Risk Factors for Therapeutic Failure and One-Year Mortality in Patients with Intramedullary Nail-Associated Infection after Trochanteric and Subtrochanteric Hip Fracture Repair
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sáez-López, P.; Ojeda-Thies, C.; Alarcón, T.; Muñoz Pascual, A.; Mora-Fernández, J.; González de Villaumbrosia, C.; Molina Hernández, M.J. Spanish National Hip Fracture Registry (RNFC): First-year Results and Comparison with Other Registries and Prospective Multicentric Studies from Spain. Rev. Esp. Salud Pública 2019, 93, e201911072. [Google Scholar]
- Schemitsch, E.H.; Nowak, L.L.; Schulz, A.P.; Brink, O.; Poolman, R.W.; Mehta, S.; Stengel, D.; Zhang, C.Q.; Martinez, S.; Kinner, B.; et al. Intramedullary Nailing vs. Sliding Hip Screw in Trochanteric Fracture Management: The INSITE Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2317164. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.Y.; Park, S.; Kim, T.; Im, G.I. Cut-out risk factor analysis after intramedullary nailing for the treatment of extracapsular fractures of the proximal femur: A retrospective study. BMC Musculoskelet. Disord. 2022, 23, 107. [Google Scholar] [CrossRef]
- Klima, M.L. Mechanical Complications After Intramedullary Fixation of Extracapsular Hip Fractures. J. Am. Acad. Orthop. Surg. 2022, 30, E1550–E1562. [Google Scholar] [CrossRef] [PubMed]
- Lähdesmäki, M.; Ylitalo, A.A.; Karjalainen, L.; Uimonen, M.; Mattila, V.M.; Repo, J.P. Intramedullary Nailing of Intertrochanteric Femoral Fractures in a Level I Trauma Center in Finland: What Complications Can be Expected? Clin. Orthop. Relat. Res. 2023, 482, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Panteli, M.; Vun, J.S.; Ahmadi, M.; West, R.M.; Howard, A.J.; Chloros, G.; Pountos, I.; Giannoudis, P.V. Blood loss and transfusion risk in intramedullary nailing for subtrochanteric fractures. Transfus. Med. 2023, 33, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Halonen, L.M.; Stenroos, A.; Vasara, H.; Huotari, K.; Kosola, J. Infections after intramedullary fixation of trochanteric fractures are uncommon and implant removal is not usually needed. Injury 2021, 52, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
- Evaniew, N.; Bhandari, M. Cochrane in CORR®: Intramedullary Nails for Extracapsular Hip Fractures in Adults (Review). Clin. Orthop. Relat. Res. 2015, 473, 767–774. [Google Scholar] [CrossRef]
- Sator, T.; Binder, H.; Payr, S.; Pichler, L.; Frenzel, S.; Hajdu, S.; Presterl, E.; Tiefenboeck, T.M. Surgical site infection after trochanteric and subtrochanteric fractures: A single centre retrospective analysis. Sci. Rep. 2024, 14, 579. [Google Scholar] [CrossRef]
- Zimlichman, E.; Henderson, D.; Tamir, O.; Franz, C.; Song, P.; Yamin, C.K.; Keohane, C.; Denham, C.R.; Bates, D.W. Health Care–Associated Infections: A Meta-analysis of Costs and Financial Impact on the US Health Care System. JAMA Intern. Med. 2013, 173, 2039–2046. [Google Scholar] [CrossRef]
- Whitehouse, J.D.; Friedman, N.D.; Kirkland, K.B.; Richardson, W.J.; Sexton, D.J. The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: Adverse quality of life, excess length of stay, and extra cost. Infect. Control Hosp. Epidemiol. 2002, 23, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Metsemakers, W.J.; Kuehl, R.; Moriarty, T.F.; Richards, R.G.; Verhofstad, M.H.J.; Borens, O.; Kates, S.; Morgenstern, M. Infection after fracture fixation: Current surgical and microbiological concepts. Injury 2018, 49, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Hellebrekers, P.; Leenen LP, H.; Hoekstra, M.; Hietbrink, F. Effect of a standardized treatment regime for infection after osteosynthesis. J. Orthop. Surg. Res. 2017, 12, 41. [Google Scholar] [CrossRef]
- Hellebrekers, P.; Verhofstad, M.H.; Leenen, L.P.; Varol, H.; van Lieshout, E.M.; Hietbrink, F. The effect of early broad-spectrum versus delayed narrow-spectrum antibiotic therapy on the primary cure rate of acute infection after osteosynthesis. Eur. J. Trauma Emerg. Surg. 2020, 46, 1341–1350. [Google Scholar] [CrossRef]
- Zimmerli, W. Clinical presentation and treatment of orthopaedic implant-associated infection. J. Intern. Med. 2014, 276, 111–119. [Google Scholar] [CrossRef]
- Simpson, A.H.; Tsang, J.S.T. Current treatment of infected non-union after intramedullary nailing. Injury 2017, 48, S82–S90. [Google Scholar] [CrossRef]
- D’Hoore, W.; Sicotte, C.; Tilquin, C. Risk adjustment in outcome assessment: The Charlson comorbidity index. Methods Inf. Med. 1993, 32, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Metsemakers, W.J.; Morgenstern, M.; McNally, M.A.; Moriarty, T.F.; McFadyen, I.; Scarborough, M.; Athanasou, N.A.; Ochsner, P.E.; Kuehl, R.; Raschke, M.; et al. Fracture-related infection: A consensus on definition from an international expert group. Injury 2018, 49, 505–510. [Google Scholar] [CrossRef]
- Sukhonthamarn, K.; Tan, T.L.; Xu, C.; Kuo, F.C.; Lee, M.S.; Citak, M.; Gehrke, T.; Goswami, K.; Parvizi, J. Determining Diagnostic Thresholds for Acute Postoperative Periprosthetic Joint Infection. J. Bone Jt. Surg. 2020, 102, 2043–2048. [Google Scholar] [CrossRef]
- Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Grønhaug, K.M.L.; Dybvik, E.; Matre, K.; Östman, B.; Gjertsen, J.E. Comparison of Intramedullary Nails in the Treatment of Trochanteric and Subtrochanteric Fractures: An Observational Study of 13,232 Fractures in the Norwegian Hip Fracture Register. J. Bone Jt. Surg. 2023, 105, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Horner, N.S.; Samuelsson, K.; Solyom, J.; Bjørgul, K.; Ayeni, O.R.; Östman, B. Implant-Related Complications and Mortality After Use of Short or Long Gamma Nail for Intertrochanteric and Subtrochanteric Fractures: A Prospective Study with Minimum 13-Year Follow-up. JBJS Open Access 2017, 2, E0026. [Google Scholar] [CrossRef] [PubMed]
- Velez, M.; Palacios-Barahona, U.; Paredes-Laverde, M.; Ramos-Castaneda, J.A. Factors associated with mortality due to trochanteric fracture. A cross-sectional study. Orthop. Traumatol. Surg. Res. 2020, 106, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Fischbacher, A.; Borens, O. Prosthetic-joint infections: Mortality over the last 10 years. J. Bone Jt. Infect. 2019, 4, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Lenguerrand, E.; Whitehouse, M.R.; Beswick, A.D.; Kunutsor, S.K.; Burston, B.; Porter, M.; Blom, A.W. Risk factors associated with revision for prosthetic joint infection after hip replacement: A prospective observational cohort study. Lancet Infect. Dis. 2018, 18, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Henry, T.W.; McEntee, R.M.; Matzon, J.L.; Beredjiklian, P.K.; Lutsky, K.F. Deep Infection after Distal Radius Open-reduction Internal Fixation: A Case Series. Arch. Bone Jt. Surg. 2021, 9, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, B.P.; Weston, J.T.; Hanssen, A.D.; Berry, D.J.; Abdel, M.P.; Osmon, D.R. Prior hip or knee prosthetic joint infection in another joint increases risk three-fold of prosthetic joint infection after primary total knee arthroplasty: A matched control study. Bone Jt. J. 2019, 101, 91–97. [Google Scholar] [CrossRef]
- Soriano, A.; Marco, F.; Martínez, J.A.; Pisos, E.; Almela, M.; Dimova, V.P.; Alamo, D.; Ortega, M.; Lopez, J.; Mensa, J. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2008, 46, 193–200. [Google Scholar] [CrossRef]
- Tornero, E.; Morata, L.; Martínez-Pastor, J.C.; Bori, G.; Climent, C.; García-Velez, D.M.; García-Ramiro, S.; Bosch, J.; Mensa, J.; Soriano, A. KLIC-score for predicting early failure in prosthetic joint infections treated with debridement, implant retention and antibiotics. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2015, 21, 786.e9–786.e17. [Google Scholar] [CrossRef]
- Scholten, R.; Klein Klouwenberg, P.M.C.; Gisolf, J.E.H.; van Susante, J.L.C.; Somford, M.P. Empiric antibiotic therapy in early periprosthetic joint infection: A retrospective cohort study. Eur. J. Orthop. Surg. Traumatol. 2023, 33, 29–35. [Google Scholar] [CrossRef]
- Moran, E.; Masters, S.; Berendt, A.R.; McLardy-Smith, P.; Byren, I.; Atkins, B.L. Guiding empirical antibiotic therapy in orthopaedics: The microbiology of prosthetic joint infection managed by debridement, irrigation and prosthesis retention. J. Infect. 2007, 55, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Benito, N.; Franco, M.; Ribera, A.; Soriano, A.; Rodriguez-Pardo, D.; Sorlí, L.; Fresco, G.; Fernández-Sampedro, M.; Del Toro, M.D.; Guío, L.; et al. Time trends in the aetiology of prosthetic joint infections: A multicentre cohort study. Clin. Microbiol. Infect. 2016, 22, 732.e1–732.e8. [Google Scholar] [CrossRef] [PubMed]
- Siljander, M.P.; Sobh, A.H.; Baker, K.C.; Baker, E.A.; Kaplan, L.M. Multidrug-Resistant Organisms in the Setting of Periprosthetic Joint Infection—Diagnosis, Prevention, and Treatment. J. Arthroplast. 2018, 33, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Zmistowski, B.; Fedorka, C.J.; Sheehan, E.; Deirmengian, G.; Austin, M.S.; Parvizi, J. Prosthetic Joint Infection Caused by Gram-Negative Organisms. J. Arthroplast. 2011, 26, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Casenaz, A.; Piroth, L.; Labattut, L.; Sixt, T.; Magallon, A.; Guilloteau, A.; Neuwirth, C.; Amoureux, L. Epidemiology and antibiotic resistance of prosthetic joint infections according to time of occurrence, a 10-year study. J. Infect. 2022, 85, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Benito, N.; Mur, I.; Ribera, A.; Soriano, A.; Rodriguez-Pardo, D.; Sorli, L.; Cobo, J.; Fernandez-Sampedro, M.; Del Toro, M.D.; Guío, L.; et al. The Different Microbial Etiology of Prosthetic Joint Infections according to Route of Acquisition and Time after Prosthesis Implantation, Including the Role of Multidrug-Resistant Organisms. J. Clin. Med. 2019, 8, 673. [Google Scholar] [CrossRef] [PubMed]
- Pfang, B.G.; García-Cañete, J.; García-Lasheras, J.; Blanco, A.; Auñón, Á.; Parron-Cambero, R.; Macías-Valcayo, A.; Esteban, J. Orthopedic Implant-Associated Infection by Multidrug Resistant Enterobacteriaceae. J. Clin. Med. 2019, 8, 220. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.H.; Lee, M.S.; Hsu, K.Y.; Chang, Y.H.; Shin, H.N.; Ueng, S.W. Gram-negative prosthetic joint infections: Risk factors and outcome of treatment. Clin. Infect. Dis. 2009, 49, 1036–1043. [Google Scholar] [CrossRef]
- Sadique, H.; Evans, S.; Parry, M.; Stevenson, J.; Reeves, N.; Mimmack, S.; Jumaa, P.; Jeys, L. Multidrug-resistant bacteria: An independent predictor of failure in peri-prosthetic joint infection. Orthop. Proc. 2016, 98-B, 11. [Google Scholar]
- Rudelli, B.A.; Giglio, P.N.; de Carvalho, V.C.; Pécora, J.R.; Gurgel, H.M.C.; Gobbi, R.G.; Vicente, J.R.N.; Lima, A.L.L.M.; Helito, C.P. Bacteria drug resistance profile affects knee and hip periprosthetic joint infection outcome with debridement, antibiotics and implant retention. BMC Musculoskelet. Disord. 2020, 21, 574. [Google Scholar] [CrossRef]
- Koch, K.A.; Spranz, D.M.; Westhauser, F.; Bruckner, T.; Lehner, B.; Alvand, A.; Merle, C.; Walker, T. Impact of Comorbidities and Previous Surgery on Mid-Term Results of Revision Total Knee Arthroplasty for Periprosthetic Joint Infection. J. Clin. Med. 2023, 12, 5542. [Google Scholar] [CrossRef] [PubMed]
- Payá-Llorente, C.; Martínez-López, E.; Sebastián-Tomás, J.C.; Santarrufina-Martínez, S.; de’Angelis, N.; Martínez-Pérez, A. The impact of age and comorbidity on the postoperative outcomes after emergency surgical management of complicated intra-abdominal infections. Sci. Rep. 2020, 10, 1631. [Google Scholar] [CrossRef] [PubMed]
- Picot-Guéraud, R.; Batailler, P.; Caspar, Y.; Hennebique, A.; Mallaret, M.R. Bacteremia caused by multidrug-resistant bacteria in a French university hospital center: 3 years of collection. Am. J. Infect. Control 2015, 43, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Laudisio, A.; Marinosci, F.; Fontana, D.; Gemma, A.; Zizzo, A.; Coppola, A.; Rodano, L.; Antonelli Incalzi, R. The burden of comorbidity is associated with symptomatic polymicrobial urinary tract infection among institutionalized elderly. Aging Clin. Exp. Res. 2015, 27, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.F.; Kim, K.; Cavadino, A.; Coleman, B.; Munro, J.T.; Young, S.W. Success Rates of Debridement, Antibiotics, and Implant Retention in 230 Infected Total Knee Arthroplasties: Implications for Classification of Periprosthetic Joint Infection. J. Arthroplast. 2021, 36, 305–310.e1. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Sendi, P. Orthopaedic biofilm infections. APMIS 2017, 125, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Peel, T.N. Studying biofilm and clinical issues in orthopedics. Front. Microbiol. 2019, 10, 359. [Google Scholar] [CrossRef] [PubMed]
- Pollmann, C.T.; Dahl, F.A.; Røtterud JH, M.; Gjertsen, J.E.; Årøen, A. Surgical site infection after hip fracture-mortality and risk factors: An observational cohort study of 1709 patients. Acta Orthop. 2020, 91, 347–352. [Google Scholar] [CrossRef]
- Sousa, R.; Abreu, M.A. Treatment of Prosthetic Joint Infection with Debridement, Antibiotics and Irrigation with Implant Retention—A Narrative Review. J. Bone Jt. Infect. 2018, 3, 108–117. [Google Scholar] [CrossRef]
Patient | Sex | Age | Comorbidities | CCI | Acute/Chronic | Days from Implant to Infection Diagnosis | Pathogen | Initial Surgical Treatment | Definitive Surgical Treatment | Antibiotic/Duration (Days) | Combined Antibiotic Therapy | One-Year Mortality/Attributable Mortality | Infection Control | Fracture Healing |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M | 39 | Ulcerative colitis | 1 | C | 196 | Enterococcus faecium | Implant removal | Implant removal | Amoxicillin-clavulanic acid/90 | No | No/No | Yes | Yes |
2 | F | 59 | Obesity, sleep apnea, lymphoma | 3 | C | 310 | Corynebacterium striatum; Escherichia coli | Implant removal | Implant removal | Fosfomycin and co-trimoxazole/90 | Yes | No/No | Yes | N/A (total hip replacement was carried out after full course of antibiotic treatment) |
3 | M | 67 | Dyslipidemia | 2 | C | 442 | MSSA | Implant removal | Implant removal | Ciprofloxacin and co-trimoxazole/35 | Yes | No/No | Yes | Yes |
4 | F | 68 | Hypertension, dysplidemia, hypothyroidism, osteoporosis | 2 | A | 24 | MSSA | DAIR | DAIR | Levofloxacin and rifampicin/360 | Yes | No/No | Yes | N/A |
5 | M | 68 | Hypertension, atrial fibrillation, liver failure | 5 | A | 9 | Enterobacter cloacae | DAIR | DAIR | Imipenem and ciprofloxacin/30 | Yes | Yes/Yes | Yes | N/A |
6 | M | 78 | Hypertension, T2DM, mielodysplasic syndrome | 4 | A | 30 | Pseudomonas aeruginosa | DAIR | DAIR | Ciprofloxacin and imipenem/42 | Yes | No/No | Yes | N/A |
7 | F | 79 | Atrial fibrillation, heart failure, liver failure | 7 | C | 53 | ESBL-producing Klebsiella pneumoniae; Providencia stuartii | Suppressive antibiotic therapy | Suppressive antibiotic therapy | Ciprofloxacin/suppressive | No | Yes/No | No | N/A |
8 | F | 82 | Dyslipidemia | 4 | A | 7 | Coagulase-negative Staphylococcus | DAIR | Implant removal | Levofloxacin and rifampicin/84 | Yes | No/No | Yes | N/A |
9 | M | 82 | Hypertension, atrial fibrillation, mild cognitive impairment | 5 | A | 23 | MSSA | DAIR | DAIR | Ciprofloxacin and rifampicin/42 | Yes | No/No | Yes | Yes |
10 | F | 86 | Hypertension, moderate cognitive impairment | 5 | C | 49 | Pseudomonas aeruginosa; Corynebacterium striatum; MSSA | DAIR | Implant removal | Linezolid and rifampicin/90 | Yes | No/No | No | No |
11 | F | 86 | Hypertension | 4 | C | 223 | Listeria monocytogenes | Implant removal | Implant removal | Co-trimoxazole/42 | No | No/No | Yes | Yes |
12 | F | 88 | Hypertension, dyslipidemia, atrial fibrillation, heart failure | 5 | A | 21 | Enterobacter cloacae | DAIR | DAIR | Imipenem and fosfomycin/42 | Yes | No/No | Yes | N/A |
13 | F | 88 | Hypertension, dyslipidemia, atrial fibrillation, coronary artery disease, mild cognitive impairment | 6 | C | 80 | Escherichia coli; Proteus mirabilis | DAIR | DAIR | Levofloxacin and co-trimoxazole/70 | Yes | Yes/Yes | No | N/A |
14 | F | 89 | Hypertension, heart failure | 5 | C | 34 | MRSA | Antibiotics with curative intent | Suppressive antibiotic therapy | Rifampicin and clindamycin/suppressive | Yes | No/No | No | N/A |
15 | F | 89 | Atrial fibrillation, heart failure, ischemic stroke, cognitive impairment | 6 | C | 45 | MSSA; coagulase-negative Staphylococcus | DAIR | DAIR | Fusidic acid and rifampicin/42 | Yes | No/No | Yes | N/A |
16 | F | 90 | Atrial fibrillation, heart failure, cognitive impairment | 6 | A | 10 | Klebsiella pneumoniae | DAIR | Implant removal | Co-trimoxazole and ciprofloxacin/56 | Yes | No/No | Yes | Yes |
17 | F | 91 | Hypertension, giant cell arteritis, ischemic stroke | 6 | A | 19 | MSSA; Escherichia coli | Implant removal | Implant removal | Cefazolin and gentamycin/56 | Yes | Yes/No | No | N/A (early death during hospital admission) |
18 | F | 91 | T2DM, dyslipidemia | 5 | A | 11 | Morganella morganii; Klebsiella pneumoniae; Enterobacter cloacae | DAIR | DAIR | Levofloxacin/42 | No | Yes/No | Yes | N/A |
19 | F | 91 | 4 | C | 61 | ESBL-producing Escherichia coli; Enterococcus faecalis | Implant removal | Implant removal | Fosfomycin, amoxicillin, and co-trimoxazole/90 | Yes | No/No | Yes | N/A (partial hip replacement was performed a full course of antibiotic therapy) | |
20 | F | 91 | Hypertension, chronic kidney disease | 6 | C | 744 | Cutibacterium acnes | Implant removal | Implant removal | Levofloxacin/56 | No | No/No | Yes | Yes |
21 | F | 96 | Hypertension, dyslipidemia, T2DM, atrial fibrillation, heart failure | 6 | C | 34 | MRSA | Implant removal | Implant removal | Clindamycin/56 | No | No/No | Yes | No |
22 | F | 99 | Venous insufficiency | 4 | C | 51 | Gut microbiota | Suppressive antibiotic therapy | Suppressive antibiotic therapy | Co-trimoxazole/suppressive | No | No/No | No | N/A |
23 | M | 49 | Alcohol abuse, liver failure, HIV infection, HCV infection | 3 | A | 18 | Escherichia coli | DAIR | DAIR | Amoxicillin-clavulanic acid and ciprofloxacin/42 | Yes | No/No | Yes | N/A |
24 | M | 68 | T2DM, liver failure, HIV infection, HBV infection | 6 | A | 23 | ESBL-producing Escherichia coli | DAIR | DAIR | Imipenem/28 | No | Yes/No | No | N/A |
25 | F | 89 | Hypertension | 4 | C | 587 | MSSA | One-step septic exchange | Implant removal | Levofloxacin and rifampicin/56 | Yes | No/No | Yes | Yes |
26 | F | 93 | Hypertension | 4 | A | 20 | Escherichia coli | DAIR | Suppressive antibiotic therapy | Ciprofloxacin/suppressive | No | No/No | No | N/A |
27 | F | 92 | Hypertension, mild cognitive impairment | 5 | C | 138 | ESBL-producing Klebsiella pneumoniae; Proteus mirabilis | Implant removal | Suppressive antibiotic therapy | Ertapenem and ciprofloxacin/52; then switched to ciprofloxacin/suppressive | Yes | No/No | No | N/A |
28 | M | 93 | Hypertension, atrial fibrillation | 4 | A | 27 | MRSA | DAIR | DAIR | Clindamycin and rifampicin/90 | Yes | No/No | Yes | N/A |
29 | M | 55 | 1 | C | 2213 | Cutibacterium acnes | Implant removal | Implant removal | Clindamycin and rifampicin/60 | Yes | No/No | Yes | Yes | |
30 | F | 84 | Hypertension, atrial fibrillation | 4 | C | 343 | Enterococcus faecalis | Implant removal | Implant removal | Amoxicillin/35 | No | No/No | Yes | Yes |
31 | F | 88 | Hypertension, T2DM, dyslipidemia | 5 | A | 11 | Enterococcus faecalis | DAIR | DAIR | Amoxicillin/56 | No | No/No | Yes | N/A |
32 | F | 96 | T2DM, atrial fibrillation, cognitive impairment | 6 | A | 13 | MRSA | DAIR | DAIR | Vancomycin and clindamycin/4 | Yes | Yes/Yes | No | N/A |
33 | F | 93 | T2DM, coronary artery disease, heart failure | 8 | A | 15 | Escherichia coli; Enterococcus faecalis; Klebsiella pneumoniae | DAIR | DAIR | Amoxicillin/60 | No | No/No | Yes | N/A |
34 | F | 93 | 4 | A | 27 | Culture negative (prior antibiotic therapy) | DAIR | DAIR | Ciprofloxacin and clindamycin/60 | Yes | Yes/No | Yes | N/A |
Infection Control (n = 24) | Therapeutic Failure (n = 10) | |
---|---|---|
Female | 16 (66.7%) | 9 (90.0%) |
Age | 79.6 (SD 15.7) | 88.1 (SD 9.03) |
Comorbidities | 21 (87.5%) | 10 (100.0%) |
Charlson Comorbidity Index * | 4.2 (SD 2.8) | 5.4 (SD 0.93) |
Chronic infection | 13 (54.2%) | 4 (40.0%) |
Polymicrobial infection * | 5 (20.8%) | 6 (60.0%) |
Multidrug-resistant pathogen * | 3 (12.5%) | 5 (50.0%) |
Implant removal | 12 (50.0%) | 2 (20.0%) |
Combined antibiotic treatment | 16 (66.7%) | 6 (60.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfang, B.; Villegas García, M.A.; Blanco García, A.; Auñón Rubio, Á.; Esteban, J.; García Cañete, J. Risk Factors for Therapeutic Failure and One-Year Mortality in Patients with Intramedullary Nail-Associated Infection after Trochanteric and Subtrochanteric Hip Fracture Repair. Antibiotics 2024, 13, 463. https://doi.org/10.3390/antibiotics13050463
Pfang B, Villegas García MA, Blanco García A, Auñón Rubio Á, Esteban J, García Cañete J. Risk Factors for Therapeutic Failure and One-Year Mortality in Patients with Intramedullary Nail-Associated Infection after Trochanteric and Subtrochanteric Hip Fracture Repair. Antibiotics. 2024; 13(5):463. https://doi.org/10.3390/antibiotics13050463
Chicago/Turabian StylePfang, Bernadette, Marco A. Villegas García, Antonio Blanco García, Álvaro Auñón Rubio, Jaime Esteban, and Joaquín García Cañete. 2024. "Risk Factors for Therapeutic Failure and One-Year Mortality in Patients with Intramedullary Nail-Associated Infection after Trochanteric and Subtrochanteric Hip Fracture Repair" Antibiotics 13, no. 5: 463. https://doi.org/10.3390/antibiotics13050463
APA StylePfang, B., Villegas García, M. A., Blanco García, A., Auñón Rubio, Á., Esteban, J., & García Cañete, J. (2024). Risk Factors for Therapeutic Failure and One-Year Mortality in Patients with Intramedullary Nail-Associated Infection after Trochanteric and Subtrochanteric Hip Fracture Repair. Antibiotics, 13(5), 463. https://doi.org/10.3390/antibiotics13050463