mulenga, G.; Mubanga, M.; Mulenga, E.; Zorigt, T.; Kaile, C.; Simbotwe, M.; Paudel, A.; Hang’ombe, B.; et al. Novel Chromosomal Insertions of ISEcp1-Bla CTX-M-15 and Diverse Antimicrobial Resistance Genes in Zambian Clinical Isolates of Enterobacter Cloacae and Escherichia coli. Antimicrob. Resist. Infect. Control 2021, 10, 1–16. [Google Scholar] [CrossRef]
- Ministry of Fisheries and Livestock Zambia report to OIE. In Regulation of Veterinary Antimicrobial Agents; OIE: Moombasa, Kenya, 2019.
- Mencía-Ares, O.; Argüello, H.; Puente, H.; Gómez-García, M.; Manzanilla, E.G.; Álvarez-Ordóñez, A.; Carvajal, A.; Rubio, P. Antimicrobial Resistance in Commensal Escherichia coli and Enterococcus Spp. Is Influenced by Production System, Antimicrobial Use, and Biosecurity Measures on Spanish Pig Farms. Porc. Health Manag. 2021, 7, 1–12. [Google Scholar] [CrossRef]
- Azabo, R.; Mshana, S.; Matee, M.; Kimera, S.I. Antimicrobial Usage in Cattle and Poultry Production in Dar Es Salaam, Tanzania: Pattern and Quantity. BMC Vet. Res. 2022, 1–12. [Google Scholar] [CrossRef]
- Imam, T.; Gibson, J.S.; Foysal, M.; Das, S.B.; Das Gupta, S.; Fournié, G.; Hoque, M.A.; Henning, J. A Cross-Sectional Study of Antimicrobial Usage on Commercial Broiler and Layer Chicken Farms in Bangladesh. Front. Vet. Sci. 2020, 7, 6113. [Google Scholar] [CrossRef]
- Caudell, M.A.; Dorado-Garcia, A.; Eckford, S.; Creese, C.; Byarugaba, D.K.; Afakye, K.; Chansa-Kabali, T.; Fasina, F.O.; Kabali, E.; Kiambi, S.; et al. Towards a Bottom-up Understanding of Antimicrobial Use and Resistance on the Farm: A Knowledge, Attitudes, and Practices Survey across Livestock Systems in Five African Countries. PLoS ONE 2020, 15, 220274. [Google Scholar] [CrossRef]
- Youssef, D.M.; Wieland, B.; Knight, G.M.; Lines, J.; Naylor, N.R. The Effectiveness of Biosecurity Interventions in Reducing the Transmission of Bacteria from Livestock to Humans at the Farm Level: A Systematic Literature Review. Zoonoses Public Health 2021, 68, 549–562. [Google Scholar] [CrossRef]
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Biosafety and Health Use of Antimicrobials in Food Animals and Impact of Transmission of Antimicrobial Resistance on Humans. Biosaf. Health 2021, 3, 32–38. [Google Scholar] [CrossRef]
- Salaheen, S.; Kim, S.W.; Haley, B.J.; Van Kessel, J.A.S.; Biswas, D. Alternative Growth Promoters Modulate Broiler Gut Microbiome and Enhance Body Weight Gain. Front. Microbiol. 2017, 8, 2088. [Google Scholar] [CrossRef]
- Mudenda, S.; Malama, S.; Munyeme, M.; Hang’ombe, B.M.; Mainda, G.; Kapona, O.; Mukosha, M.; Yamba, K.; Bumbangi, F.N.; Mfune, R.L.; et al. Awareness of Antimicrobial Resistance and Associated Factors among Layer Poultry Farmers in Zambia: Implications for Surveillance and Antimicrobial Stewardship Programs. Antibiotics 2022, 11, 383. [Google Scholar] [CrossRef]
- Johnson, S.; Bugyei, K.; Nortey, P.; Tasiame, W. Antimicrobial Drug Usage and Poultry Production: Case Study in Ghana. Anim. Prod. Sci. 2019, 59, 177–182. [Google Scholar] [CrossRef]
- Annan-Prah, A.; Agbemafle, E.; Asare, P.T.; Akorli, S.Y. Antibiotic Use, Abuse and Their Public Health Implication: The Contributory Role of Management Flaws in the Poultry Industry in Two Agro-Ecological Zones in Ghana Antibiotic Use, Abuse and Their Public Health Implication: The Contributory Role of Mana. J. Vet. Adv. 2012, 2, 199–208. [Google Scholar]
- Phiri, N.; Mainda, G.; Mukuma, M.; Sinyangwe, N.N.; Banda, L.J.; Kwenda, G.; Muonga, E.M.; Flavien, B.N.; Mwansa, M.; Yamba, K.; et al. Antibiotic-Resistant Salmonella Species and Escherichia coli in Broiler Chickens from Farms, Abattoirs, and Open Markets in Selected Districts of Zambia. J. Epidemiol. Res. 2020, 6, 13. [Google Scholar] [CrossRef]
- Mudenda, S.; Bumbangi, F.N.; Yamba, K.; Munyeme, M.; Malama, S.; Mukosha, M.; Hadunka, M.A.; Daka, V.; Matafwali, S.K.; Siluchali, G.; et al. Drivers of Antimicrobial Resistance in Layer Poultry Farming: Evidence from High Prevalence of Multidrug-Resistant Escherichia coli and Enterococci in Zambia. Vet. World 2023, 16, 1803–1814. [Google Scholar] [CrossRef]
- Racewicz, P.; Majewski, M.; Biesiada, H.; Nowaczewski, S.; Wilczyński, J.; Wystalska, D.; Kubiak, M.; Pszczoła, M.; Madeja, Z.E. Prevalence and Characterisation of Antimicrobial Resistance Genes and Class 1 and 2 Integrons in Multiresistant Escherichia coli Isolated from Poultry Production. Sci. Rep. 2022, 12, 6062. [Google Scholar] [CrossRef]
- Gad, G.F.; Mohamed, H.A.; Ashour, H.M. Aminoglycoside Resistance Rates, Phenotypes, and Mechanisms of Gram-Negative Bacteria from Infected Patients in Upper Egypt. PLoS ONE 2011, 6, e17224. [Google Scholar] [CrossRef]
- Heider, L.C.; Hoet, A.E.; Wittum, T.E.; Khaitsa, M.L.; Love, B.C.; Huston, C.L.; Morley, P.S.; Funk, J.A.; Gebreyes, W.A. Genetic and Phenotypic Characterization of the BlaCMY Gene from Escherichia coli and Salmonella enterica Isolated from Food-Producing Animals, Humans, the Environment, and Retail Meat. Foodborne Pathog. Dis. 2009, 6, 1235–1240. [Google Scholar] [CrossRef]
- WHO. Zambia’s Integrated Antimicrobial Resistance Surveillance Framework; WHO: Geneva, Switzerland, 2020.
- Food and Agriculture Organization Poultry Production Sectors. Avian Influenza Fact Sheet. Wkly. Epidemiol. Rec. 2006, 81, 129–136. [Google Scholar]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information. Am. Soc. Microbiol. 2012, 15, 55–63. [Google Scholar]
- CLSI. M100 Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; Clinical and Laboratory Standards Institute: Pennsylvania, PA, USA, 2021. [Google Scholar]
- Murugappan, A.; Sudarsan, J.S.; Manoharan, A. Effects of Using Lignite Mine Drainage for Irrigation on Soils—A Case Study of Perumal Tank Command Area in Tamilnadu State. J. Ind. Pollut. Control 2006, 22, 149–160. [Google Scholar]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Andrew, S.; Babraham Bioinformatics. FastQC: A Qualitycontrol Tool for High Throughput Sequence Data; Babraham Institute: Cambridge, UK, 2011. [Google Scholar]
Variable | Overall Use | Commercial (Reference) | Medium-/Small-Scale | Odds Ratio (OR) | 95% CI of OR |
---|---|---|---|---|---|
Use on sampled birds | 57/118 (48.3%) | 6/35 (17.1%) | 51/83 (61.4%) | 7.70 | 2.88–20.61 |
Prescription use | 42/108 (38.9%) | 27/29 (93.1%) | 15/79 (19.0%) | 0.02 | 0.00–0.08 |
Prophylaxis | 23/119 (19.3%) | 1/35 (2.9%) | 22/84 (26.2%) | 12.06 | 1.56–93.45 |
Growth promotion | 15/119 (12.6%) | 0/35 (0.0%) | 15/84 (17.9%) | 7.61 | 0.97–59.98 |
Knowledge of the withdrawal period | 103/118 (87.3%) | 32/35 (91.4%) | 71/83 (85.5%) | 0.55 | 0.15–2.10 |
Sale of products under treatment | 14/116 (12.1%) | 3/35 (8.6%) | 11/81 (13.6%) | 1.68 | 0.44–6.42 |
Antibiotic Class | Detected AMR Genes | Gene Percent Proportion |
---|---|---|
Aminoglycosides | aac(3)-Iia, aac(3)-Iid, aac(3)-Via aadA1, aadA5 aph(3′)-Ia, aph(3″)-Ib, aph(6)-Id | (3/8, 37.5%) (2/8, 25%) (3/8, 37.5%) |
β-lactams | blaCTX-M-14 blaCTX-M-55 blaTEM blaCMY-2 | (2/12, 16.7%) (2/12, 16.7%) (5/12, 41.7%) (3/12, 25%) |
Folate-pathway antagonists | dfrA7, dfrA14, dfrA17 sul1, sul2 | (3/5, 60%) (2/5, 40%) |
Phenicols | floR | (1/1, 100%) |
Macrolide | mph(A) | (1/1, 100%) |
Fosfomycin | fosA3, fosA7 | (2/2, 100%) |
(Fluoro)quinolones | qnrB19, qnrS1 OqxA, OqxB | (2/4, 50%) (2/4, 50%) |
Tetracycline | tet(A) tet(B) | (1/2, 50%) (1/2, 50%) |
S/No | Isolate ID | Location | Farm Type | Sequence Type | OH Serotype | AMR Genes | Plasmids |
---|---|---|---|---|---|---|---|
1 | L4F65S1 | Petauke | medium-/ small-scale | ST770 | O25H16 | aph(3″)-Ib, aph(6)-Id, blaCMY-2, floR, sul2, tet(A) | IncFIB(AP001918), IncFII, IncB/O/K/Z, p0111 |
2 | L5F6S1 | Mongu | medium-/ small-scale | ST117 | O45H4 | aadA5, aph(3″)-Ib, aph(6)-Id, blaCTX-M-55, blaTEM, dfrA14, dfrA17, tet(A) | ColpVC, IncFII(pHN7A8), IncI2 |
3 | L1F154S9 | Chisamba | Commercial | ST7938 | O32H35 | aac(3)-IIa, aadA5, aph(3″)-Ib, aph(6)-Id, blaCTX-M-14, dfrA17, floR, fosA3, mph(A), OqxB, OqxA, qnrS1, sul1, sul2, tet(A), tet(B) | IncFIB(AP001918), IncFIC(FII), IncFII(pHN7A8) |
4 | L1F8S1 | Lusaka | medium-/ small-scale | ST155 | O154H51 | aph(3ȃ2)-Ia, aph(3″)-Ib, aph(6)-Id, blaCTX-M-14, blaTEM, dfrA7, floR, fosA3, fosA7, sul1, sul2, tet(A) | IncHI2, IncHI2A, p0111 |
5 | L1F5S1 | Lusaka | medium-/ small-scale | ST847 | O108H2 | aph(3″)-Ib, aph(6)-Id, blaTEM, fosA7, qnrS1, sul2, tet(A) | IncFII, IncHI2, IncHI2A, IncN, p0111 |
6 | L1F151S5 | Chisamba | Commercial | ST211 | O22H7 | aac(3)-IId, aph(3″)-Ib, aph(6)-Id, blaCMY-2, blaTEM, sul2, tet(A), tet(B) | IncFIB(K), p0111 |
7 | L1F151S3 | Chisamba | Commercial | ST770 | O102H51 | blaCMY-2 | IncI1-I(Alpha), IncX4 |
8 | L1F152S5 | Chisamba | Commercial | ST770 | O102H51 | aac(3)-Via, aadA1, blaCTX-M-55, blaTEM, fosA3, qnrB19, sul1, sul2 | IncFIB(AP001918), IncFII, IncN |
S/No | District | Samples | Commercial | Medium/Small | Broiler | Layer |
---|---|---|---|---|---|---|
1 | Chibombo | 10 | 0 | 10 | 9 | 1 |
2 | Chilanga | 44 | 0 | 44 | 30 | 14 |
3 | Chisamba | 81 | 32 | 49 | 75 | 6 |
4 | Choma | 13 | 0 | 13 | 9 | 4 |
5 | Chongwe | 43 | 0 | 43 | 37 | 6 |
6 | Kaoma | 12 | 0 | 12 | 12 | 0 |
7 | Lusaka | 30 | 3 | 27 | 16 | 14 |
8 | Mongu | 13 | 0 | 13 | 12 | 1 |
9 | Petauke | 18 | 0 | 18 | 14 | 4 |
10 | Rufunsa | 5 | 0 | 5 | 5 | 0 |
Total | 269 | 35 | 234 | 219 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinyawa, T.; Shawa, M.; Muuka, G.M.; Goma, F.; Fandamu, P.; Chizimu, J.Y.; Khumalo, C.S.; Mulavu, M.; Ngoma, M.; Chambaro, H.M.; et al. Antimicrobial Use Survey and Detection of ESBL-Escherichia coli in Commercial and Medium-/Small-Scale Poultry Farms in Selected Districts of Zambia. Antibiotics 2024, 13, 467. https://doi.org/10.3390/antibiotics13050467
Sinyawa T, Shawa M, Muuka GM, Goma F, Fandamu P, Chizimu JY, Khumalo CS, Mulavu M, Ngoma M, Chambaro HM, et al. Antimicrobial Use Survey and Detection of ESBL-Escherichia coli in Commercial and Medium-/Small-Scale Poultry Farms in Selected Districts of Zambia. Antibiotics. 2024; 13(5):467. https://doi.org/10.3390/antibiotics13050467
Chicago/Turabian StyleSinyawa, Taona, Misheck Shawa, Geoffrey M. Muuka, Fusya Goma, Paul Fandamu, Joseph Yamweka Chizimu, Cynthia Sipho Khumalo, Malala Mulavu, Masuzyo Ngoma, Herman Moses Chambaro, and et al. 2024. "Antimicrobial Use Survey and Detection of ESBL-Escherichia coli in Commercial and Medium-/Small-Scale Poultry Farms in Selected Districts of Zambia" Antibiotics 13, no. 5: 467. https://doi.org/10.3390/antibiotics13050467
APA StyleSinyawa, T., Shawa, M., Muuka, G. M., Goma, F., Fandamu, P., Chizimu, J. Y., Khumalo, C. S., Mulavu, M., Ngoma, M., Chambaro, H. M., Kamboyi, H. K., Kajihara, M., Sawa, H., Suzuki, Y., Higashi, H., Mainda, G., Munyeme, M., Muma, J. B., Nyantakyi, C. O., ... Hang’ombe, B. M. (2024). Antimicrobial Use Survey and Detection of ESBL-Escherichia coli in Commercial and Medium-/Small-Scale Poultry Farms in Selected Districts of Zambia. Antibiotics, 13(5), 467. https://doi.org/10.3390/antibiotics13050467