“Primum, non nocere”: The Epidemiology of Toxigenic Clostridioides difficile Strains in the Antibiotic Era—Insights from a Prospective Study at a Regional Infectious Diseases Hospital in Eastern Europe
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balsells, E.; Shi, T.; Leese, C.; Lyell, I.; Burrows, J.; Wiuff, C.; Campbell, H.; Kyaw, M.H.; Nair, H. Global Burden of Clostridium difficile Infections: A Systematic Review and Meta-Analysis. J. Glob. Health 2019, 9, 010407. [Google Scholar] [CrossRef]
- Hensgens, M.P.M.; Keessen, E.C.; Squire, M.M.; Riley, T.V.; Koene, M.G.J.; De Boer, E.; Lipman, L.J.A.; Kuijper, E.J. Clostridium difficile Infection in the Community: A Zoonotic Disease? Clin. Microbiol. Infect. 2012, 18, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Clostridioides Difficile Infection|HAI|CDC. Available online: https://www.cdc.gov/healthcare-associated-infections/index.html (accessed on 6 February 2024).
- Boven, A.; Vlieghe, E.; Engstrand, L.; Andersson, F.L.; Callens, S.; Simin, J.; Brusselaers, N. Clostridioides difficile Infection-Associated Cause-Specific and All-Cause Mortality: A Population-Based Cohort Study. Clin. Microbiol. Infect. 2023, 29, 1424–1430. [Google Scholar] [CrossRef]
- Markovska, R.; Dimitrov, G.; Gergova, R.; Boyanova, L. Clostridioides difficile, a New “Superbug”. Microorganisms 2023, 11, 845. [Google Scholar] [CrossRef] [PubMed]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C.; et al. Burden of Clostridium difficile Infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef]
- Stămăteanu, L.O.; Miftode, I.L.; Pleșca, C.E.; Dorneanu, O.S.; Roșu, M.F.; Miftode, I.D.; Obreja, M.; Miftode, E.G. Symptoms, Treatment, and Outcomes of COVID-19 Patients Coinfected with Clostridioides difficile: Single-Center Study from NE Romania during the COVID-19 Pandemic. Antibiotics 2023, 12, 1091. [Google Scholar] [CrossRef]
- Sachsenheimer, F.E.; Yang, I.; Zimmermann, O.; Wrede, C.; Müller, L.V.; Gunka, K.; Groß, U.; Suerbaum, S. Genomic and Phenotypic Diversity of Clostridium difficile during Long-Term Sequential Recurrences of Infection. Int. J. Med. Microbiol. 2018, 308, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Luciano, J.A.; Zuckerbraun, B.S. Clostridium difficile Infection. Surg. Clin. N. Am. 2014, 94, 1335–1349. [Google Scholar] [CrossRef]
- Clabots, C.R.; Johnson, S.; Olson, M.M.; Peterson, L.R.; Gerding, D.N. Acquisition of Clostridium difficile by Hospitalized Patients: Evidence for Colonized New Admissions as a Source of Infection. J. Infect. Dis. 1992, 166, 561–567. [Google Scholar] [CrossRef]
- Markantonis, J.E.; Fallon, J.T.; Madan, R.; Alam, M.Z. Clostridioides difficile Infection: Diagnosis and Treatment Challenges. Pathogens 2024, 13, 118. [Google Scholar] [CrossRef]
- Kelly, C.P.; LaMont, J.T. Clostridium difficile—More Difficult Than Ever. N. Engl. J. Med. 2008, 359, 1932–1940. [Google Scholar] [CrossRef] [PubMed]
- Cocanour, C.S. Best Strategies in Recurrent or Persistent Clostridium difficile Infection. Surg. Infect. 2011, 12, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.; Stahl, T. Persistent and Recurrent Clostridium difficile Colitis. Clin. Colon Rectal Surg. 2015, 28, 065–069. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.; Lawrence, J.; Berry, C.; Davis, G.; Yu, H.; Cai, B.; Gonzalez, E.; Prantner, I.; Kurcz, A.; Macovei, I.; et al. Risk Factors for Primary Clostridium difficile Infection; Results from the Observational Study of Risk Factors for Clostridium difficile Infection in Hospitalized Patients with Infective Diarrhea (ORCHID). Front. Public Health 2020, 8, 293. [Google Scholar] [CrossRef] [PubMed]
- Eze, P.; Balsells, E.; Kyaw, M.H.; Nair, H. Risk Factors for Clostridium difficile Infections—An Overview of the Evidence Base and Challenges in Data Synthesis. J. Glob. Health 2017, 7, 010417. [Google Scholar] [CrossRef] [PubMed]
- Chakra, C.N.A.; Pepin, J.; Sirard, S.; Valiquette, L. Risk Factors for Recurrence, Complications and Mortality in Clostridium difficile Infection: A Systematic Review. PLoS ONE 2014, 9, e98400. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, M.; Seyedjavadi, S.S.; Goudarzi, H.; Mehdizadeh Aghdam, E.; Nazeri, S. Clostridium difficile Infection: Epidemiology, Pathogenesis, Risk Factors, and Therapeutic Options. Scientifica 2014, 2014, 916826. [Google Scholar] [CrossRef]
- Czepiel, J.; Kędzierska, J.; Biesiada, G.; Birczyńska, M.; Perucki, W.; Nowak, P.; Garlicki, A. Epidemiology of Clostridium difficile Infection: Results of a Hospital-Based Study in Krakow, Poland. Epidemiol. Infect. 2015, 143, 3235–3243. [Google Scholar] [CrossRef] [PubMed]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2018, 66, e1–e48. [Google Scholar] [CrossRef] [PubMed]
- Crobach, M.J.T.; Baktash, A.; Duszenko, N.; Kuijper, E.J. Diagnostic Guidance for C. difficile Infections. In Updates on Clostridium difficile in Europe: Advances in Microbiology, Infectious Diseases and Public Health Volume 8; Mastrantonio, P., Rupnik, M., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2018; pp. 27–44. ISBN 978-3-319-72799-8. [Google Scholar]
- Planche, T.D.; Davies, K.A.; Coen, P.G.; Finney, J.M.; Monahan, I.M.; Morris, K.A.; O’Connor, L.; Oakley, S.J.; Pope, C.F.; Wren, M.W.; et al. Differences in Outcome According to Clostridium difficile Testing Method: A Prospective Multicentre Diagnostic Validation Study of C. difficile Infection. Lancet Infect. Dis. 2013, 13, 936–945. [Google Scholar] [CrossRef]
- Tschudin-Sutter, S.; Kuijper, E.J.; Durovic, A.; Vehreschild, M.J.G.T.; Barbut, F.; Eckert, C.; Fitzpatrick, F.; Hell, M.; Norèn, T.; O’Driscoll, J.; et al. Guidance Document for Prevention of Clostridium difficile Infection in Acute Healthcare Settings. Clin. Microbiol. Infect. 2018, 24, 1051–1054. [Google Scholar] [CrossRef]
- McDonald, L.C.; Killgore, G.E.; Thompson, A.; Owens, R.C.; Kazakova, S.V.; Sambol, S.P.; Johnson, S.; Gerding, D.N. An Epidemic, Toxin Gene–Variant Strain of Clostridium difficile. N. Engl. J. Med. 2005, 353, 2433–2441. [Google Scholar] [CrossRef]
- Valiente, E.; Cairns, M.D.; Wren, B.W. The Clostridium difficile PCR Ribotype 027 Lineage: A Pathogen on the Move. Clin. Microbiol. Infect. 2014, 20, 396–404. [Google Scholar] [CrossRef]
- Fatima, R.; Aziz, M. The Hypervirulent Strain of Clostridium difficile: NAP1/B1/027—A Brief Overview. Cureus 2019, 11, e3977. [Google Scholar] [CrossRef]
- Åkerlund, T.; Persson, I.; Unemo, M.; Norén, T.; Svenungsson, B.; Wullt, M.; Burman, L.G. Increased Sporulation Rate of Epidemic Clostridium difficile Type 027/NAP1. J. Clin. Microbiol. 2008, 46, 1530–1533. [Google Scholar] [CrossRef]
- Cohen, S.H.; Gerding, D.N.; Johnson, S.; Kelly, C.P.; Loo, V.G.; McDonald, L.C.; Pepin, J.; Wilcox, M.H. Clinical Practice Guidelines for Clostridium difficile Infection in Adults: 2010 Update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect. Control Hosp. Epidemiol. 2010, 31, 431–455. [Google Scholar] [CrossRef]
- Aktories, K.; Papatheodorou, P.; Schwan, C. Binary Clostridium difficile Toxin (CDT)—A Virulence Factor Disturbing the Cytoskeleton. Anaerobe 2018, 53, 21–29. [Google Scholar] [CrossRef]
- Martínez-Meléndez, A.; Cruz-López, F.; Morfin-Otero, R.; Maldonado-Garza, H.J.; Garza-González, E. An Update on Clostridioides difficile Binary Toxin. Toxins 2022, 14, 305. [Google Scholar] [CrossRef]
- Rafila, A.; Indra, A.; Popescu, G.A.; Wewalka, G.; Allerberger, F.; Benea, S.; Badicut, I.; Aschbacher, R.; Huhulescu, S. Occurrence of Clostridium difficile Infections Due to PCR Ribotype 027 in Bucharest, Romania. J. Infect. Dev. Ctries. 2014, 8, 694–698. [Google Scholar] [CrossRef]
- Popescu, G.A.; Serban, R.; Pistol, A.; Niculcea, A.; Preda, A.; Lemeni, D.; Macovei, I.S.; Tălăpan, D.; Rafila, A.; Florea, D. The Recent Emergence of Clostridium difficile Infection in Romanian Hospitals Is Associated with a High Prevalence of Polymerase Chain Reaction Ribotype 027. Balk. Med. J. 2018, 35, 191–195. [Google Scholar] [CrossRef]
- 2021 Annual Report for the Emerging Infections Program for Clostridioides Difficile Infection|Emerging Infections Program|HAI|CDC. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/hai/eip/Annual-CDI-Report-2021.html (accessed on 8 February 2024).
- Clostridioides (Clostridium) difficile Infections—Annual Epidemiological Report for 2016–2017. Available online: https://www.ecdc.europa.eu/en/publications-data/clostridiodes-difficile-infections-annual-epidemiological-report-2016-2017 (accessed on 11 February 2024).
- Boone, J.H.; Archbald-Pannone, L.R.; Wickham, K.N.; Carman, R.J.; Guerrant, R.L.; Franck, C.T.; Lyerly, D.M. Ribotype 027 Clostridium difficile Infections with Measurable Stool Toxin Have Increased Lactoferrin and Are Associated with a Higher Mortality. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1045–1051. [Google Scholar] [CrossRef]
- Rao, K.; Micic, D.; Natarajan, M.; Winters, S.; Kiel, M.J.; Walk, S.T.; Santhosh, K.; Mogle, J.A.; Galecki, A.T.; LeBar, W.; et al. Clostridium difficile Ribotype 027: Relationship to Age, Detectability of Toxins A or B in Stool with Rapid Testing, Severe Infection, and Mortality. Clin. Infect. Dis. 2015, 61, 233–241. [Google Scholar] [CrossRef]
- Inns, T.; Gorton, R.; Berrington, A.; Sails, A.; Lamagni, T.; Collins, J.; Perry, J.; Hill, K.; Magee, J.; Gould, K. Effect of Ribotype on All-Cause Mortality Following Clostridium difficile Infection. J. Hosp. Infect. 2013, 84, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Kuenzli, A.B.; Burri, S.; Casanova, C.; Sommerstein, R.; Buetti, N.; Seth-Smith, H.M.B.; Bodmer, T.; Egli, A.; Marschall, J. Successful Management of a Clostridioides difficile Ribotype 027 Outbreak with a Lean Intervention Bundle. J. Hosp. Infect. 2020, 106, 240–245. [Google Scholar] [CrossRef]
- Marujo, V.; Arvand, M. The Largely Unnoticed Spread of Clostridioides difficile PCR Ribotype 027 in Germany after 2010. Infect. Prev. Pract. 2020, 2, 100102. [Google Scholar] [CrossRef]
- Clements, A.C.; Magalhães, R.J.S.; Tatem, A.J.; Paterson, D.L.; Riley, T.V. Clostridium difficile PCR Ribotype 027: Assessing the Risks of Further Worldwide Spread. Lancet Infect. Dis. 2010, 10, 395–404. [Google Scholar] [CrossRef]
- Barbut, F.; Surgers, L.; Eckert, C.; Visseaux, B.; Cuingnet, M.; Mesquita, C.; Pradier, N.; Thiriez, A.; Ait-Ammar, N.; Aifaoui, A.; et al. Does a Rapid Diagnosis of Clostridium difficile Infection Impact on Quality of Patient Management? Clin. Microbiol. Infect. 2014, 20, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Antibiotic Consumption, Microbial Resistance and Healthcare Associated Infections in Romania for 2020. Available online: https://www.cnscbt.ro/index.php/analiza-date-supraveghere/infectii-nosocomiale-1/3335-consumul-de-antibiotice-rezistenta-microbiana-si-infectii-asociate-asistentei-medicale-in-romania-2020/file (accessed on 25 January 2024).
- Marinescu, A.R.; Lazureanu, V.; Laza, R.; Musta, V.; Nicolescu, N.; Licker, M. Clostridium difficile Infection in Western Romania: Correlations Between Ribotype and Clinical Form One Year Observational Retrospective Study. Rev. Chim. 2019, 70, 2660–2664. [Google Scholar] [CrossRef]
- Marinescu, A.-R.; Lăzureanu, V.; Laza, R.; Musta, V.; Nicolescu, N.; Cuț, T.; Dehelean, C.; Oancea, C.; Licker, M. Association between Ribotype and Clinical Form of Enterocolitis with C. difficile in Western Romania: A 2-year Study. Exp. Ther. Med. 2021, 23, 22. [Google Scholar] [CrossRef]
- Kuijper, E.J.; Van Den Berg, R.J.; Debast, S.; Visser, C.E.; Veenendaal, D.; Troelstra, A.; Van Der Kooi, T.; Van Den Hof, S.; Notermans, D.W. Clostridium difficile Ribotype 027, Toxinotype III, the Netherlands. Emerg. Infect. Dis. 2006, 12, 827–830. [Google Scholar] [CrossRef]
- Hensgens, M.P.M.; Goorhuis, A.; Dekkers, O.M.; Van Benthem, B.H.B.; Kuijper, E.J. All-Cause and Disease-Specific Mortality in Hospitalized Patients with Clostridium difficile Infection: A Multicenter Cohort Study. Clin. Infect. Dis. 2013, 56, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Patterson, L.; Wilcox, M.H.; Fawley, W.N.; Verlander, N.Q.; Geoghegan, L.; Patel, B.C.; Wyatt, T.; Smyth, B. Morbidity and Mortality Associated with Clostridium difficile Ribotype 078: A Case–Case Study. J. Hosp. Infect. 2012, 82, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Rafey, A.; Jahan, S.; Farooq, U.; Akhtar, F.; Irshad, M.; Nizamuddin, S.; Parveen, A. Antibiotics Associated with Clostridium difficile Infection. Cureus 2023, 15, e39029. [Google Scholar] [CrossRef] [PubMed]
- Søes, L.; Mølbak, K.; Strøbæk, S.; Truberg Jensen, K.; Torpdahl, M.; Persson, S.; Kemp, M.; Olsen, K.E. The Emergence of Clostridium difficile PCR Ribotype 027 in Denmark—A Possible Link with the Increased Consumption of Fluoroquinolones and Cephalosporins? Eurosurveillance 2009, 14, 19176. [Google Scholar] [CrossRef] [PubMed]
- Owens, R.C., Jr.; Donskey, C.J.; Gaynes, R.P.; Loo, V.G.; Muto, C.A. Antimicrobial-Associated Risk Factors for Clostridium difficile Infection. Clin. Infect. Dis. 2008, 46, S19–S31. [Google Scholar] [CrossRef]
- Saxton, K.; Baines, S.D.; Freeman, J.; O’Connor, R.; Wilcox, M.H. Effects of Exposure of Clostridium difficile PCR Ribotypes 027 and 001 to Fluoroquinolones in a Human Gut Model. Antimicrob. Agents Chemother. 2009, 53, 412–420. [Google Scholar] [CrossRef]
- Asgary, R.; Snead, J.A.; Wahid, N.A.; Ro, V.; Halim, M.; Stribling, J.C. Risks and Preventive Strategies for Clostridioides difficile Transmission to Household or Community Contacts during Transition in Healthcare Settings. Emerg. Infect. Dis. 2021, 27, 1776–1782. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Luo, Y.; Grinspan, A.M. Epidemiology of Community-Acquired and Recurrent Clostridioides difficile Infection. Ther. Adv. Gastroenterol. 2021, 14, 17562848211016248. [Google Scholar] [CrossRef]
- El-Sokkary, R.; Uysal, S.; Erdem, H.; Kullar, R.; Pekok, A.U.; Amer, F.; Grgić, S.; Carevic, B.; El-Kholy, A.; Liskova, A.; et al. Profiles of Multidrug-Resistant Organisms among Patients with Bacteremia in Intensive Care Units: An International ID-IRI Survey. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2323–2334. [Google Scholar] [CrossRef]
- Miftode, I.-L.; Nastase, E.V.; Miftode, R.-Ș.; Miftode, E.G.; Iancu, L.S.; Luncă, C.; Anton Păduraru, D.-T.; Costache, I.-I.; Stafie, C.-S.; Dorneanu, O.-S. Insights into Multidrug-Resistant K. Pneumoniae Urinary Tract Infections: From Susceptibility to Mortality. Exp. Ther. Med. 2021, 22, 1086. [Google Scholar] [CrossRef]
- Miftode, I.-L.; Pasare, M.-A.; Miftode, R.-S.; Nastase, E.; Plesca, C.E.; Lunca, C.; Miftode, E.-G.; Timpau, A.-S.; Iancu, L.S.; Dorneanu, O.S. What Doesn’t Kill Them Makes Them Stronger: The Impact of the Resistance Patterns of Urinary Enterobacterales Isolates in Patients from a Tertiary Hospital in Eastern Europe. Antibiotics 2022, 11, 548. [Google Scholar] [CrossRef] [PubMed]
- El-Sokkary, R.; Erdem, H.; Kullar, R.; Pekok, A.U.; Amer, F.; Grgić, S.; Carevic, B.; El-Kholy, A.; Liskova, A.; Özdemir, M.; et al. Self-Reported Antibiotic Stewardship and Infection Control Measures from 57 Intensive Care Units: An International ID-IRI Survey. J. Infect. Public Health 2022, 15, 950–954. [Google Scholar] [CrossRef]
- Miftode, I.-L.; Leca, D.; Miftode, R.-S.; Roşu, F.; Plesca, C.; Loghin, I.; Timpau, A.S.; Mitu, I.; Mititiuc, I.; Dorneanu, O.; et al. The Clash of the Titans: COVID-19, Carbapenem-Resistant Enterobacterales, and First Mcr-1-Mediated Colistin Resistance in Humans in Romania. Antibiotics 2023, 12, 324. [Google Scholar] [CrossRef] [PubMed]
- Clostridioides difficile Infection: Epidemiological and Clinical Aspects. PHD Thesis—Summary. Available online: https://umfcd.ro/wp-content/uploads/2023/Scoala_doctorala/teza_doctorat/manea_cas_militaru%20e_eliza_daniela/Rezumat%20doctorat.pdf. (accessed on 26 January 2024).
- Rao, K.; Higgins, P.D.R.; Young, V.B. An Observational Cohort Study of Clostridium difficile Ribotype 027 and Recurrent Infection. mSphere 2018, 3, e00033-18. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Grambow, S.C.; Woods, C.W.; Fowler, V.G., Jr.; Moehring, R.W.; Anderson, D.J.; Lewis, S.S. Epidemiologic Trends in Clostridioides difficile Infections in a Regional Community Hospital Network. JAMA Netw. Open 2019, 2, e1914149. [Google Scholar] [CrossRef] [PubMed]
- Jump, R.L. Clostridium difficile Infection in Older Adults. Aging Health 2013, 9, 403–414. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Konstantelias, A.A.; Loizidis, G.; Rafailidis, P.I.; Falagas, M.E. Risk Factors for Development of Clostridium difficile Infection Due to BI/NAP1/027 Strain: A Meta-Analysis. Int. J. Infect. Dis. 2012, 16, e768–e773. [Google Scholar] [CrossRef] [PubMed]
- Goorhuis, A.; Bakker, D.; Corver, J.; Debast, S.B.; Harmanus, C.; Notermans, D.W.; Bergwerff, A.A.; Dekker, F.W.; Kuijper, E.J. Emergence of Clostridium difficile Infection Due to a New Hypervirulent Strain, Polymerase Chain Reaction Ribotype 078. Clin. Infect. Dis. 2008, 47, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Louie, T.J.; Byrne, B.; Emery, J.; Ward, L.; Krulicki, W.; Nguyen, D.; Wu, K.; Cannon, K. Differences of the Fecal Microflora with Clostridium difficile Therapies. Clin. Infect. Dis. 2015, 60, S91–S97. [Google Scholar] [CrossRef]
- Kachrimanidou, M.; Tsintarakis, E. Insights into the Role of Human Gut Microbiota in Clostridioides difficile Infection. Microorganisms 2020, 8, 200. [Google Scholar] [CrossRef]
- Warny, M.; Pepin, J.; Fang, A.; Killgore, G.; Thompson, A.; Brazier, J.; Frost, E.; McDonald, L.C. Toxin Production by an Emerging Strain of Clostridium difficile Associated with Outbreaks of Severe Disease in North America and Europe. Lancet 2005, 366, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Press, A.; Ku, B.S.; McCullagh, L.; Rosen, L.; Richardson, S.; McGinn, T. Developing a Clinical Prediction Rule for First Hospital-Onset Clostridium difficile Infections: A Retrospective Observational Study. Infect. Control Hosp. Epidemiol. 2016, 37, 896–900. [Google Scholar] [CrossRef]
- Dubberke, E.R.; Olsen, M.A.; Stwalley, D.; Kelly, C.P.; Gerding, D.N.; Young-Xu, Y.; Mahé, C. Identification of Medicare Recipients at Highest Risk for Clostridium difficile Infection in the US by Population Attributable Risk Analysis. PLoS ONE 2016, 11, e0146822. [Google Scholar] [CrossRef] [PubMed]
- Mamic, P.; Heidenreich, P.A.; Hedlin, H.; Tennakoon, L.; Staudenmayer, K.L. Hospitalized Patients with Heart Failure and Common Bacterial Infections: A Nationwide Analysis of Concomitant Clostridium difficile Infection Rates and In-Hospital Mortality. J. Card. Fail. 2016, 22, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Guh, A.Y.; Adkins, S.H.; Li, Q.; Bulens, S.N.; Farley, M.M.; Smith, Z.; Holzbauer, S.M.; Whitten, T.; Phipps, E.C.; Hancock, E.B.; et al. Risk Factors for Community-Associated Clostridium difficile Infection in Adults: A Case-Control Study. Open Forum Infect. Dis. 2017, 4, ofx171. [Google Scholar] [CrossRef]
- Bauer, K.A.; Johnston, J.E.W.; Wenzler, E.; Goff, D.A.; Cook, C.H.; Balada-Llasat, J.-M.; Pancholi, P.; Mangino, J.E. Impact of the NAP-1 Strain on Disease Severity, Mortality, and Recurrence of Healthcare-Associated Clostridium difficile Infection. Anaerobe 2017, 48, 1–6. [Google Scholar] [CrossRef]
- Sirard, S.; Valiquette, L.; Fortier, L.-C. Lack of Association between Clinical Outcome of Clostridium difficile Infections, Strain Type, and Virulence-Associated Phenotypes. J. Clin. Microbiol. 2011, 49, 4040–4046. [Google Scholar] [CrossRef]
- Walk, S.T.; Micic, D.; Jain, R.; Lo, E.S.; Trivedi, I.; Liu, E.W.; Almassalha, L.M.; Ewing, S.A.; Ring, C.; Galecki, A.T.; et al. Clostridium difficile Ribotype Does Not Predict Severe Infection. Clin. Infect. Dis. 2012, 55, 1661–1668. [Google Scholar] [CrossRef]
- Morgan, O.W.; Rodrigues, B.; Elston, T.; Verlander, N.Q.; Brown, D.F.J.; Brazier, J.; Reacher, M. Clinical Severity of Clostridium difficile PCR Ribotype 027: A Case-Case Study. PLoS ONE 2008, 3, e1812. [Google Scholar] [CrossRef]
- See, I.; Mu, Y.; Cohen, J.; Beldavs, Z.G.; Winston, L.G.; Dumyati, G.; Holzbauer, S.; Dunn, J.; Farley, M.M.; Lyons, C.; et al. NAP1 Strain Type Predicts Outcomes from Clostridium difficile Infection. Clin. Infect. Dis. 2014, 58, 1394–1400. [Google Scholar] [CrossRef]
- Hubert, B.; Loo, V.G.; Bourgault, A.-M.; Poirier, L.; Dascal, A.; Fortin, É.; Dionne, M.; Lorange, M. A Portrait of the Geographic Dissemination of the Clostridium difficile North American Pulsed-Field Type 1 Strain and the Epidemiology of C. difficile-Associated Disease in Québec. Clin. Infect. Dis. 2007, 44, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Solomon, K. The Host Immune Response to Clostridium difficile Infection. Ther. Adv. Infect. Dis. 2013, 1, 19–35. [Google Scholar] [CrossRef]
- Carter, G.P.; Chakravorty, A.; Pham Nguyen, T.A.; Mileto, S.; Schreiber, F.; Li, L.; Howarth, P.; Clare, S.; Cunningham, B.; Sambol, S.P.; et al. Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections. mBio 2015, 6, e00551-15. [Google Scholar] [CrossRef] [PubMed]
- Kuehne, S.A.; Cartman, S.T.; Heap, J.T.; Kelly, M.L.; Cockayne, A.; Minton, N.P. The Role of Toxin A and Toxin B in Clostridium difficile Infection. Nature 2010, 467, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Lyras, D.; O’Connor, J.R.; Howarth, P.M.; Sambol, S.P.; Carter, G.P.; Phumoonna, T.; Poon, R.; Adams, V.; Vedantam, G.; Johnson, S.; et al. Toxin B Is sEssential for Virulence of Clostridium difficile. Nature 2009, 458, 1176–1179. [Google Scholar] [CrossRef]
- Tarasi, A. Nightmare in the Ward: Difficult Clostridioides Infection. Eur. Heart J. Suppl. 2023, 25, B161–B165. [Google Scholar] [CrossRef] [PubMed]
- Riggs, M.M.; Sethi, A.K.; Zabarsky, T.F.; Eckstein, E.C.; Jump, R.L.P.; Donskey, C.J. Asymptomatic Carriers Are a Potential Source for Transmission of Epidemic and Nonepidemic Clostridium difficile Strains among Long-Term Care Facility Residents. Clin. Infect. Dis. 2007, 45, 992–998. [Google Scholar] [CrossRef]
- Sheth, P.M.; Douchant, K.; Uyanwune, Y.; Larocque, M.; Anantharajah, A.; Borgundvaag, E.; Dales, L.; McCreight, L.; McNaught, L.; Moore, C.; et al. Evidence of Transmission of Clostridium difficile in Asymptomatic Patients Following Admission Screening in a Tertiary Care Hospital. PLoS ONE 2019, 14, e0207138. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Oh, H.J.; Kim, H.S.; Hwang, Y.J.; Yong, D.; Jeong, S.H.; Lee, K. Fecal Calprotectin Level Reflects the Severity of Clostridium difficile Infection. Ann. Lab. Med. 2017, 37, 53–57. [Google Scholar] [CrossRef]
- Peretz, A.; Tkhawkho, L.; Pastukh, N.; Brodsky, D.; Halevi, C.N.; Nitzan, O. Correlation between Fecal Calprotectin Levels, Disease Severity and the Hypervirulent Ribotype 027 Strain in Patients with Clostridium difficile Infection. BMC Infect. Dis. 2016, 16, 309. [Google Scholar] [CrossRef]
- Kędzierska, J.; Garlicki, A.; Biesiada, G.; Wultańska, D.; Pituch, H.; Piotrowski, M.; Obuch-Woszczatyński, P.; Michalak, M.; Czepiel, J.; Dróżdż, M. The Level of Fecal Calprotectin Significantly Correlates with Clostridium difficile Infection Severity. Folia Medica Cracoviensia 2019, 59, 53–65. [Google Scholar]
- Freeman, J.; Bauer, M.P.; Baines, S.D.; Corver, J.; Fawley, W.N.; Goorhuis, B.; Kuijper, E.J.; Wilcox, M.H. The Changing Epidemiology of Clostridium difficile Infections. Clin. Microbiol. Rev. 2010, 23, 529–549. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Paharik, A.E.; Schreiber, H.L.; Spaulding, C.N.; Dodson, K.W.; Hultgren, S.J. Narrowing the Spectrum: The New Frontier of Precision Antimicrobials. Genome Med. 2017, 9, 110. [Google Scholar] [CrossRef] [PubMed]
- Popescu, G.A.; Mathyas, L.; Ciolan, C.; Șerban, R.; Pistol, A. Antibacterial Consumption in Romania in 2012: Specific Features and Quality Indicators for Community Usage. BMC Infect. Dis. 2013, 13, O17. [Google Scholar] [CrossRef]
- AMC|European Centre for Disease Prevention and Control. Available online: https://qap.ecdc.europa.eu/public/extensions/AMC2_Dashboard/AMC2_Dashboard.html#eu-consumption-tab (accessed on 2 March 2024).
- López-Ureña, D.; Quesada-Gómez, C.; Miranda, E.; Fonseca, M.; Rodríguez-Cavallini, E. Spread of Epidemic Clostridium difficile NAP1/027 in Latin America: Case Reports in Panama. J. Med. Microbiol. 2014, 63, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Adam, H.J.; Kosowan, T.; Baxter, M.R.; Nichol, K.A.; Laing, N.M.; Golding, G.; Zhanel, G.G. PCR Ribotyping and Antimicrobial Susceptibility Testing of Isolates of Clostridium difficile Cultured from Toxin-Positive Diarrheal Stools of Patients Receiving Medical Care in Canadian Hospitals: The Canadian Clostridium Icile Surveillance Study (CAN-DIFF) 2013–2015. Diagn. Microbiol. Infect. Dis. 2018, 91, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Coffman, K.; Chen, X.J.C.; Okamura, C.; Louie, E. IVIG—A Cure to Severe Refractory NAP-1 Clostridium difficile Colitis? A Case of Successful Treatment of Severe Infection, Which Failed Standard Therapy Including Fecal Microbiota Transplants and Fidaxomicin. IDCases 2017, 8, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Chintanaboina, J.; Navabi, S.; Suchniak-Mussari, K.; Stern, B.; Bedi, S.; Lehman, E.B.; Tinsley, A. Predictors of 30-Day Mortality in Hospitalized Patients with Clostridium difficile Infection. South. Med. J. 2017, 110, 546–549. [Google Scholar] [CrossRef]
- Karas, J.A.; Enoch, D.A.; Aliyu, S.H. A Review of Mortality Due to Clostridium difficile Infection. J. Infect. 2010, 61, 1–8. [Google Scholar] [CrossRef]
- Welfare, M.R.; Lalayiannis, L.C.; Martin, K.E.; Corbett, S.; Marshall, B.; Sarma, J.B. Co-Morbidities as Predictors of Mortality in Clostridium difficile Infection and Derivation of the ARC Predictive Score. J. Hosp. Infect. 2011, 79, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, M.G.; Sherwin, J.C.; Gkrania-Klotsas, E. Risk Factors for Mortality in Clostridium difficile Infection in the General Hospital Population: A Systematic Review. J. Hosp. Infect. 2012, 82, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kok, J.; Wang, Q.; Thomas, L.C.; Gilbert, G.L. Presumptive Identification of Clostridium difficile Strain 027/NAP1/BI on Cepheid Xpert: Interpret with Caution. J. Clin. Microbiol. 2011, 49, 3719–3721. [Google Scholar] [CrossRef] [PubMed]
Demographic Parameters | Toxin-Producing CD Strains (Presumptive 027/NAP1/BI) | p-Value | |
---|---|---|---|
Positive R1 (n = 43) | Negative R0 (n = 7) | ||
Sex, n (%) | 0.215 | ||
Male | 23 (53.5%) | 2 (28.6%) | |
Female | 20 (46.5%) | 5 (71.4%) | |
Age, years | 66.51 ± 16.06 | 55.57 ± 24.11 | 0.127 |
mean ± SD, limits | (24–81) | (30–93) | |
Environment, n (%) | 0.857 | ||
Urban | 23 (53.5%) | 4 (57.1%) | |
Rural | 20 (46.5%) | 3 (42.9%) | |
Hospitalization length, mean ± SD, limits | 14.60 ± 11.58 (1–63) | 10.14 ± 5.79 (3–19) | 0.326 |
Sick day at admission, mean ± SD, limits | 5.58 ± 6.25 (1–30) | 2.14 ± 1.07 (1–4) | 0.156 |
Signs and Symptoms | Toxin-Producing CD Strains (Presumptive 027/NAP1/BI) | p-Value | |
---|---|---|---|
Positive R1 (n = 43) | Negative R0 (n = 7) | ||
Diarrhea before admission, n (%) | 33 (76.7%) | 5 (71.4%) | 0.764 |
Diarrhea after admission, n (%) | 43 (100%) | 7 (100%) | 1.000 |
No. of stools on admission, mean ± SD, limits | 5.86 ± 3.04 | 6.00 ± 4.08 | 0.915 |
Watery stools, n (%) | 41 (95.3%) | 6 (85.7%) | 0.378 |
Semiconsistent stools, n (%) | 33 (76.7%) | 5 (71.4%) | 0.764 |
Abdominal pain, n (%) | 31 (72.1%) | 5 (71.4%) | 0.971 |
Vomiting, n (%) | 15 (34.9%) | 3 (42.9%) | 0.687 |
Loss of appetite, n (%) | 25 (58.1%) | 5 (71.4%) | 0.498 |
Fever, n (%) | 9 (20.9%) | 1 (14.3%) | 0.673 |
Chills, n (%) | 4 (9.3%) | 0 (0.0%) | 0.261 |
Astheny, n (%) | 12 (27.9%) | 1 (14.3%) | 0.422 |
Headache, n (%) | 3 (7.0%) | 2 (28.6%) | 0.124 |
Parameters | Toxin-Producing CD Strains (Presumptive 027/NAP1/BI) | p-Value | |
---|---|---|---|
Positive R1 (n = 43) | Negative R0 (n = 7) | ||
WBC (cells/μL), mean ± SD, limits | 12,464 ± 6901 1430–27,190 | 12,872 ± 8394 3990–29,170 | 0.888 |
Neutrophils (%), mean ± SD, limits | 93.94 ± 92.92 50.3–633 | 82.11 ± 7.75 68.5–92.3 | 0.743 |
Lymphocytes (%), mean ± SD, limits | 18.51 ± 14.90 2.0–72.2 | 11.73 ± 5.77 6.1–22.9 | 0.244 |
Thrombocytes (cells/μL), mean ± SD, limits | 256.90 ± 95.45 7–1196 | 205.29 ± 95.45 43–283 | 0.484 |
CRP at admission (mg/dL), mean ± SD, limits | 98.20 ± 90.91 0.49–440 | 88.13 ± 100.01 2.50–252 | 0.790 |
ESR (mm/hr), mean ± SD, limits | 62.44 ± 40.55 0–140 | 36.57 ± 19.21 26–80 | 0.106 |
Fibrinogen (mg/dL), mean ± SD, limits | 3.58 ± 1.60 1.23–9.35 | 3.16 ± 1.07 1.26–4.26 | 0.510 |
Total proteins at admission, mean ± SD, limits | 60.10 ± 20.03 0–92.13 | 72.16 ± 7.24 60.93–81.50 | 0.125 |
INR, mean ± SD, limits | 0.78 ± 0.76 0–2.85 | 0.90 ± 1.05 0–2.86 | 0.717 |
Sodium (mmol/L), mean ± SD, limits | 142.44 ± 2.96 132–148 | 140.80 ± 2.92 137–145 | 0.180 |
Potassium (mmol/L), mean ± SD, limits | 3.81 ± 0.52 2.56–5.07 | 3.84 ± 0.54 3.01–4.63 | 0.872 |
Chloride (mmol/L), mean ± SD, limits | 101.17 ± 3.03 94–107.30 | 99.10 ± 4.36 90.60–104.20 | 0.122 |
Glucose (mg/dL), mean ± SD, limits | 121.84 ± 69.80 61–512 | 101.14 ± 16.16 82–124 | 0.442 |
Urea (mg/dL), mean ± SD, limits | 54.47 ± 37.92 9–164 | 30.86 ± 14.19 17–55 | 0.112 |
Creatinine (mg/dL), mean ± SD, limits | 1.36 ± 1.10 0.63–7.00 | 0.94 ± 0.20 0.65–1.25 | 0.324 |
ALT (U/L), mean ± SD, limits | 42.44 ± 45.79 6–249 | 21.00 ± 7.35 12–32 | 0.226 |
Comorbidities | Toxin-Producing CD Strains (Presumptive 027/NAP1/BI) | p-Value | |
---|---|---|---|
Positive R1 (n = 43) | Negative R0 (n = 7) | ||
Cardiovascular, n (%) | 28 (65.1%) | 1 (14.2%) | 0.016 |
Diabetes, n (%) | 8 (18.6%) | 0 (0.0%) | 0.104 |
Gastroenterological, n (%) | 21 (48.8%) | 3 (42.9%) | 0.769 |
Pulmonary, n (%) | 3 (7.0%) | 1 (14.3%) | 0.541 |
Obesity, n (%) | 4 (9.3%) | 0 (0.0%) | 0.261 |
Neurological, n (%) | 8 (18.6%) | 0 (0.0%) | 0.104 |
Rheumatological, n (%) | 3 (7.0%) | 0 (0.0%) | 0.333 |
Psychiatric, n (%) | 7 (16.3%) | 0 (0.0%) | 0.130 |
Endocrinological, n (%) | 7 (16.3%) | 0 (0.0%) | 0.130 |
Chronic kidney disease, n (%) | 9 (20.9%) | 0 (0.0%) | 0.082 |
Oncological, n (%) | 7 (16.3%) | 2 (28.6%) | 0.456 |
Dialysis, n (%) | 2 (4.7%) | 0 (0.0%) | 0.432 |
Antibiotics | Toxin-Producing CD Strains (Presumptive 027/NAP1/BI) | p-Value | |
---|---|---|---|
Positive R1 (n = 43) | Negative R0 (n = 7) | ||
Cephalosporins, n (%) | 11 (25.6%) | 1 (14.3%) | 0.496 |
Aminopenicillins, n (%) | 5 (11.6%) | 0 (0.0%) | 0.206 |
Macrolides, n (%) | 0 (0.0%) | 1 (14.3%) | 0.140 |
Carbapenems, n (%) | 9 (20.9%) | 1 (14.3%) | 0.673 |
Linezolid, n (%) | 2 (4.7%) | 0 (0.0%) | 0.432 |
Fluoroquinolones, n (%) | 3 (7.0%) | 0 (0.0%) | 0.333 |
Aminoglycosides, n (%) | 4 (9.3%) | 0 (0.0%) | 0.261 |
Colistin, n (%) | 1 (2.3%) | 0 (0.0%) | 0.581 |
Treatment | Toxin-Producing CD Strains (Presumptive 027/NAP1/BI) | p-Value | |
---|---|---|---|
Positive R1 (n = 43) | Negative R0 (n = 7) | ||
Vancomycin, n (%) | 24 (55.8%) | 1 (14.3%) | 0.049 |
Metronidazole, n (%) | 11 (25.5%) | 5 (71.4%) | 0.027 |
Vancomycin + Metronidazole, n (%) | 8 (18.6%) | 1 (14.3%) | 0.630 |
Fecal microbiota transplantation, n (%) | 2 (4.7%) | 0 (0.0%) | 0.737 |
Evolution | Toxin-Producing CD Strains (Presumptive 027/NAP1/BI) | p-Value | |
---|---|---|---|
Positive R1 (n = 43) | Negative R0 (n = 7) | ||
Recurrence rates, n (%) | 14 (32.56%) | 0 (0.0%) | 0.025 |
Favorable evolution, n (%) | 37 (86.0%) | 6 (85.7%) | 0.981 |
Mortality, n (%) | 6 (14.0%) | 1 (14.3%) | 0.981 |
Logistic Regression Models Deceased, Presumptive 027/NAP1/BI Positive Assessed Variables | Odds Ratio (OR) | 95% CI | p-Value |
---|---|---|---|
Calprotectin > 200 | 1.299 | 0.076–3.979 | 0.046 |
Calprotectin > 200 Toxin B (PCR) | 2.364 2.159 | 0.411–13.584 0.610–12.543 | 0.034 0.001 |
Calprotectin 200 Toxin B (PCR) Number of stools | 1.521 1.611 0.823 | 0.646–5.541 0.642–6.286 0.680–0.996 | 0.019 0.012 0.046 |
Test Result Variables | Area | Std. Error | Asymptotic Sig. | Asymptotic 95% Confidence Interval |
---|---|---|---|---|
Glucose | 0.870 | 0.058 | 0.002 | 0.758–0.983 |
CRP at admission | 0.761 | 0.081 | 0.028 | 0.603–0.919 |
CRP at discharge | 0.892 | 0.071 | 0.001 | 0.753–1.000 |
Creatinine | 0.826 | 0.057 | 0.006 | 0.714–0.937 |
Model | R | R2 | Adjusted R2 | Std. Error of the Estimate | p Value | Durbin-Watson |
---|---|---|---|---|---|---|
1 | 0.370 a | 0.137 | 0.039 | 0.344 | 0.245 | 2.223 |
2 | 0.201 b | 0.040 | −0.001 | 0.040 | 0.381 | 2.457 |
3 | 0.499 c | 0.249 | 0.233 | 0.307 | <0.001 | 2.413 |
4 | 0.509 d | 0.259 | 0.227 | 0.308 | 0.001 | 2.347 |
5 | 0.566 e | 0.321 | 0.226 | 0.308 | 0.008 | 2.213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stămăteanu, L.O.; Pleşca, C.E.; Miftode, I.L.; Bădescu, A.C.; Manciuc, D.C.; Hurmuzache, M.E.; Roșu, M.F.; Miftode, R.Ș.; Obreja, M.; Miftode, E.G. “Primum, non nocere”: The Epidemiology of Toxigenic Clostridioides difficile Strains in the Antibiotic Era—Insights from a Prospective Study at a Regional Infectious Diseases Hospital in Eastern Europe. Antibiotics 2024, 13, 461. https://doi.org/10.3390/antibiotics13050461
Stămăteanu LO, Pleşca CE, Miftode IL, Bădescu AC, Manciuc DC, Hurmuzache ME, Roșu MF, Miftode RȘ, Obreja M, Miftode EG. “Primum, non nocere”: The Epidemiology of Toxigenic Clostridioides difficile Strains in the Antibiotic Era—Insights from a Prospective Study at a Regional Infectious Diseases Hospital in Eastern Europe. Antibiotics. 2024; 13(5):461. https://doi.org/10.3390/antibiotics13050461
Chicago/Turabian StyleStămăteanu, Lidia Oana, Claudia Elena Pleşca, Ionela Larisa Miftode, Aida Corina Bădescu, Doina Carmen Manciuc, Mihnea Eudoxiu Hurmuzache, Manuel Florin Roșu, Radu Ștefan Miftode, Maria Obreja, and Egidia Gabriela Miftode. 2024. "“Primum, non nocere”: The Epidemiology of Toxigenic Clostridioides difficile Strains in the Antibiotic Era—Insights from a Prospective Study at a Regional Infectious Diseases Hospital in Eastern Europe" Antibiotics 13, no. 5: 461. https://doi.org/10.3390/antibiotics13050461
APA StyleStămăteanu, L. O., Pleşca, C. E., Miftode, I. L., Bădescu, A. C., Manciuc, D. C., Hurmuzache, M. E., Roșu, M. F., Miftode, R. Ș., Obreja, M., & Miftode, E. G. (2024). “Primum, non nocere”: The Epidemiology of Toxigenic Clostridioides difficile Strains in the Antibiotic Era—Insights from a Prospective Study at a Regional Infectious Diseases Hospital in Eastern Europe. Antibiotics, 13(5), 461. https://doi.org/10.3390/antibiotics13050461