Co-Administration of High-Dose Nebulized Colistin for Acinetobacter baumannii Bacteremic Ventilator-Associated Pneumonia: Impact on Outcomes
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Limitations
3.2. Strengths
4. Materials and Methods
4.1. Data Collection and Patient Groups
4.2. Study Outcomes
4.3. Definitions
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavallo, I.; Oliva, A.; Pages, R.; Sivori, F.; Truglio, M.; Fabrizio, G.; Pasqua, M.; Pimpinelli, F.; Di Domenico, E.G. Acinetobacter baumannii in the critically ill: Complex infections get complicated. Front. Microbiol. 2023, 14, 1196774. [Google Scholar] [CrossRef]
- Koulenti, D.; Vandana, K.E.; Rello, J. Current viewpoint on the epidemiology of nonfermenting Gram-negative bacterial strains. Curr. Opin. Infect. Dis. 2023, 36, 545–554. [Google Scholar] [CrossRef]
- Scaglione, V.; Reale, M.; Davoli, C.; Mazzitelli, M.; Serapide, F.; Lionello, R.; La Gamba, V.; Fusco, P.; Bruni, A.; Procopio, D.; et al. Prevalence of Antibiotic Resistance Over Time in a Third-Level University Hospital. Microb. Drug Resist. 2022, 28, 425–435. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Russo, A.; Bassetti, M.; Ceccarelli, G.; Carannante, N.; Losito, A.R.; Bartoletti, M.; Corcione, S.; Granata, G.; Santoro, A.; Giacobbe, D.R.; et al. Bloodstream infections caused by carbapenem-resistant Acinetobacter baumannii: Clinical features, therapy and outcome from a multicenter study. J. Infect. 2019, 79, 130–138. [Google Scholar] [CrossRef]
- Du, X.; Xu, X.; Yao, J.; Deng, K.; Chen, S.; Shen, Z.; Yang, L.; Feng, G. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis. Am. J. Infect. Control 2019, 47, 1140–1145. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, Y.; Zhu, B.; Ren, D.; Yang, Q.; Fu, Y.; Yu, Y.; Zhou, J. Risk factors for acquisition and mortality of multidrug-resistant Acinetobacter baumannii bacteremia: A retrospective study from a Chinese hospital. Medicine 2019, 98, e14937. [Google Scholar] [CrossRef]
- Adukauskiene, D.; Ciginskiene, A.; Adukauskaite, A.; Koulenti, D.; Rello, J. Clinical Features and Outcomes of Monobacterial and Polybacterial Episodes of Ventilator-Associated Pneumonia Due to Multidrug-Resistant Acinetobacter baumannii. Antibiotics 2022, 11, 892. [Google Scholar] [CrossRef]
- Agbaht, K.; Diaz, E.; Muñoz, E.; Lisboa, T.; Gomez, F.; Depuydt, P.O.; Blot, S.I.; Rello, J. Bacteremia in patients with ventilator-associated pneumonia is associated with increased mortality: A study comparing bacteremic vs. nonbacteremic ventilator-associated pneumonia. Crit. Care Med. 2007, 35, 2064–2070. [Google Scholar] [CrossRef]
- Loyola-Cruz, M.Á.; Gonzalez-Avila, L.U.; Martínez-Trejo, A.; Saldaña-Padilla, A.; Hernández-Cortez, C.; Bello-López, J.M.; Castro-Escarpulli, G. ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens 2023, 12, 743. [Google Scholar] [CrossRef]
- Segala, F.V.; Pafundi, P.C.; Masciocchi, C.; Fiori, B.; Taddei, E.; Antenucci, L.; De Angelis, G.; Guerriero, S.; Pastorino, R.; Damiani, A.; et al. Incidence of bloodstream infections due to multidrug-resistant pathogens in ordinary wards and intensive care units before and during the COVID-19 pandemic: A real-life, retrospective observational study. Infection 2023, 51, 1061–1069. [Google Scholar] [CrossRef]
- Andrianopoulos, I.; Maniatopoulou, T.; Lagos, N.; Kazakos, N.; Papathanasiou, A.; Papathanakos, G.; Koulenti, D.; Kittas, C.; Koulouras, V. Acinetobacter baumannii Bloodstream Infections in the COVID-19 Era: A Comparative Analysis between COVID-19 and Non-COVID-19 Critically Ill Patients. Microorganisms 2023, 11, 1811. [Google Scholar] [CrossRef]
- Finazzi, S.; Luci, G.; Olivieri, C.; Langer, M.; Mandelli, G.; Corona, A.; Viaggi, B.; Di Paolo, A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review—Part I. Antibiotics 2022, 11, 1164. [Google Scholar] [CrossRef]
- Viaggi, B.; Cangialosi, A.; Langer, M.; Olivieri, C.; Gori, A.; Corona, A.; Finazzi, S.; Di Paolo, A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review—Part II. Antibiotics 2022, 11, 1193. [Google Scholar] [CrossRef]
- Bassetti, M.; Luyt, C.-E.; Nicolau, D.P.; Pugin, J. Characteristics of an ideal nebulized antibiotic for the treatment of pneumonia in the intubated patient. Ann. Intensive Care 2016, 6, 35. [Google Scholar] [CrossRef]
- Leng, B.; Yan, G.; Wang, C.; Shen, C.; Zhang, W.; Wang, W. Dose optimisation based on pharmacokinetic/pharmacodynamic target of tigecycline. J. Glob. Antimicrob. Resist. 2021, 25, 315–322. [Google Scholar] [CrossRef]
- De Pascale, G.; Lisi, L.; Ciotti, G.M.P.; Vallecoccia, M.S.; Cutuli, S.L.; Cascarano, L.; Gelormini, C.; Bello, G.; Montini, L.; Carelli, S.; et al. Pharmacokinetics of high-dose tigecycline in critically ill patients with severe infections. Ann. Intensive Care 2020, 10, 94. [Google Scholar] [CrossRef]
- Mantzana, P.; Protonotariou, E.; Kassomenaki, A.; Meletis, G.; Tychala, A.; Keskilidou, E.; Arhonti, M.; Katsanou, C.; Daviti, A.; Vasilaki, O.; et al. In Vitro Synergistic Activity of Antimicrobial Combinations against Carbapenem- and Colistin-Resistant Acinetobacter baumannii and Klebsiella pneumoniae. Antibiotics 2023, 12, 93. [Google Scholar] [CrossRef]
- Wang, S.-H.; Yang, K.-Y.; Sheu, C.-C.; Lin, Y.-C.; Chan, M.-C.; Feng, J.-Y.; Chen, C.-M.; Chen, C.-Y.; Zheng, Z.-R.; Chou, Y.-C.; et al. The prevalence, presentation and outcome of colistin susceptible-only Acinetobacter Baumannii-associated pneumonia in intensive care unit: A multicenter observational study. Sci. Rep. 2023, 13, 140. [Google Scholar] [CrossRef]
- Yang, K.-Y.; Peng, C.-K.; Sheu, C.-C.; Lin, Y.-C.; Chan, M.-C.; Wang, S.-H.; Chen, C.-M.; Chen, C.-Y.; Zheng, Z.-R.; Feng, J.-Y.; et al. Clinical effectiveness of tigecycline in combination therapy against nosocomial pneumonia caused by CR-GNB in intensive care units: A retrospective multi-centre observational study. J. Intensive Care 2023, 11, 1. [Google Scholar] [CrossRef]
- Heil, E.L.; Claeys, K.C.; Kline, E.G.; Rogers, T.M.; Squires, K.M.; Iovleva, A.; Doi, Y.; Banoub, M.; Noval, M.M.; Luethy, P.M.; et al. Early initiation of three-drug combinations for the treatment of carbapenem-resistant A. baumannii among COVID-19 patients. J. Antimicrob. Chemother. 2023, 78, 1034–1040. [Google Scholar] [CrossRef]
- Dickstein, Y.; Lellouche, J.; Ben Dalak Amar, M.; Schwartz, D.; Nutman, A.; Daitch, V.; Yahav, D.; Leibovici, L.; Skiada, A.; Antoniadou, A.; et al. Treatment Outcomes of Colistin- and Carbapenem-resistant Acinetobacter baumannii Infections: An Exploratory Subgroup Analysis of a Randomized Clinical Trial. Clin. Infect. Dis. 2019, 69, 769–776. [Google Scholar] [CrossRef]
- Kaye, K.S.; Marchaim, D.; Thamlikitkul, V.; Carmeli, Y.; Chiu, C.-H.; Daikos, G.; Dhar, S.; Durante-Mangoni, E.; Gikas, A.; Kotanidou, A.; et al. Colistin Monotherapy versus Combination Therapy for Carbapenem-Resistant Organisms. NEJM Evid. 2023, 2, EVIDoa2200131. [Google Scholar] [CrossRef]
- De Pascale, G.; Pintaudi, G.; Lisi, L.; De Maio, F.; Cutuli, S.L.; Tanzarella, E.S.; Carelli, S.; Lombardi, G.; Cesarano, M.; Gennenzi, V.; et al. Use of High-Dose Nebulized Colistimethate in Patients with Colistin-Only Susceptible Acinetobacter baumannii VAP: Clinical, Pharmacokinetic and Microbiome Features. Antibiotics 2023, 12, 125. [Google Scholar] [CrossRef]
- Heffernan, A.J.; Sime, F.B.; Lipman, J.; Dhanani, J.; Andrews, K.; Ellwood, D.; Grimwood, K.; Roberts, J.A. Intrapulmonary pharmacokinetics of antibiotics used to treat nosocomial pneumonia caused by Gram-negative bacilli: A systematic review. Int. J. Antimicrob. Agents 2019, 53, 234–245. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, X.; Jiang, M.; Huang, S.; Yang, M. Nebulized colistin as the adjunctive treatment for ventilator-associated pneumonia: A systematic review and meta-analysis. J. Crit. Care 2023, 77, 154315. [Google Scholar] [CrossRef]
- Karaiskos, I.; Gkoufa, A.; Polyzou, E.; Schinas, G.; Athanassa, Z.; Akinosoglou, K. High-Dose Nebulized Colistin Methanesulfonate and the Role in Hospital-Acquired Pneumonia Caused by Gram-Negative Bacteria with Difficult-to-Treat Resistance: A Review. Microorganisms 2023, 11, 1459. [Google Scholar] [CrossRef]
- Papathanakos, G.; Andrianopoulos, I.; Papathanasiou, A.; Koulenti, D.; Gartzonika, K.; Koulouras, V. Pandrug-resistant Acinetobacter baumannii treatment: Still a debatable topic with no definite solutions. J. Antimicrob. Chemother. 2020, 75, 3081. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Pandrug-resistant Gram-negative bacteria: A systematic review of current epidemiology, prognosis and treatment options. J. Antimicrob. Chemother. 2020, 75, 271–282. [Google Scholar] [CrossRef]
- Assimakopoulos, S.F.; Karamouzos, V.; Lefkaditi, A.; Sklavou, C.; Kolonitsiou, F.; Christofidou, M.; Fligou, F.; Gogos, C.; Marangos, M. Triple combination therapy with high-dose ampicillin/sulbactam, high-dose tigecycline and colistin in the treatment of ventilator-associated pneumonia caused by pan-drug resistant Acinetobacter baumannii: A case series study. Infez. Med. 2019, 27, 11–16. [Google Scholar]
- Min, K.L.; Son, E.S.; Kim, J.S.; Kim, S.H.; Jung, S.M.; Chang, M.J. Risk factors of colistin safety according to administration routes: Intravenous and aerosolized colistin. PLoS ONE 2018, 13, e0207588. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Park, M.S.; Chung, C.R.; Kim, J.S.; Park, S.J.; Lee, H.B. Clinical Effectiveness and Nephrotoxicity of Aerosolized Colistin Treatment in Multidrug-Resistant Gram-Negative Pneumonia. Korean J. Crit. Care Med. 2016, 31, 208–220. [Google Scholar] [CrossRef]
- Tumbarello, M.; De Pascale, G.; Trecarichi, E.M.; De Martino, S.; Bello, G.; Maviglia, R.; Spanu, T.; Antonelli, M. Effect of Aerosolized Colistin as Adjunctive Treatment on the Outcomes of Microbiologically Documented Ventilator-Associated Pneumonia Caused by Colistin-Only Susceptible Gram-Negative Bacteria. Chest 2013, 144, 1768–1775. [Google Scholar] [CrossRef]
- Korbila, I.P.; Michalopoulos, A.; Rafailidis, P.I.; Nikita, D.; Samonis, G.; Falagas, M.E. Inhaled colistin as adjunctive therapy to intravenous colistin for the treatment of microbiologically documented ventilator-associated pneumonia: A comparative cohort study. Clin. Microbiol. Infect. 2010, 16, 1230–1236. [Google Scholar] [CrossRef]
- Feng, J.-Y.; Huang, J.-R.; Lee, C.-C.; Tseng, Y.-H.; Pan, S.-W.; Chen, Y.-M.; Yang, K.-Y. Role of nebulized colistin as a substitutive strategy against nosocomial pneumonia caused by CR-GNB in intensive care units: A retrospective cohort study. Ann. Intensive Care 2023, 13, 1. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lee, J.H.; Lee, H.-K.; Chung, B.C.; Yu, S.J.; Lee, H.-Y.; Park, J.-H.; Kim, S.; Kim, H.-K.; Kiem, S.; et al. Efficacy of nebulized colistin-based therapy without concurrent intravenous colistin for ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii. J. Thorac. Dis. 2017, 9, 555–567. [Google Scholar] [CrossRef]
- Casarotta, E.; Bottari, E.; Vannicola, S.; Giorgetti, R.; Domizi, R.; Carsetti, A.; Damiani, E.; Scorcella, C.; Gabbanelli, V.; Pantanetti, S.; et al. Antibiotic Treatment of Acinetobacter baumannii Superinfection in Patients With SARS-CoV-2 Infection Admitted to Intensive Care Unit: An Observational Retrospective Study. Front. Med. 2022, 9, 910031. [Google Scholar] [CrossRef]
- The European Investigators Network for Nebulized Antibiotics in Ventilator-associated Pneumonia; Rouby, J.J.; Sole-Lleonart, C.; Rello, J. Ventilator-associated pneumonia caused by multidrug-resistant Gram-negative bacteria: Understanding nebulization of aminoglycosides and colistin. Intensive Care Med. 2020, 46, 766–770. [Google Scholar] [CrossRef]
- Mazzitelli, M.; Gregori, D.; Sasset, L.; Trevenzoli, M.; Scaglione, V.; Lo Menzo, S.; Marinello, S.; Mengato, D.; Venturini, F.; Tiberio, I.; et al. Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms 2023, 11, 984. [Google Scholar] [CrossRef]
- Marano, V.; Marascio, N.; Pavia, G.; Lamberti, A.G.; Quirino, A.; Musarella, R.; Casalinuovo, F.; Mazzitelli, M.; Trecarichi, E.M.; Torti, C.; et al. Identification of pmrB mutations as putative mechanism for colistin resistance in A. baumannii strains isolated after in vivo colistin exposure. Microb. Pathog. 2020, 142, 104058. [Google Scholar] [CrossRef]
- Magill, S.S.; Klompas, M.; Balk, R.; Burns, S.M.; Deutschman, C.S.; Diekema, D.; Fridkin, S.; Greene, L.; Guh, A.; Gutterman, D.; et al. Developing a New, National Approach to Surveillance for Ventilator-Associated Events. Crit. Care Med. 2013, 41, 2467–2475. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, V.I.T.O.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Lameire, N.; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef]
- Perez Ruiz de Garibay, A.; Kortgen, A.; Leonhardt, J.; Zipprich, A.; Bauer, M. Critical care hepatology: Definitions, incidence, prognosis and role of liver failure in critically ill patients. Crit. Care 2022, 26, 289. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.1. 2023. Available online: http://www.eucast.org (accessed on 10 December 2023).
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef]
Parameter | Group A (Treated with Nebulized Colistin) (n = 21) | Group B (Treated without Nebulized) Colistin (n = 38) | p-Value |
---|---|---|---|
Age (mean ± SD) | 67.5 ± 9.8 | 67.3 ± 9.6 | 0.657 |
Gender (male n, %) | 15 (71.4%) | 29 (76.3%) | 0.680 |
APACHE II median (min–max) | 19 (12–35) | 20 (12–47) | 0.934 |
CCI ∞ median (min–max) | 3 (1–9) | 3 (0–8) | 0.898 |
SOFA ∞ score median (min–max) | 4 (3–11) | 4 (2–17) | 0.798 |
COVID 19 (n, %) | 19 (90.5%) | 34 (89.5%) | 0.903 |
Comorbidities | |||
Diabetes mellitus (n, %) | 10 (47.6%) | 14 (36.8%) | 0.420 |
Heart failure (n, %) | 1 (4.8%) | 2 (5.3%) | 0.933 |
Coronary Heart Disease (n, %) | 3 (14.3%) | 3 (7.9%) | 0.437 |
Chronic Kidney Disease (n, %) | 1 (4.8%) | 3 (7.9%) | 0.647 |
Cirrhosis (n, %) | 1 (4.8%) | 0 (0%) | 0.175 |
COPD ∞ (n, %) | 3 (14.3%) | 5 (13.2%) | 0.904 |
Obesity (n, %) | 4 (19%) | 5 (13.2%) | 0.547 |
Cancer (n, %) | 0(0%) | (4 10.5%) | 0.124 |
Infection parameters | |||
PDR ∞ | 6 (28.6%) | 5 (13.2%) | 0.146 |
Colistin sensitive | 2 (9.5%) | 11 (28.9%) | 0.085 |
Colistin treated | 19 (90.5%) | 30 (78.9%) | 0.258 |
Patient was treated with: | |||
Monotherapy | 0 (0) | 2 (5.3%) | 0.443 |
2 drugs | 10 (47.6%) | 21 (55.3%) | |
3 drugs | 7 (33.3%) | 12 (31.6%) | |
4 drugs | 4 (19%) | 3 (7.9%) | |
Antibiotics | |||
Tigecycline (n, %) | 21 (100%) | 37 (97.4%)- | 1 |
High dose ampicillin/sulbactam (n, %) | 13 (62%) | 8 (28.1%) | 0.064 |
Meropenem (n, %) | 7 (33.3%) | 15 (39.5%) | 0.781 |
Fosfomycin (n, %) | 3 (14.3%) | 4 (10.5%) | 0.69 |
Appropriate antibiotic treatment in shock ∫ | 17 (85%) | 35 (97.2%) | 0.089 |
Parameter | Group A (Treated with Nebulized Colistin) (n = 21) | Group B (Treated without Nebulized) Colistin (n = 38) | p-Value |
---|---|---|---|
Mortality | |||
Total Mortality at 28 days * (n, %) | 11 (52.4%) | 30 (78.9%) | 0.034 |
Mortality at 28 days related to infection * (n, %) | 6 (40%) | 25 (73.5%) | 0.025 |
Mortality at 7 days * (n, %) | 2 (9.5%) | 18 (47.4%) | 0.003 |
Days on MV ∞ median (min–max) | 28 (11–56) | 17 (1–115)) | 0.053 |
Ventilator free days @28 d (n, %) | 4 (19%) | 2 (7.8%) | 0.465 |
Median min–max | 9 (4–18) | 18.5 (17–20) | 0.587 |
ICU days median (min–max) | 30 (11–106) | 17 (1–144) | 0.007 |
Morbidity related to A. baumannii infection (n, %) | 8 (38.1%) | 8 (21.1%) | 0.159 |
Free of symptoms at day 7 * | 9 (45%) | 10 (26.3%) | 0.233 |
Free of vasopressors at day 7 * | 6 (28.6%) | 3 (8.1%) | 0.039 |
Resolution of sepsis at day 7 * | 8 (38.1%) | 5 (13.5%) | 0.023 |
Microbial cure at day 7 * | 9 (45%) | 10 (26.3%) | 0.150 |
Complications related to A. baumanii infection (n, %) | |||
Sepsis | 19 (90.5%) | 36 (94.7%) | 0.533 |
Shock | 14 (66.7%) | 33 (86.8%) | 0.065 |
Cardiomyopathy ∫ | 1 (4.8%) | 3 (8.1%) | 0.629 |
AKI ∞,∫ | 7 (33.3%) | 15 (40.5%) | 0.587 |
Coagulopathy ∫ | 13 (61.9%) | 29 (76.3%) | 0.242 |
Hepatic dysfunction ∫ | 11 (52.4%) | 19 (50%) | 0.861 |
ARDS ∞,∫ | 18 (85.7%) | 36 (94.7%) | 0.233 |
CRRT ∞,∫ | 2 (9.5%) | 4 (10.8%) | 0.877 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrianopoulos, I.; Kazakos, N.; Lagos, N.; Maniatopoulou, T.; Papathanasiou, A.; Papathanakos, G.; Koulenti, D.; Toli, E.; Gartzonika, K.; Koulouras, V. Co-Administration of High-Dose Nebulized Colistin for Acinetobacter baumannii Bacteremic Ventilator-Associated Pneumonia: Impact on Outcomes. Antibiotics 2024, 13, 169. https://doi.org/10.3390/antibiotics13020169
Andrianopoulos I, Kazakos N, Lagos N, Maniatopoulou T, Papathanasiou A, Papathanakos G, Koulenti D, Toli E, Gartzonika K, Koulouras V. Co-Administration of High-Dose Nebulized Colistin for Acinetobacter baumannii Bacteremic Ventilator-Associated Pneumonia: Impact on Outcomes. Antibiotics. 2024; 13(2):169. https://doi.org/10.3390/antibiotics13020169
Chicago/Turabian StyleAndrianopoulos, Ioannis, Nikolaos Kazakos, Nikolaos Lagos, Theodora Maniatopoulou, Athanasios Papathanasiou, Georgios Papathanakos, Despoina Koulenti, Eleni Toli, Konstantina Gartzonika, and Vasilios Koulouras. 2024. "Co-Administration of High-Dose Nebulized Colistin for Acinetobacter baumannii Bacteremic Ventilator-Associated Pneumonia: Impact on Outcomes" Antibiotics 13, no. 2: 169. https://doi.org/10.3390/antibiotics13020169
APA StyleAndrianopoulos, I., Kazakos, N., Lagos, N., Maniatopoulou, T., Papathanasiou, A., Papathanakos, G., Koulenti, D., Toli, E., Gartzonika, K., & Koulouras, V. (2024). Co-Administration of High-Dose Nebulized Colistin for Acinetobacter baumannii Bacteremic Ventilator-Associated Pneumonia: Impact on Outcomes. Antibiotics, 13(2), 169. https://doi.org/10.3390/antibiotics13020169