Bacitracin Methylene Disalicylate (BMD) Treatment Affects Spleen Proteome in Broiler Chicks Infected with Salmonella enteritidis
Abstract
:1. Introduction
2. Results
2.1. Performance Parameters and Concentration of SE in the Ceca of Broiler-Chickens
2.2. Overall Effect of BMD Treatment on Protein Abundance
Three-Way ANOVA | FDR < 0.05 | FDR < 0.1 |
---|---|---|
BMD | 77 | 192 |
Treatment X SE Challenge | 126 | 230 |
Term | % | p-Value | Genes |
---|---|---|---|
Proteins that decreased with the BMD | |||
Fibrinogen Complex | 5.2 | 8.0 × 10−07 | FN1, FGA, FGG, FGB, |
Extracellular Space | 14.3 | 9.1 × 10−03 | ORM1, LOC426820, DCN, FGB, FN1, C3, COL12A1, FGA, COL6A1, SPIA3, FGG |
Signal | 24.7 | 4.2 × 10−02 | DCN, FKBP9, FGB, FN1, COL12A1, COL6A1, VNN1, ARSB, ORM1, CD44, C3, FGA, SPIA3, VTN, ITIH3, FGG, ELN, MIA3, TM9SF2 |
Proteins that increased with the BMD | |||
Proteasome-mediated ubiquitin-dependent protein catabolic process | 6.9 | 4.7 × 10−05 | PSMA7, RAD23B, PLAA, PSMB4, PSMC5, PSMD12, PSMB2, RAD23A |
Nucleotide excision repair | 3.4 | 1.2 × 10−02 | RFC2, RAD23B, RAD23A, RPA3 |
ATP binding | 14.7 | 2.8 × 10−02 | SMCHD1, SKIV2L2, PSMC3, NME3, MSH2, SYK, CTPS1, CCT2, PSMC5, VRK1, ASNA1, RFC2, UBA6, R4GL80_CHICK, HYOU1, AKT1 |
Mitochondrion | 5.2 | 5.7 × 10−02 | BID, CIAPIN1, CS, QTRT2, NDUFB4, SAMM50 |
Proteins decreased with the treatment X challenge | |||
Protein folding | 6.2 | 1.2 × 10−05 | CCT2, PPIA, CALR, CALR3, HSP90B1, PPIB, HYOU1, P4HB |
Carbon metabolism | 5.4 | 2.4 × 10−03 | GPI, TKTL1, CS, IDH2, ADH4, MDH2, FH |
Biosynthesis of nucleotide sugars | 3.9 | 1.6 × 10−03 | GPI, TSTA3, GMPPB, GFPT1, GMPPA |
Response to oxidative stress | 3.1 | 1.3 × 10−02 | PRDX6, GPX1, ATOX1, PRDX4 |
Positive regulation of NIK/NF-kappaB signaling | 2.3 | 4.0 × 10−02 | CALR, CALR3, RELA |
Inflammatory response | 4.7 | 6.7 × 10−03 | PLAA, MAP2K3, GGT5, RELA, AKT1, EXFABP |
Term | % | p-Value | Genes |
Proteins that increased with the treatment X challenge | |||
RNA binding | 12.7 | 1.7 × 10−04 | RBM23, RPS27, RPL3, FUBP3, SRSF6, POLDIP3, HNRNPU, CPSF6, HNRNPR, MATR3, SRSF7, NONO, CRNKL1 |
Spliceosome | 7.8 | 1.3 × 10−04 | HNRNPU, CDC5L, SRSF6, PPIE, HSPA8, SRSF7, CRNKL1, EFTUD2 |
Peptidyl-prolyl cis-trans isomerase activity | 3.9 | 2.8 × 10−03 | PIN4, PPIE, FKBP15, FKBP3 |
Protein transport | 7.8 | 1.6 × 10−03 | VPS45, SEC16A, TOM1, NUP93, AP2M1, VPS16, NUP98, F1NLW3_CHICK |
Cell adhesion | 5.9 | 3.0 × 10−02 | LAMA5, CTNNA2, ARVCF, AFDN, LAMC1, NID1 |
Overall BMD Effect |
DNA Replication, Recombination, and Repair, Cancer, Gastrointestinal Disease (CIAPIN1, 53) (Figure 2A) |
Cellular Assembly and Organization, Hereditary Disorder, Organismal Injury and Abnormalities (AKT1, and RPL34, 53) |
Cell Death and Survival, Cell-To-Cell Signaling and Interaction, Cellular Assembly and Organization (CCT2 and FN1, 35) |
Infectious Diseases, Organismal Injury and Abnormalities, Cancer (19S, 20S, and 26S proteasome family, 32) (Figure 2B) |
Behavior, Cell Signaling, Cancer (ELN, PRDX6, 32) |
Treatment X Challenge |
Cancer, Dermatological Diseases and Conditions, RNA Post-Transcriptional Modification (CARHSP1, 56) (Figure 3A) |
Cellular Function and Maintenance, Lipid Metabolism, Small Molecule Biochemistry (HYOU1 and LDHA, 53) |
Cardiovascular System Development and Function, Organismal Injury and Abnormalities, RNA Post-Transcriptional Modification (EFTUD2, 50) |
Cellular Assembly and Organization, Molecular Transport, RNA Trafficking (HINT1, 45) (Figure 3B) |
Cell Cycle, Gene expression, Infectious Diseases (FKBP3 and AIMP1, 35) |
2.3. Effect of Interaction between BMD Treatment and Salmonella Challenge on Protein Abundance
2.4. IPA Canonical Pathways Enriched with Differentially Abundant Proteins
2.5. Activated and Inhibited Proteins Identified by Upstream Regulator Analysis
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Experiment Design and Salmonella Strain Used for the Experiment
4.3. Growth Performance Evaluation and Spleen Sample Collection
4.4. Protein Extraction and Proteomic Analysis
4.4.1. LC-MS/MS Analysis for Peptide Sequencing
4.4.2. Protein Identification and Quantification
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fasina, Y.O.; Obanla, T.O.; Ferket, P.R.; Shah, D.H. Comparative efficacy of spray-dried plasma and bacitracin methylene disalicylate in reducing cecal colonization by Salmonella enteritidis in broiler chickens. Poult. Sci. 2021, 100, 101134. [Google Scholar] [CrossRef] [PubMed]
- Popa, G.L.; Papa, M.I. Salmonella spp. Infection—A continuous threat worldwide. Germs 2021, 11, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, food safety and food handling practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef]
- Williams, R.A.; Duensing, R.A. Infections of the spleen. In Surgical Diseases of the Spleen; Hiatt, J.R., Phillips, E.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 143–160. [Google Scholar] [CrossRef]
- Bronte, V.; Pittet, M.J. The spleen in local and systemic regulation of immunity. Immunity 2013, 39, 806–818. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, A.; Casey, T.; Franco, J.; Shah, D.; Fasina, Y. Proteomic analysis of the effect of Salmonella challenge on broiler chicken. Molecules 2022, 27, 7277. [Google Scholar] [CrossRef]
- Gadde, U.D.; Oh, S.; Lillehoj, H.S.; Lillehoj, E.P. Antibiotic growth promoters virginiamycin and bacitracin methylene disalicylate alter the chicken intestinal metabolome. Sci. Rep. 2018, 8, 3592–3596. [Google Scholar] [CrossRef] [PubMed]
- Butaye, P.; Devriese, L.A.; Haesebrouck, F. Antimicrobial growth promoters used in animal feed: Effects of less well known antibiotics on gram-positive bacteria. Clin. Microbiol. Rev. 2003, 16, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.A.; Sylte, M.J.; Looft, T. In-feed bacitracin methylene disalicylate modulates the turkey microbiota and metabolome in a dose-dependent manner. Sci. Rep. 2019, 9, 8212–8215. [Google Scholar] [CrossRef]
- Díaz Carrasco, J.M.; Redondo, E.A.; Pin Viso, N.D.; Redondo, L.M.; Farber, M.D.; Fernández Miyakawa, M.E. Tannins and bacitracin differentially modulate gut microbiota of broiler chickens. BioMed Res. Int. 2018, 2018, 1879168. [Google Scholar] [CrossRef]
- Martin, M.J.; Thottathil, S.E.; Newman, T.B. Antibiotics overuse in animal agriculture: A call to action for health care providers. Am. J. Public Health 2015, 105, 2409–2410. [Google Scholar] [CrossRef]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed]
- Maron, D.F.; Smith, T.J.S.; Nachman, K.E. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Glob. Health 2013, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2019, 125, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.S.; Rama Rao, S.V.; Hegde, N.; Williams, N.J.; Chatterjee, R.N.; Raju, M.V.L.N.; Reddy, G.N.; Kumar, V.; Phani Kumar, P.S.; Mallick, S.; et al. Effects of dietary antimicrobial growth promoters on performance parameters and abundance and diversity of broiler chicken gut microbiome and selection of antibiotic resistance genes. Front. Microbiol. 2022, 13, 905050. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, M.; Lv, X.; Bao, K.; Yu Tian, X.; He, L.; Shi, L.; Zhu, Y.; Ai, D. Yes-associated protein targets the transforming growth factor β pathway to mediate high-fat/high-sucrose diet-induced arterial stiffness. Circ. Res. 2022, 130, 851–867. [Google Scholar] [CrossRef] [PubMed]
- Brennan, K.M.; Graugnard, D.E.; Xiao, R.; Spry, M.L.; Pierce, J.L.; Lumpkins, B.; Mathis, G.F. Comparison of gene expression profiles of the jejunum of broilers supplemented with a yeast cell wall-derived mannan oligosaccharide versus bacitractin methylene disalicylate. Br. Poult. Sci. 2013, 54, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xiao, Y.; Fan, Q.; Yang, H.; Yang, C.; Zhang, G.; Chen, S. Dietary bacitracin methylene disalicylate improves growth performance by mediating the gut microbiota in broilers. Antibiotics 2022, 11, 818. [Google Scholar] [CrossRef] [PubMed]
- Simpson-Haidaris, P.J.; Rybarczyk, B. Tumors and fibrinogen. the role of fibrinogen as an extracellular matrix protein. Ann. N. Y. Acad. Sci. 2001, 936, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Vasse, M.; Paysant, I.; Soria, J.; Mirshahi, S.S.; Vannier, J.P.; Soria, C. Down-regulation of fibrinogen biosynthesis by IL-4, IL-10 and IL-13. Br. J. Haematol. 1996, 93, 955–961. [Google Scholar] [CrossRef]
- Hamar, P. A new role of acute phase proteins: Local production is an ancient, general stress-response system of mammalian cells. Int. J. Mol. Sci. 2022, 23, 2972. [Google Scholar] [CrossRef]
- Fries, E.; Kaczmarczyk, A. Inter-alpha-inhibitor, hyaluronan and inflammation. Acta Biochim. Pol. 2003, 50, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Penninger, J.M.; Crabtree, G.R. The actin cytoskeleton and lymphocyte activation. Cell 1999, 96, 9–12. [Google Scholar] [PubMed]
- Satou, R.; Franco, M.; Dugas, C.M.; Katsurada, A.; Navar, L.G. Immunosuppression by mycophenolate mofetil mitigates intrarenal angiotensinogen augmentation in angiotensin II-dependent hypertension. Int. J. Mol. Sci. 2022, 23, 7680. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; June, C.H. Cytokine storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef] [PubMed]
- Pickart, C.M. Back to the future with ubiquitin. Cell 2004, 116, 181–190. [Google Scholar] [PubMed]
- Lecker, S.H.; Goldberg, A.L.; Mitch, W.E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. JASN 2006, 17, 1807–1819. [Google Scholar] [CrossRef]
- Schmid, F.X. Prolyl isomerase: Enzymatic catalysis of slow protein-folding reactions. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 123–142. [Google Scholar] [CrossRef]
- Joachimiak, L.A.; Walzthoeni, T.; Liu, C.W.; Aebersold, R.; Frydman, J. The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT. Cell 2014, 159, 1042–1055. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yu, M. Protein folding and diseases. J. Biochem. Mol. Biol. 2005, 38, 275–280. [Google Scholar] [CrossRef]
- Tu, M.; He, L.; You, Y.; Li, J.; Yao, N.; Qu, C.; Huang, W.; Xu, L.; Luo, R.; Hong, J. EFTUD2 maintains the survival of tumor cells and promotes hepatocellular carcinoma progression via the activation of STAT3. Cell Death Dis. 2020, 11, 830–835. [Google Scholar] [CrossRef]
- Sheppard, S.; Santosa, E.K.; Lau, C.M.; Violante, S.; Giovanelli, P.; Kim, H.; Cross, J.R.; Li, M.O.; Sun, J.C. Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep. 2021, 35, 109210. [Google Scholar] [CrossRef] [PubMed]
- Soubise, B.; Jiang, Y.; Douet-Guilbert, N.; Troadec, M. RBM22, a key player of pre-mRNA splicing and gene expression regulation, is altered in cancer. Cancers 2022, 14, 643. [Google Scholar] [CrossRef]
- Wan, J.; Lv, J.; Wang, C.; Zhang, L. RPS27 selectively regulates the expression and alternative splicing of inflammatory and immune response genes in thyroid cancer cells. Adv. Clin. Exp. Med. Off. Organ Wroc. Med. Univ. 2022, 31, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Wyler, E.; Milek, M.; Grewe, B.; Kirchner, P.; Ekici, A.; Silva, A.B.O.V.; Jungnickl, D.; Full, F.; Thomas, M.; et al. CRNKL1 is a highly selective regulator of intron-retaining HIV-1 and cellular mRNAs. mBio 2021, 12, e02525-20. [Google Scholar] [CrossRef] [PubMed]
- Aumailley, M.; Smyth, N. The role of laminins in basement membrane function. J. Anat. 1998, 193 Pt 1, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Park, D.; Shah, M.; Kim, M.; Koh, P. Lipopolysaccharide induces neuroglia activation and NF-κB activation in cerebral cortex of adult mice. Lab. Anim. Res. 2019, 35, 19. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, A.O.; Kawai, T.; Shimada, M. Impact of lipopolysaccharide administration on luteinizing hormone/choriogonadotropin receptor (lhcgr) expression in mouse ovaries. J. Reprod. Immunol. 2020, 142, 103193. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chang, B.; Wang, B.; Bu, W.; Zhao, L.; Liu, J.; Meng, L.; Wang, L.; Xin, Y.; Wang, D.; et al. Rapamycin promotes osteogenesis under inflammatory conditions. Mol. Med. Rep. 2017, 16, 8923–8929. [Google Scholar] [CrossRef] [PubMed]
- Neyt, K.; Perros, F.; GeurtsvanKessel, C.H.; Hammad, H.; Lambrecht, B.N. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 2012, 33, 297–305. [Google Scholar] [CrossRef]
- Kim, S.Q.; Mohallem, R.; Franco, J.; Buhman, K.K.; Kim, K.; Aryal, U.K. Global landscape of protein complexes in postprandial-state livers from diet-induced obese and lean mice. Biochem. Biophys. Res. Commun. 2022, 629, 40–46. [Google Scholar] [CrossRef]
- Kim, S.Q.; Mohallem, R.; Franco, J.; Buhman, K.K.; Kim, K.; Aryal, U.K. Multi-omics approach reveals dysregulation of protein phosphorylation correlated with lipid metabolism in mouse non-alcoholic fatty liver. Cells 2022, 11, 1172. [Google Scholar] [CrossRef] [PubMed]
- Krämer, A.; Green, J.; Pollard, J.J.; Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef] [PubMed]
Log10 CFU/g Cecal Contents | ||
---|---|---|
Treatment | Day 3 | Day 7 |
CON | ND | ND |
CONSE | 5.68 ± 0.36 a | 4.17 ± 0.18 a |
BMD | ND | ND |
BMD-SE | 3.39 ± 0.14 b | 2.41 ± 0.12 b |
p-value | <0.0001 | <0.0001 |
Ingenuity Canonical Pathways | −log (p-Value) | Ratio | Gene Symbols |
---|---|---|---|
OVERALL BMD EFFECT | |||
FAT10 signaling pathway | 6.69 | 0.125 | PSMA7, PSMB2, PSMB4, PSMC3, PSMC5, PSMD12, UBA6 |
Inhibition of ARE-mediated mRNA degradation pathway | 6.36 | 0.0617 | AKT1, PSMA7, PSMB2, PSMB4, PSMC3, PSMC5, PSMD12, TIA1, YWHAH, YWHAZ |
Acute phase response signaling | 5.83 | 0.0541 | AKT1, C3, FGA, FGB, FGG, FN1, ITIH3, NOLC1, ORM1, RRAS2 |
Role of tissue factor in cancer | 5.55 | 0.069 | AKT1, FGA, FGB, FGG, FGR, GNA13, PIK3R4, RRAS2 |
GP6 signaling pathway | 5.26 | 0.063 | AKT1, COL12A1, COL6A1, FGA, FGB, FGG, PIK3R4, SYK |
CHALLENGE X TREATMENT | |||
Splicesosomal cycle | 5.24 | 0.122 | CDC5L, EFTUD2, HSPA8, MAGOH, PPIE, U2AF2 |
Colanic acid building blocks biosynthesis | 5.18 | 0.286 | GFUS, GMPPA, GMPPB, GPI |
GDP-mannose biosynthesis | 4.82 | 0.5 | GMPPA, GMPPB, GPI |
TCA cycle II (eukaryotic) | 4.26 | 0.174 | CS, FH, MDH2, SUCLA2 |
Gluthathione redox reactions | 3.85 | 0.138 | GPX1, GPX3, GSTA1, PRDX6 |
Composition of Starter Diets (D1 to 14) | ||
---|---|---|
Control Diet | BMD Diet | |
Corn (7.5% Crude protein) | 51.46 | 51.45 |
Soybean meal (47.5% Crude Protein) | 40.39 | 40.40 |
Poultry fat | 3.64 | 3.65 |
Limestone | 1.07 | 1.07 |
Mono-Dicalcium phosphate | 2.03 | 2.03 |
Salt NaCl | 0.40 | 0.40 |
Sodium bicarbonate | 0.02 | 0.02 |
L-Lysine HCl 98% | 0.13 | 0.13 |
DL-Methionine 99.0% | 0.34 | 0.34 |
L-Threonine 98.5% | 0.11 | 0.11 |
NCSU Poultry Vitamin Premix 2 | 0.05 | 0.05 |
NCSU Poultry Mineral Premix 3 | 0.20 | 0.20 |
Bacitracin (Antibiotic, g/kg) | - | 0.055 |
Choline chloride 60% | 0.10 | 0.10 |
Selenium Premix | 0.05 | 0.05 |
Analyzed nutrient composition | ||
Metabolizable energy (Kcal/kg) | 3117 | 3131 |
Crude Protein, % | 24.63 | 24.56 |
Crude Fat, % | 4.74 | 5.03 |
Crude Fiber, % | 2.3 | 2.4 |
Ash, % | 6.32 | 6.15 |
Calculated nutrient composition | ||
Total Sulfur Amino Acids, % | 1.03 | 1.03 |
Lysine, % | 1.42 | 1.42 |
Calcium, % | 0.96 | 0.96 |
Available phosphorus, % | 0.48 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adetunji, A.; Casey, T.; Aryal, U.K.; Ogundare, T.; Franco, J.; Fasina, Y. Bacitracin Methylene Disalicylate (BMD) Treatment Affects Spleen Proteome in Broiler Chicks Infected with Salmonella enteritidis. Antibiotics 2024, 13, 414. https://doi.org/10.3390/antibiotics13050414
Adetunji A, Casey T, Aryal UK, Ogundare T, Franco J, Fasina Y. Bacitracin Methylene Disalicylate (BMD) Treatment Affects Spleen Proteome in Broiler Chicks Infected with Salmonella enteritidis. Antibiotics. 2024; 13(5):414. https://doi.org/10.3390/antibiotics13050414
Chicago/Turabian StyleAdetunji, Adedeji, Theresa Casey, Uma K. Aryal, Tunde Ogundare, Jackeline Franco, and Yewande Fasina. 2024. "Bacitracin Methylene Disalicylate (BMD) Treatment Affects Spleen Proteome in Broiler Chicks Infected with Salmonella enteritidis" Antibiotics 13, no. 5: 414. https://doi.org/10.3390/antibiotics13050414
APA StyleAdetunji, A., Casey, T., Aryal, U. K., Ogundare, T., Franco, J., & Fasina, Y. (2024). Bacitracin Methylene Disalicylate (BMD) Treatment Affects Spleen Proteome in Broiler Chicks Infected with Salmonella enteritidis. Antibiotics, 13(5), 414. https://doi.org/10.3390/antibiotics13050414