Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance
Abstract
1. Introduction
2. AMR—A Global Threat
3. Bacterial Resistance Mechanisms
3.1. Inactivation of the Drug
3.2. Target Modification
3.3. Limiting Drug Uptake
3.4. Development of Efflux Pump
4. Synthesis of Antibiotic-Coated AuNPs
5. Antibiotic-Coated AuNPs to Combat AMR
6. Antibacterial Flavonoids and Heterocyclic Compounds Coated AuNPs to Combat AMR
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khandelwal, P.; Singh, D.K.; Poddar, P. Advances in the Experimental and Theoretical Understandings of Antibiotic Conjugated Gold Nanoparticles for Antibacterial Applications. ChemistrySelect 2019, 4, 6719–6738. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef]
- Kalhapure, R.S.; Suleman, N.; Mocktar, C.; Seedat, N.; Govender, T. Nanoengineered Drug Delivery Systems for Enhancing Antibiotic Therapy. J. Pharm. Sci. 2015, 104, 872–905. [Google Scholar] [CrossRef]
- Cars, O.; Hedin, A.; Heddini, A. The global need for effective antibiotics—Moving towards concerted action. Drug Resist. Updates 2011, 14, 68–69. [Google Scholar] [CrossRef]
- Ali, S.; Perveen, S.; Shah, M.R.; Zareef, M.; Arslan, M.; Basheer, S.; Ullah, S.; Ali, M. Bactericidal potentials of silver and gold nanoparticles stabilized with cefixime: A strategy against antibiotic-resistant bacteria. J. Nanoparticle Res. 2020, 22, 201. [Google Scholar] [CrossRef]
- Rocca, D.M.; Silvero, C.M.J.; Aiassa, V.; Cecilia Becerra, M. Rapid and effective photodynamic treatment of biofilm infections using low doses of amoxicillin-coated gold nanoparticles. Photodiagn. Photodyn. Ther. 2020, 31, 101811. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.M.; Lila, A.S.; Moin, A.; Hussain, T.; Kamal, M.A.; Sonbol, H.; Khafagy, E.-S. Antibiotic-Loaded Gold Nanoparticles: A Nano-Arsenal against ESBL Producer-Resistant Pathogens. Pharmaceutics 2023, 15, 430. [Google Scholar] [CrossRef] [PubMed]
- Teklu, D.S.; Negeri, A.A.; Legese, M.H.; Bedada, T.L.; Woldemariam, H.K.; Tullu, K.D. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob. Resist. Infect. Control 2019, 8, 39. [Google Scholar] [CrossRef]
- Saha, M.; Sarkar, A. Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century. J. Xenobiotics 2021, 11, 197–214. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Haddada, M.B.; Jeannot, K.; Spadavecchia, J. Novel Synthesis and Characterization of Doxycycline-loaded Gold Nanoparticles: The Golden Doxycycline for Antibacterial Applications. Part. Part. Syst. Charact. 2018, 36, 1800395. [Google Scholar] [CrossRef]
- Hakemi-Vala, M.; Rafati, H.; Aliahmadi, A.; Ardalan, A. Nanoemulsions: A Novel Antimicrobial Delivery System. In Nano-and Microscale Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 245–266. [Google Scholar]
- Yeh, Y.C.; Huang, T.H.; Yang, S.C.; Chen, C.C.; Fang, J.Y. Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances. Front. Chem. 2020, 8, 286. [Google Scholar] [CrossRef] [PubMed]
- Pizzolato-Cezar, L.R.; Okuda-Shinagawa, N.M.; Machini, M.T. Combinatory Therapy Antimicrobial Peptide-Antibiotic to Minimize the Ongoing Rise of Resistance. Front. Microbiol. 2019, 10, 1703. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, P.; Poddar, P. Fluorescent metal quantum clusters: An updated overview of the synthesis, properties, and biological applications. J. Mater. Chem. B 2017, 5, 9055–9084. [Google Scholar] [CrossRef] [PubMed]
- Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-Strategies to Fight Multidrug Resistant Bacteria “a Battle of the Titans”. Front. Microbiol. 2018, 9, 1441. [Google Scholar] [CrossRef] [PubMed]
- Gholipourmalekabadi, M.; Mobaraki, M.; Ghaffari, M.; Zarebkohan, A.; Omrani, V.; Urbanska, A.; Seifalian, A. Targeted Drug Delivery Based on Gold Nanoparticle Derivatives. Curr. Pharm. Des. 2017, 23, 20. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, K.; Liu, Z.; Zhang, Y.; Chen, Z.; Sun, H.; Ren, J.; Qu, X. Activation of biologically relevant levels of reactive oxygen species by au/g-c3n4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 2017, 113, 145–157. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, X. Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale 2013, 5, 8340. [Google Scholar] [CrossRef]
- Wadhwani, P.; Heidenreich, N.; Podeyn, B.; Bürck, J.; Ulrich, A.S. Antibiotic gold: Tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomater. Sci. 2017, 5, 817–827. [Google Scholar] [CrossRef]
- Hussein, M.A.; Grinholc, M.; Dena, A.S.; El-Sherbiny, I.M.; Megahed, M. Boosting the antibacterial activity of chitosan–gold nanoparticles against antibiotic–resistant bacteria by Punicagranatum L. Extract. Carbohydr. Polym. 2021, 256, 117498. [Google Scholar] [CrossRef]
- Sinha, R.; Karan, R.; Sinha, A.; Khare, S.K. interaction and nanotoxic effect of zno and ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour. Technol. 2011, 102, 1516–1520. [Google Scholar] [CrossRef]
- Hemeg, H. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 2017, 12, 8211–8225. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef]
- Sarma, P.P.; Barman, K.; Baruah, P.K. Green synthesis of silver nanoparticles using Murraya koenigii leaf extract with efficient catalytic, antimicrobial, and sensing properties towards heavy metal ions. Inorg. Chem. Commun. 2023, 152, 110676. [Google Scholar] [CrossRef]
- Manju, S.; Malaikozhundan, B.; Vijayakumar, S.; Shanthi, S.; Jaishabanu, A.; Ekambaram, P.; Vaseeharan, B. Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. Microb. Pathog. 2016, 91, 129–135. [Google Scholar] [CrossRef]
- Okkeh, M.; Bloise, N.; Restivo, E.; De Vita, L.; Pallavicini, P.; Visai, L. Gold Nanoparticles: Can They Be the next Magic Bullet for Multidrug-Resistant Bacteria? Nanomaterials 2021, 11, 312. [Google Scholar] [CrossRef]
- Khanna, S.; Padhan, P.; Das, S.; Jaiswal, K.S.; Tripathy, A.; Smita, S.; Tripathy, S.K.; Raghav, S.K.; Gupta, B. A Simple Colorimetric Method for Naked-eye Detection of Circulating Cell-free DNA Using Unlabelled Gold Nanoparticles. ChemistrySelect 2018, 3, 11541–11551. [Google Scholar] [CrossRef]
- Kukreja, A.; Kang, B.; Kim, H.O.; Jang, E.; Son, H.Y.; Huh, Y.M.; Haam, S. Preparation of gold core-mesoporous iron-oxide shell nanoparticles and their application as dual MR/CT contrast agent in human gastric cancer cells. J. Ind. Eng. Chem. 2017, 48, 56–65. [Google Scholar] [CrossRef]
- Ahangari, A.; Salouti, M.; Saghatchi, F. Gentamicin-gold nanoparticles conjugate: A contrast agent for x-ray imaging of infectious foci due to Staphylococcus aureus. IET Nanobiotechnol. 2016, 10, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Pourali, P.; Yahyaei, B.; Afsharnezhad, S. Bio-Synthesis of Gold Nanoparticles by Fusarium oxysporum and Assessment of Their Conjugation Possibility with Two Types of β-Lactam Antibiotics without Any Additional Linkers. Microbiology 2018, 87, 229–237. [Google Scholar] [CrossRef]
- Alafnan, A.; Rizvi, S.M.; Alshammari, A.S.; Faiyaz, S.S.; Lila, A.S.; Katamesh, A.A.; Khafagy, E.S.; Alotaibi, H.F.; Ahmed, A.B. Gold Nanoparticle-Based Resuscitation of Cefoxitin against Clinical Pathogens: A Nano-Antibiotic Strategy to Overcome Resistance. Nanomaterials 2022, 12, 3643. [Google Scholar] [CrossRef]
- Zong, T.-X.; Silveira, A.P.; Morais, J.A.; Sampaio, M.C.; Muehlmann, L.A.; Zhang, J.; Jiang, C.-S.; Liu, S.-K. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. Nanomaterials 2022, 12, 1855. [Google Scholar] [CrossRef]
- Tayeb, H.H.; Moqaddam, S.A.; Hasaballah, N.H.; Felimban, R.I. Development of nanoemulsions for the delivery of hydrophobic and hydrophilic compounds against carbapenem-resistant Klebsiella pneumoniae. RSC Adv. 2022, 12, 26455–26462. [Google Scholar] [CrossRef]
- Larsson, D.G.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2021, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Chattopadhyay, M.K.; Grossart, H. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front. Microbiol. 2013, 4, 47. [Google Scholar] [CrossRef] [PubMed]
- Alba, C.; Blanco, A.; Alarcon, T. Antibiotic resistance in Helicobacter pylori. Curr. Opin. Infect. Dis. 2017, 30, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Kohler, V.; Vaishampayan, A.; Grohmann, E. Problematic Groups of Multidrug-Resistant Bacteria and Their Resistance Mechanisms. In Antibacterial Drug Discovery to Combat MDR; Springer: Berlin/Heidelberg, Germany, 2019; pp. 25–69. [Google Scholar]
- Chaudhuri, A.; Martin, P.M.; Kennedy, P.G.; Andrew Seaton, R.; Portegies, P.; Bojar, M.; Steiner, I. EFNS guideline on the management of community-acquired bacterial meningitis: Report of an EFNS Task Force on acute bacterial meningitis in older children and adults. Eur. J. Neurol. 2008, 15, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Poulin-Laprade, D.; Matteau, D.; Jacques, P.E.; Rodrigue, S.; Burrus, V. Transfer Activation of SXT/R391 integrative and conjugative elements: Unraveling the SetCD Regulon. Nucleic Acids Res. 2015, 43, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Afshinnekoo, E.; Bhattacharya, C.; Burguete-García, A.; Castro-Nallar, E.; Deng, Y.; Desnues, C.; Dias-Neto, E.; Elhaik, E.; Iraola, G.; Jang, S.; et al. COVID-19 drug practices risk antimicrobial resistance evolution. Lancet Microbe 2021, 2, E135–E136. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Yang, J.; Long, H.; Hu, Y.; Feng, Y.; McNally, A.; Zong, Z. Klebsiella oxytoca Complex: Update on Taxonomy, Antimicrobial Resistance, and Virulence. Clin. Microbiol. Rev. 2022, 35, e00006-21. [Google Scholar] [CrossRef]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef]
- Wang, M.; Guo, Q.; Xu, X.; Wang, X.; Ye, X.; Wu, S.; Hooper, D.C.; Wang, M. New Plasmid-Mediated Quinolone Resistance Gene, qnrC, Found in a Clinical Isolate of Proteus mirabilis. Antimicrob. Agents Chemother. 2009, 53, 1892–1897. [Google Scholar] [CrossRef]
- Zhang, Y.; Tangadanchu, V.K.; Cheng, Y.; Yang, R.G.; Lin, J.M.; Zhou, C.H. Potential Antimicrobial Isopropanol-Conjugated Carbazole Azoles as Dual Targeting Inhibitors of Enterococcus faecalis. ACS Med. Chem. Lett. 2018, 9, 244–249. [Google Scholar] [CrossRef]
- Conrads, G.; Klomp, T.; Deng, D.; Wenzler, J.S.; Braun, A.; Abdelbary, M.M. The Antimicrobial Susceptibility of Porphyromonas gingivalis: Genetic Repertoire, Global Phenotype, and Review of the Literature. Antibiotics 2021, 10, 1438. [Google Scholar] [CrossRef]
- Zhu, M.; Zhu, Q.; Yang, Z.; Liang, Z. Clinical Characteristics of Patients with Micrococcus luteus Bloodstream Infection in a Chinese Tertiary-Care Hospital. Pol. J. Microbiol. 2021, 70, 321–326. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Ahmad, A. Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi J. Biol. Sci. 2017, 24, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Monk, I.R.; Gonçalves, S.A.; Seemann, T.; Chua, K.Y.; Kearns, A.; Hill, R.; Woodford, N.; Bartels, M.D.; Strommenger, B.; et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat. Microbiol. 2018, 3, 1175–1185. [Google Scholar] [CrossRef]
- Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2014, 13, 42–51. [Google Scholar] [CrossRef]
- Chawla, M.; Verma, J.; Gupta, R.; Das, B. Antibiotic Potentiators against Multidrug-Resistant Bacteria: Discovery, Development, and Clinical Relevance. Front. Microbiol. 2022, 13, 887251. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.M.; Richmond, G.E.; Piddock, L.J. Multidrug Efflux Pumps in Gram-Negative Bacteria and Their Role in Antibiotic Resistance. Future Microbiol. 2014, 9, 1165–1177. [Google Scholar] [CrossRef]
- Villagra, N.A.; Fuentes, J.A.; Jofre, M.R.; Hidalgo, A.A.; Garcia, P.; Mora, G.C. The carbon source influences the efflux pump-mediated antimicrobial resistance in clinically important Gram-negative bacteria. J. Antimicrob. Chemother. 2012, 67, 921–927. [Google Scholar] [CrossRef]
- Samanta, S.; Agarwal, S.; Nair, K.K.; Harris, R.A.; Swart, H. Biomolecular assisted synthesis and mechanism of silver and gold nanoparticles. Mater. Res. Express 2019, 6, 82009. [Google Scholar] [CrossRef]
- Barman, K.; Chowdhury, D.; Baruah, P.K. Bio-synthesized silver nanoparticles using Zingiber officinale rhizome extract as efficient catalyst for the degradation of environmental pollutants. Inorg. Nano-Met. Chem. 2019, 50, 57–65. [Google Scholar] [CrossRef]
- Li, N.; Zhao, P.; Astruc, D. Anisotropic Gold Nanoparticles: Synthesis, Properties, Applications, and Toxicity. Angew. Chem. 2014, 53, 1756–1789. [Google Scholar] [CrossRef]
- Fan, Y.; Pauer, A.C.; Gonzales, A.A.; Fenniri, H. Enhanced antibiotic activity of ampicillin conjugated to gold nanoparticles on PEGylated rosette nanotubes. Int. J. Nanomed. 2019, 14, 7281–7289. [Google Scholar] [CrossRef]
- Halawani, E.M.; Alzahrani, S.S.; Gad El-Rab, S.M. Biosynthesis Strategy of Gold Nanoparticles and Biofabrication of a Novel Amoxicillin Gold Nanodrug to Overcome the Resistance of Multidrug-Resistant Bacterial Pathogens MRSA and E. Coli. Biomimetics 2023, 8, 452. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, R. Untangling the Effect of Surfactants as an Intermediate at Gold Nanoparticle-Antibiotic Interface for Enhanced Bactericidal Effect. ES Food Agrofor. 2022, 7, 30–40. [Google Scholar] [CrossRef]
- Shaikh, S.; Rizvi, S.M.D.; Shakil, S.; Hussain, T.; Alshammari, T.M.; Ahmad, W.; Tabrez, S.; Al-Qahtani, M.H.; Abuzenadah, A.M. Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens. J. Cell. Biochem. 2017, 118, 2802–2808. [Google Scholar] [CrossRef] [PubMed]
- Hagbani, T.A.; Yadav, H.; Moin, A.; Lila, A.S.; Mehmood, K.; Alshammari, F.; Khan, S.; Khafagy, E.S.; Hussain, T.; Rizvi, S.M.; et al. Enhancement of Vancomycin Potential against Pathogenic Bacterial Strains via Gold Nano-Formulations: A Nano-Antibiotic Approach. Materials 2022, 15, 1108. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, J.; Wang, L.; Ran, B.; Jia, Y.; Zhang, L.; Yang, G.; Shao, H.; Jiang, X. Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application via an Electrospun Scaffold. ACS Nano 2017, 11, 5737–5745. [Google Scholar] [CrossRef] [PubMed]
- Fuller, M.; Whiley, H.; Koper, I. Antibiotic delivery using gold nanoparticles. SN Appl. Sci. 2020, 2, 1022. [Google Scholar] [CrossRef]
- Shaker, M.A.; Shaaban, M.I. Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: In vitro antibacterial study. Int. J. Pharm. 2017, 525, 71–84. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Q.; Xie, Z.; Song, X.; Gong, J. Determination and Correlation of Solubility Data and Dissolution Thermodynamic Data of Cefixime Trihydrate in Seven Pure Solvents. J. Chem. Eng. Data 2014, 59, 1915–1921. [Google Scholar] [CrossRef]
- Estes Bright, L.M.; Garren, M.R.; Douglass, M.; Handa, H. Synthesis and Characterization of Nitric Oxide-Releasing Ampicillin as a Potential Strategy for Combatting Bacterial Biofilm Formation. ACS Appl. Mater. Interfaces 2023, 15, 15185–15194. [Google Scholar] [CrossRef]
- Golmohamadpour, A.; Bahramian, B.; Khoobi, M.; Pourhajibagher, M.; Barikani, H.R.; Bahador, A. Antimicrobial photodynamic therapy assessment of three indocyanine green-loaded metal-organic frameworks against Enterococcus faecalis. Photodiagn. Photodyn. Ther. 2018, 23, 331–338. [Google Scholar] [CrossRef]
- Post, S.J.; Shapiro, J.A.; Wuest, W.M. Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. MedChemComm 2019, 10, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Ghai, I.; Bajaj, H.; Arun Bafna, J.; El Damrany Hussein, H.A.; Winterhalter, M.; Wagner, R. Ampicillin permeation across Ompf, the major outer-membrane channel in Escherichia coli. J. Biol. Chem. 2018, 293, 7030–7037. [Google Scholar] [CrossRef]
- Choo, E.J.; Chambers, H.F. Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. Infect. Chemother. 2016, 48, 267. [Google Scholar] [CrossRef]
- Shi, W.; Li, K.; Ji, Y.; Jiang, Q.; Wang, Y.; Shi, M.; Mi, Z. Carbapenem and cefoxitin resistance of Klebsiella pneumoniae strains associated with porin Ompk36 loss and DHA-1-β-lactamase production. Braz. J. Microbiol. 2013, 44, 435–442. [Google Scholar] [CrossRef]
- Moustaoui, H.; Movia, D.; Dupont, N.; Bouchemal, N.; Casale, S.; Djaker, N.; Savarin, P.; Prina-Mello, A.; de la Chapelle, M.L.; Spadavecchia, J. Tunable Design of Gold(III)–Doxorubicin Complex–Pegylated Nanocarrier. the Golden Doxorubicin for Oncological Applications. ACS Appl. Mater. Interfaces 2016, 8, 19946–19957. [Google Scholar] [CrossRef] [PubMed]
- Justo, J.A.; Bosso, J.A. Adverse Reactions Associated with Systemic Polymyxin Therapy. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2014, 35, 28–33. [Google Scholar] [CrossRef]
- Sotgiu, G.; D’Ambrosio, L.; Centis, R.; Tiberi, S.; Esposito, S.; Dore, S.; Spanevello, A.; Migliori, G. Carbapenems to Treat Multidrug and Extensively Drug-Resistant Tuberculosis: A Systematic Review. Int. J. Mol. Sci. 2016, 17, 373. [Google Scholar] [CrossRef]
- Alhadrami, H.A.; Orfali, R.; Hamed, A.A.; Ghoneim, M.M.; Hassan, H.M.; Hassane, A.S.; Rateb, M.E.; Sayed, A.M.; Gamaleldin, N.M. Flavonoid-Coated Gold Nanoparticles as Efficient Antibiotics against Gram-Negative Bacteria—Evidence from in Silico-Supported in Vitro Studies. Antibiotics 2021, 10, 968. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Osonga, F.J.; Akgul, A.; Miller, R.M.; Eshun, G.B.; Yazgan, I.; Akgul, A.; Sadik, O.A. Antimicrobial Activity of a New Class of Phosphorylated and Modified Flavonoids. ACS Omega 2019, 4, 12865–12871. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, M.; Lee, J.H.; Lee, J. Development of gold nanoparticles coated with silica containing the antibiofilm drug cinnamaldehyde and their effects on pathogenic bacteria. Int. J. Nanomed. 2017, 12, 2813–2828. [Google Scholar] [CrossRef] [PubMed]
- Riaz, S.; Fatima, R.N.; Hussain, I.; Tanweer, T.; Nawaz, A.; Menaa, F.; Janjua, H.A.; Alam, T.; Batool, A.; Naeem, A.; et al. Effect of Flavonoid-Coated Gold Nanoparticles on Bacterial Colonization in Mice Organs. Nanomaterials 2020, 10, 1769. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Xie, Y.; Zhang, Q.; Zhang, W.; Jiang, X.; Lin, J. Biological Safe Gold Nanoparticle-Modified Dental Aligner Prevents the Porphyromonas gingivalis Biofilm Formation. ACS Omega 2020, 5, 18685–18692. [Google Scholar] [CrossRef]
- Mitra, P.; Chakraborty, P.K.; Saha, P.; Ray, P.; Basu, S. Antibacterial efficacy of acridine derivatives conjugated with gold nanoparticles. Int. J. Pharm. 2014, 473, 636–643. [Google Scholar] [CrossRef]
- Wang, L.; Natan, M.; Zheng, W.; Zheng, W.; Liu, S.; Jacobi, G.; Perelshtein, I.; Gedanken, A.; Banin, E.; Jiang, X. Small molecule-decorated gold nanoparticles for preparing antibiofilm fabrics. Nanoscale Adv. 2020, 2, 2293–2302. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cha, R.; Zhao, X.; Guo, H.; Luo, H.; Wang, M.; Zhou, F.; Jiang, X. Gold Nanoparticles Cure Bacterial Infection with Benefit to Intestinal Microflora. ACS Nano 2019, 13, 5002–5014. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Khalid, S.; Perveen, S.; Ahmed, S.; Siddiqui, R.; Khan, N.A.; Shah, M.R. Synthesis of 4-(dimethylamino)pyridine propylthioacetate coated gold nanoparticles and their antibacterial and photophysical activity. J. Nanobiotechnol. 2018, 16, 6. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.F.; Huang, C.Z.; Li, Y.F. Hybridization Detection of DNA by Measuring Organic Small Molecule Amplified Resonance Light Scattering Signals. J. Phys. Chem. B 2007, 111, 4535–4538. [Google Scholar] [CrossRef]
- Bentin, T.; Nielsen, P.E. Superior Duplex DNA Strand Invasion by Acridine Conjugated Peptide Nucleic Acids. J. Am. Chem. Soc. 2003, 125, 6378–6379. [Google Scholar] [CrossRef]
Name of the Bacteria | Type of the Bacteria | Resistance to Antibiotics (Classes) | Infections Caused | Refs. |
---|---|---|---|---|
Staphylococcus aureus | Small round-shaped, Gram-positive bacteria | Methicillin, vancomycin, tetracycline, quinolone, fluoroquinolones, penicillin, phenicol, lipopeptide, aminoglycosides | Nosocomial infections, soft tissue infections, endocarditis, pneumonia, suppurative diseases, respiratory tract infections, fatal sepsis. | [42] |
Escherichia coli | Rod-shaped, Gram-negative bacteria | Carbapenems, aminoglycosides, β-lactams, quinolone, polymyxins | Urinary tract infections, hospital-acquired infections. | [9] |
Klebsiella pneumoniae | Rod-shaped, Gram-negative bacteria | β-Lactams, carbapenems, aminoglycosides, rifamycins | Pneumonia, urinary tract infections, bloodstream infections, skin infections. | [9] |
Klebsiella oxytoca | Rod-shaped, Gram-negative bacteria | Aminoglycosides, cephalosporin, carbapenems, fluoroquinolones, tetracycline, chloramphenicol | Bacteremia, antibiotic-associated hemorrhagic colitis, mild diarrhoea, urinary tract infections, bloodstream Infections. | [43] |
Pseudomonas aeruginosa | Rod-shaped, Gram-negative bacteria | β-Lactams, carbapenems, fluoroquinolones, aminoglycosides, quinolone | Nosocomial infections, urinary tract infections, pneumonia, skin infections, chronic lung disease like cystic fibrosis. | [44] |
Acinetobacter baumannii | Short rod-shaped, Gram-negative bacteria | Carbapenem, imipenem, aminoglycosides, Fluoroquinolones | Urinary tract infections, bloodstream infections, hospital- acquired infections. | [9] |
Proteus mirabilis | Rod-shaped, Gram-negative bacteria | Penicillin, folate inhibitors, quinolone | Gastrointestinal tract infections, crohn’s disease, respiratory tract infections, skin infections, bloodstream infections. | [45] |
Enterococcus faecalis | Slightly oval shaped, Gram-positive bacteria | Glycopeptides, oxazolidinone, lipopeptide | Abdominal infections, pelvic infections, septicaemia. | [46] |
Porphyromonas gingivalis | Rod-shaped, Gram-negative bacteria | Tetracyclines, penicillin, lincosamides, nitroimidazole | Periodontal disease. | [47] |
Micrococcus luteus | Sphere-shaped, Gram-positive bacteria | Macrolides, cephalosporin, penicillin | Hepatic and brain abscess, bacteremia, bloodstream infections. | [48] |
Aeromonas hydrophila | Rod-shaped, Gram-negative bacteria | Penicillin, ampicillin, tetracycline | Bacteremia, diarrhoea, gastroenteristrics, urinary tract infections. | [49] |
Staphylococcus epidermidis | Grape-like clusters shaped, Gram-positive bacteria | Vancomycin, glycopeptides, rifamycins | Bloodstream infections, surgical site infections. | [50] |
Name of Antibiotics | Class of Antibiotics | Size and Shape of AuNPs | Time, Temperature of Synthesis and UV Absorption Peak of AuNPs | Tested Bacteria | MIC | Remarks | Refs. |
---|---|---|---|---|---|---|---|
Cefixime | Cephalosporin | Spherical, size ranging from 25 to 50 nm. | 2.5 h 532 nm | S. aureus | 45 ± 0.12 μg/mL (correspond to 3.24 μg of cefixime) | Efficiency of cefixime increased by 8 times when conjugated with AuNPs. | [5] |
Amoxicillin | Penicillin | Irregular shapes including triangular, hexagonal, spherical, etc. | 18 min and 50 °C | P. aeruginosa, S. aureus | 1.5 µg/mL | A 60% and 70% reduction in the viability was obtained for S. aureus and P. aeruginosa biofilm, respectively. | [6] |
Amoxicillin | Penicillin | Hexagonal and spherical shape, size between 15.99 and 24.71 nm. | 1 h and 25 °C 534 nm | MRSA, E. coli | 3.6–8 µg/mL | The synthesised coated AuNPs exhibited a MIC 12–31 times less compared to pure amoxicillin. | [59] |
Ampicillin | Penicillin | 1.43 ± 0.5 nm. | 24 h and room temp | MRSA, S. aureus | 0.58 μg/mL against S. aureus and 4 μg/mL for MRSA | The MIC reduced by 18% against S. aureus bacteria and 10–20 times against MRSA as compared to ampicillin alone. | [58] |
Amikacin | Aminoglycoside | All possesses spherical morphology, for citrate- AuNPs, the average particle size is 3.3 nm, for PVP-AuNPs average size is 11.5 nm and for Tween 20-AuNP average size is 6.25 nm. | 2 h and room temp. 533, 537 and 535 for citrate, Tween 20 and PVP capped AuNPs, respectively. | E. coli, S. aureus | - | All the amikacin-coated AuNPs fabricated using different surfactants exhibit enhanced antibacterial activity against both the bacterial strains compared to amikacin alone. | [60] |
Cefotaxime | Cephalosporin | All possess spherical shape and are monodispersed. Average size of pure AuNPs and Cefotaxime conjugated AuNPs were reported as 6.87 ± 2.43 and 17.55 ± 2.95 nm, respectively. | 48 h and 40 °C 542 nm | E. coli, K. pneumoniae | 1.009 μg/mL for E. coli and 2.018 μg/mL for K. pneumoniae | Conjugation of cefotaxime introduced antibacterial activity to the AuNPs, as pure AuNPs not show any antibacterial properties. | [61] |
Vancomycin | Glycopeptide | Spherical shape and monodispersed with an average size 24 nm. | 48 h and 40 °C 524 nm | E. coli, K. oxytoca, P. aeruginosa, S. aureus | 93.44 μg/mL for E. coli, 70.84 μg/mL for K. oxytoca, 60.65 μg/mL for P. aeruginosa, 30.63 μg/mL for S. aureus | Vancomycin-coated AuNPs enhanced the antibacterial activity of the drug by 1.6, 1.4, 1.6 and 1.8-fold against K. oxytoca, E. coli, S. aureus and P. aeruginosa bacteria. | [62] |
Cefoxitin | Cephalosporin | Spherical, poly-dispersed and size between 2 and 12 nm. | 48 h and 40 °C 518 nm | E. coli, K. pneumoniae | MIC 50 value for E. coli is 1.5 µg/mL and for K. pneumoniae 2.5 µg/mL | AuNPs are found to be efficient for delivering the drug to both the bacterial strains and transform the antibiotic from an unresponsive drug to an effective one. | [32] |
Doxycycline | Tetracycline | Spherical, average size was 13 ± 1.2 nm. | 15 min 540 nm | S. aureus E. coli, K. pneumoniae, A. baumannii, P. aeruginosa | 2 μg/mL | MIC value for doxycycline conjugated AuNPs was reduced by almost 16 times as compared to doxycycline alone. | [11] |
6-Amino-penicillanic acid | - | ~3 nm | ~1 h in ice water bath | E. coli, K. pneumoniae P. aeruginosa, MDR E. coli and MDR K. pneumoniae | 2.5 μg/mL for E. coli, 5 μg/mL for K. pneumoniae and for the rest of the bacterial strain, it was 1 μg/mL | MIC value of pure 6-aminopenicillanic acid molecule was greater than 250 μg/mL. But for MDR E. coli and K. pneumoniae bacteria it was decreased to 5 μg/mL when coated in AuNPs. | [63] |
Colistin | Polymyxins | - | - | E. coli | 0.23 ± 0.03 µg/mL | On conjugation with AuNPs the MIC of colistin reduced by 6.8 fold. | [64] |
Imipenem and Meropenem | Carbapenems | 35–200 nm | 20 min 530 nm | K. pneumoniae, P. mirabilis, A. baumanii | 2.5 µg/mL for K. pneumoniae And for P. mirabilis and A. baumanii, MIC value is ~1.25 µg/mL | Imipenem-loaded AuNPs demonstrated decreased MIC of imipenem by four times, and meropenem-loaded AuNPs demonstrated a three times decrease in the MIC of meropenem. | [65] |
Heterocyclic Compounds | Size of AuNPs | UV Absorption Peak | Tested Bacteria | Antimicrobial Activity | Refs. |
---|---|---|---|---|---|
4,6-Diamino- 2-pyrimidinethiol | Less than 4 nm | 510 nm | P. gingivalis | Inhibited the growth of bacteria as well as biofilm formation and up to a concentration of 104 CFU/mL bacterial growth was arrested. | [81] |
Acridine derivatives | 15–20 nm | 525 nm | B. subtilis E. coli | 9-Aminoacridine hydrochloride hydrate- and acridine orange-coated AuNPs showed enhanced antimicrobial activity. | [82] |
3-Amino-1,2,4 triazole- 5-thiol, 6-Amino-2- mercaptobenzothiazole, 2-Amino-6-mercaptopurine, 6-Aminopenicillanic acid, 2-Mercaptoimidazole | 4–7 nm | - | S. aureus E. coli MDR K. pneumoniae | 2-Mercaptoimidazole and 3-amino-1,2,4-triazole-5-thiol-coated AuNPs reduced the viability of MRSA by 4.1 and 3.5 logs, respectively. 2-Mercaptoimidazole-coated AuNPs reduced the viability of biofilm produced by MDR K. pneumoniae, MDR E. coli and E. coli by 1.3, 1 and 1.9 logs, respectively. | [83] |
4,6-Diamino-2- pyrimidinethiol | 12.90 and 16.57 nm for pure and coated AuNPs | 520 nm | E. coli | Compared to the antimicrobial drug levofloxacin, conjugated AuNPs showed superior activity in curing bacterial infections without affecting the intestinal microflora. | [84] |
4-Dimethyl aminopyridinium propylthioacetate | 5–20 nm | 520 nm | E. coli | Conjugation with AuNPs enhanced the antimicrobial properties of the 4-Dimethyl aminopyridinium propylthioacetate ligand. Further, combination of the heterocyclic compound-coated AuNPs with a pefoxacin drug reduced the MIC value by almost half compared to the pure drug. | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarma, P.P.; Rai, A.; Baruah, P.K. Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance. Antibiotics 2024, 13, 124. https://doi.org/10.3390/antibiotics13020124
Sarma PP, Rai A, Baruah PK. Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance. Antibiotics. 2024; 13(2):124. https://doi.org/10.3390/antibiotics13020124
Chicago/Turabian StyleSarma, Partha Pratim, Akhilesh Rai, and Pranjal K. Baruah. 2024. "Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance" Antibiotics 13, no. 2: 124. https://doi.org/10.3390/antibiotics13020124
APA StyleSarma, P. P., Rai, A., & Baruah, P. K. (2024). Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance. Antibiotics, 13(2), 124. https://doi.org/10.3390/antibiotics13020124