Antimicrobial Usage and Antimicrobial Resistance in Commensal Escherichia coli from Broiler Farms: A Farm-Level Analysis in West Java, Indonesia
Abstract
:1. Introduction
2. Results
2.1. Overview of Antimicrobial Usage and Antimicrobial Susceptibility Testing
2.2. Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Farm and Sample Selection
4.2. Antimicrobial Usage Data Collection
4.3. Data Collection of Commensal Escherichia coli (E. coli) Isolates for Susceptibility Testing
4.4. Data Analysis and Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Antimicrobial Resistance |
AMU | Antimicrobial Use |
CBP | Clinical Break Point |
CI | Confidence Interval |
CIA | Critically Important Antimicrobials |
CIVAS | Center for Indonesian Veterinary Analytical Studies |
CLSI | Clinical and Laboratory Standards Institute |
DOC | Day-Old Chick |
E. coli | Escherichia coli |
ECOFF | Epidemiological Cut-Off |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
FAO | Food and Agriculture Organization of the United Nations |
HIA | Highly Important Antimicrobials |
HPCIA | Highest Priority Critically Important Antimicrobials |
IA | Important Antimicrobials |
NAP | National Action Plan |
NWT | Non-Wildtype |
OR | Odds Ratio |
SD | Standard Deviation |
TFcount-based | Treatment Frequency (Count-Based) |
VMP | Veterinary Medical Product |
WHO | World Health Organization |
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655, Erratum in Lancet 2022, 400, 1102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woolhouse, M.E.; Ward, M.J. Sources of antimicrobial resistance. Science 2013, 341, 1460–1461. [Google Scholar] [CrossRef] [PubMed]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Allel, K.; Day, L.; Hamilton, A.; Lin, L.; Furuya-Kanamori, L.; Moore, C.E.; Van Boeckel, T.; Laxminarayan, R.; Yakob, L. Global antimicrobial-resistance drivers: An ecological country-level study at the human-animal interface. Lancet Planet Health 2023, 7, e291–e303. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Wang, W.; Regev-Yochay, G.; Lipsitch, M.; Hanage, W.P. Antibiotics in agriculture and the risk to human health: How worried should we be? Evol. Appl. 2015, 8, 240–247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fastl, C.; De Carvalho Ferreira, H.C.; Babo Martins, S.; Sucena Afonso, J.; di Bari, C.; Venkateswaran, N.; Pires, S.M.; Mughini-Gras, L.; Huntington, B.; Rushton, J.; et al. Animal sources of antimicrobial-resistant bacterial infections in humans: A systematic review. Epidemiol. Infect. 2023, 151, e143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hesp, A.; Veldman, K.; van der Goot, J.; Mevius, D.; van Schaik, G. Monitoring antimicrobial resistance trends in commensal Escherichia coli from livestock, the Netherlands, 1998 to 2016. Eurosurveillance 2019, 24, 1800438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Magnusson, U.; Moodley, A.; Osbjer, K. Antimicrobial resistance at the livestock-human interface: Implications for Veterinary Services. Rev. Sci. Et Tech. Int. Off. Epizoot. 2021, 40, 511–521. (In English) [Google Scholar] [CrossRef] [PubMed]
- Mulchandani, R.; Wang, Y.; Gilbert, M.; Van Boeckel, T.P. Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Glob. Public Health 2023, 3, e0001305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woolhouse, M.; Ward, M.; van Bunnik, B.; Farrar, J. Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140083. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- The Ministry of Agriculture of the Republic of Indonesia (Ed.) National Action Plan on Antimicrobial Resistance Indonesia 2017–2019; The Ministry of Agriculture of the Republic of Indonesia: Kota Jakarta Selatan, The Republic of Indonesia, 2017.
- The Ministry of Agriculture of the Republic of Indonesia (Ed.) National Action Plan on Antimicrobial Resistance in Indonesia 2020–2024; The Ministry of Agriculture of the Republic of Indonesia: Kota Jakarta Selatan, The Republic of Indonesia, 2022.
- Wahyono, N.D.; Utami, M.M.D. A Review of the Poultry Meat Production Industry for Food Safety in Indonesia. J. Phys. Conf. Ser. 2018, 953, 012125. [Google Scholar] [CrossRef]
- Sivaraman, S. Antibiotic Use in Food Animals: Indonesia Overview. 2018. Available online: https://www.reactgroup.org/wp-content/uploads/2018/11/Antibiotic_Use_in_Food_Animals_Indonesia_Overview_LIGHT_2018_web.pdf (accessed on 12 September 2024).
- Suandy, I. AMU-AMR Surveillance System in Indonesia on Livestock and Animal Health Sector: Approach & Findings. In Proceedings of the OIE Sub-Regional conference on Antimicrobial Resistance (AMR) Related Research and Information, Bangkok, Thailand, 7 March 2019. [Google Scholar]
- World Health Organization. WHO List of Medically Important Antimicrobials: A Risk Management Tool for Mitigating An-Timicrobial Resistance Due to Non-Human Use; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Coyne, L.; Arief, R.; Benigno, C.; Giang, V.N.; Huong, L.Q.; Jeamsripong, S.; Kalpravidh, W.; McGrane, J.; Padungtod, P.; Patrick, I.; et al. Characterizing Antimicrobial Use in the Livestock Sector in Three South East Asian Countries (Indonesia, Thailand, and Vietnam). Antibiotics 2019, 8, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coyne, L.; Patrick, I.; Arief, R.; Benigno, C.; Kalpravidh, W.; McGrane, J.; Schoonman, L.; Sukarno, A.H.; Rushton, J. The Costs, Benefits and Human Behaviours for Antimicrobial Use in Small Commercial Broiler Chicken Systems in Indonesia. Antibiotics 2020, 9, 154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pakage, S.; Hartono, B.; Nugroho, B.A.; Iyai, D.A. Analisis struktur biaya dan pendapatan usaha peternakan ayam pedaging dengan menggunakan closed house system dan open house system. J. Peternak. Indones. Indonesian J. Anim. Sci. 2018, 20, 193–200. [Google Scholar] [CrossRef]
- Setianto, N.A.; Ismoyowati, I.; Aunurrohman, H.; Armelia, V. Produktivitas Usaha Peternakan Ayam Broiler Menggunakan Tipe Kandang Semi Closed House Pola Kemitraan Perusahaan Di Kabupaten Kebumen. Pros. Semin. Nas. Teknol. Agribisnis Peternak. STAP 2021, 8, 722–728. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing. The ECOFFFinder Program; EUCAST. 2020. Available online: https://www.eucast.org/mic_and_zone_distributions_and_ecoffs (accessed on 8 September 2024).
- Clinical and Laboratory Standards Institute (CLSI). CLSI M100-ED34 Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI: Wayne, PA, USA, 2024. [Google Scholar]
- Dutil, L.; Irwin, R.; Finley, R.; Ng, L.K.; Avery, B.; Boerlin, P.; Bourgault, A.-M.; Cole, L.; Daignault, D.; Desruisseau, A.; et al. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg. Infect. Dis. 2010, 16, 48–54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Persoons, D.; Haesebrouck, F.; Smet, A.; Herman, L.; Heyndrickx, M.; Martel, A.; Catry, B.; Berge, A.C.; Butaye, P.; Dewulf, J. Risk factors for ceftiofur resistance in Escherichia coli from Belgian broilers. Epidemiol. Infect. 2010, 139, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.; Boyen, F.; Mohsin, A.S.; Ringenier, M.; Berge, A.C.; Chantziaras, I.; Fournié, G.; Pfeiffer, D.; Dewulf, J. Antimicrobial Resistance in Escherichia coli and Its Correlation with Antimicrobial Use on Commercial Poultry Farms in Bangladesh. Antibiotics 2023, 12, 1361. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Speksnijder, D.C.; Mevius, D.J.; Bruschke, C.J.M.; Wagenaar, J.A. Reduction of veterinary antimicrobial use in the Nether-lands. The Dutch success model. Zoonoses Public Health 2014, 62, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Malijan, G.M.; Howteerakul, N.; Ali, N.; Siri, S.; Kengganpanich, M.; Nascimento, R.; Booton, R.D.; Turner, K.M.; Cooper, B.S.; Meeyai, A. A scoping review of antibiotic use practices and drivers of inappropriate antibiotic use in animal farms in WHO Southeast Asia region. One Health 2022, 15, 100412. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carrique-Mas, J.J.; Trung, N.V.; Hoa, N.T.; Mai, H.H.; Thanh, T.H.; Campbell, J.I.; Wagenaar, J.A.; Hardon, A.; Hieu, T.Q.; Schultsz, C. Antimicrobial usage in chicken production in the Mekong Delta of Vietnam. Zoonoses Public Health 2014, 62, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Tahir, M.F.; Ullah, R.W.; Ali, J.; Siddique, N.; Rasheed, A.; Akram, M.; Zaheer, M.U.; Mohsin, M. Quantification and Trends of Antimicrobial Use in Commercial Broiler Chicken Production in Pakistan. Antibiotics 2021, 10, 598. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barroga, T.R.M.; Morales, R.G.; Benigno, C.C.; Castro, S.J.M.; Caniban, M.M.; Cabullo, M.F.B.; Agunos, A.; de Balogh, K.; Dorado-Garcia, A. Antimicrobials Used in Backyard and Commercial Poultry and Swine Farms in the Philippines: A Qualitative Pilot Study. Front. Vet. Sci. 2020, 7, 329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). Defined Daily Doses for Animals (DDDvet) and Defined Course Doses for Animals (DCDvet); ESVAC: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Ibrahim, N.; Chantziaras, I.; Mohsin, A.S.; Boyen, F.; Fournié, G.; Islam, S.S.; Berge, A.C.; Caekebeke, N.; Joosten, P.; Dewulf, J. Quantitative and qualitative analysis of antimicrobial usage and biosecurity on broiler and Sonali farms in Bangladesh. Prev. Vet. Med. 2023, 217, 105968. [Google Scholar] [CrossRef] [PubMed]
- Sani, R.A.; Wagenaar, J.A.; Dinar, T.E.H.A.; Sunandar, S.; Nurbiyanti, N.; Suandy, I.; Pertela, G.; Jahja, E.J.; Purwanto, B.; CORNERSTONE Group; et al. The comparison and use of tools for quantification of antimicrobial use in Indonesian broiler farms. Front. Vet. Sci. 2023, 10, 1092302. [Google Scholar] [CrossRef] [PubMed]
- Sanders, P.; Vanderhaeghen, W.; Fertner, M.; Fuchs, K.; Obritzhauser, W.; Agunos, A.; Carson, C.; Høg, B.B.; Andersen, V.D.; Chauvin, C.; et al. Monitoring of Farm-Level Antimicrobial Use to Guide Stewardship: Overview of Existing Systems and Analysis of Key Components and Processes. Front. Vet. Sci. 2020, 7, 540. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Food and Agriculture Organization. Preserving Critically Important Antibiotics for Humans, by Banning Their Use in Animals; FAO: Rome, Italy, 2019; Available online: https://www.fao.org/indonesia/news/detail-events/en/c/1257265/ (accessed on 8 September 2024).
- Thongratsakul, S.; Amavisit, P.; Poolkhet, C. Antimicrobial Resistance in Poultry Farming: A Look Back at Environmental Escherichia coli Isolated from Poultry Farms during the Growing and Resting Periods. Vet. Med. Int. 2023, 2023, 8354235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mo, S.S.; Kristoffersen, A.B.; Sunde, M.; Nødtvedt, A.; Norström, M. Risk factors for occurrence of cephalosporin-resistant Escherichia coli in Norwegian broiler flocks. Prev. Vet. Med. 2016, 130, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Biohaz, E.P.O.B.H.; Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; et al. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021, 19, e06651. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pronk, A.; de Vries, M.; Adiyoga, W.; Gunadi, N.; Prathama, M.; Merdeka, A.E.; Sugiharto, J. Fertilisation Practices on Small-Scale Vegetable Farms in Lembang, West Java: Understanding Drives and Barriers of Farmers On the Use of Chicken and Cattle Manure (No. 966); Wageningen Plant Research: Wageningen, The Netherlands, 2020. [Google Scholar]
- Hesp, A.; van Schaik, G.; Wiegel, J.; Heuvelink, A.; Mevius, D.; Veldman, K. Antimicrobial resistance monitoring in commensal and clinical Escherichia coli from broiler chickens: Differences and similarities. Prev. Vet. Med. 2022, 204, 105663. [Google Scholar] [CrossRef] [PubMed]
- Wagenaar, J.A. Containment of Antimicrobial Resistance: Towards a Sustainable Poultry Production Chain in Indonesia. 2019. Available online: https://www.nwo.nl/en/projects/w-07501827 (accessed on 8 September 2024).
- The Ministry of Agriculture of the Republic of Indonesia (Ed.) Regulation of the Ministry of Agriculture of the Republic of Indonesia Number 14 Year 2020 Concerning Registration and Licensing of Livestock Business; The Ministry of Agriculture of the Republic of Indonesia: Kota Jakarta Selatan, The Republic of Indonesia, 2020.
- Food and Agriculture Organization (FAO). Biosecurity for Highly Pathogenic Avian Influenza; FAO: Rome, Italy, 2008. [Google Scholar]
- Durr, P.A.; Wibowo, M.H.; Tarigan, S.; Artanto, S.; Rosyid, M.N.; Ignjatovic, J. Defining “Sector 3” Poultry Layer Farms in Relation to H5N1-HPAI—An Example from Java, Indonesia. Avian Dis. 2016, 60, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Persoons, D.; Bollaerts, K.; Smet, A.; Herman, L.; Heyndrickx, M.; Martel, A.; Butaye, P.; Catry, B.; Haesebrouck, F.; Dewulf, J. The importance of sample size in the determination of a flock-level antimicrobial resistance profile for Escherichia colin broilers. Microb. Drug Resist. 2011, 17, 513–519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization. Guidance for Climate Resilient and Environmentally Sustainable Health Care Facilities. 2021. Available online: https://iris.who.int/bitstream/handle/10665/340079/9789240021402-eng.pdf?sequence=1 (accessed on 7 November 2024).
- Thermo Fisher Scientific. Sensititre Antimicrobial Susceptibility Testing System. Available online: https://assets.thermofisher.com/TFS-Assets/MBD/brochures/Sensititre-Plate-Guide-Booklet-EN.pdf (accessed on 28 June 2024).
- Gibson, J.S.; Wai, H.; Oo, S.S.M.L.; Hmwe, E.M.M.; Wai, S.S.; Htun, L.L.; Lim, H.P.; Latt, Z.M.; Henning, J. Antimicrobials use and resistance on integrated poultry-fish farming systems in the Ayeyarwady Delta of Myanmar. Sci. Rep. 2020, 10, 16149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Inthavong, P.; Chanthavong, S.; Nammanininh, P.; Phommachanh, P.; Theppangna, W.; Agunos, A.; Wagenaar, J.A.; Douangngeun, B.; Loth, L. Antimicrobial Resistance Surveillance of Pigs and Chickens in the Lao People’s Democratic Republic, 2018–2021. Antibiotics 2022, 11, 177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
Farm ID | Maximum Capacity of Broilers on Farm | Average Number of Broilers per Study House | Housing System | Use of Standard Treatment Protocol 1 | Source Standard Treatment Protocol |
---|---|---|---|---|---|
1 | 11,000 | 6000 | Open | Yes | Integration |
2 | 12,000 | 5125 | Open | Yes | Integration |
3 | 16,000 | 7250 | Closed | No | No protocol |
4 | 13,500 | 6750 | Semi-closed | No | No protocol |
5 | 50,000 | 13,900 | Closed | Yes | Pharmaceutical company |
6 | 80,000 | 20,000 | Semi-closed | No | No protocol |
7 | 14,000 | 4625 | Open | No | No protocol |
8 | 21,000 | 4000 | Open | No | No protocol |
9 | 70,000 | 5100 | Semi-closed | No | No protocol |
10 | 40,000 | 1766 | Open | Yes | Owner |
11 | 33,000 | 18,631 | Semi-closed | Yes | Owner |
12 | 28,000 | 7750 | Semi-closed | No | No protocol |
13 | 65,000 | 18,900 | Semi-closed | No | No protocol |
14 | 50,000 | 24,250 | Semi-closed | No | No protocol |
15 | 14,000 | 4369 | Open | Yes | Pharmaceutical company |
16 | 6500 | 4400 | Open | No | No protocol |
17 | 4800 | 3825 | Open | No | No protocol |
18 | 40,000 | 7925 | Semi-closed | No | No protocol |
19 | 35,000 | 13,050 | Semi-closed | No | No protocol |
Antimicrobial 1 | Farms with Use (n = 19) | Production Cycles with Use (n = 78) | Total Treatment Days 2 |
---|---|---|---|
Amoxicillin (penicillin (HIA)) | 15 | 38 | 116 |
Colistin (polymyxin (HPCIA)) | 14 | 35 | 112 |
Ciprofloxacin (fluoroquinolone (HPCIA)) | 4 | 6 | 16 |
Doxycycline (tetracycline (HIA)) | 8 | 24 | 79 |
Enrofloxacin (fluoroquinolone (HPCIA)) | 12 | 35 | 183 |
Erythromycin (macrolide (CIA)) | 8 | 24 | 79 |
Flumequine (quinolone (HPCIA)) | 2 | 5 | 19 |
Fosfomycin (phosphonic acid derivates (HPCIA)) | 1 | 3 | 16 |
Lincomycin (lincosamide (HIA)) | 2 | 3 | 12 |
Neomycin (aminoglycoside (CIA)) | 2 | 4 | 16 |
Oxytetracycline (tetracycline (HIA)) | 5 | 13 | 51 |
Spectinomycin (aminocyclitol (IA)) | 2 | 3 | 12 |
Spiramycin (macrolide (CIA)) | 4 | 9 | 32 |
Sulfadiazine (sulfonamide (HIA)) | 5 | 12 | 44 |
Sulfaquinoxaline (sulfonamide (HIA)) | 2 | 4 | 14 |
Trimethoprim (diaminopyrimidine (HIA)) | 5 | 12 | 44 |
Tylosin (macrolide (CIA)) | 7 | 20 | 74 |
Tested Antimicrobial 1 | WHO Classification 2 | ECOFF 3 (mg/L) | CBP 4 (mg/L) | % Isolates MIC > ECOFF 5 | % Isolates MIC ≥ CBP 6 |
---|---|---|---|---|---|
Ampicillin (AMP) | Penicillins (aminopenicillins) (HIA) | 8 | 32 | 88% | 88% |
Azithromycin (AZI) | Macrolides (CIA) | 16 | 32 | 23% | 23% |
Cefotaxime (CEF) | Cephalosporins (3rd and 4th generation) (HPCIA) | 0.25 | 4 | 28% | 19% |
Ceftazidime (CEZ) | Cephalosporins (3rd and 4th generation) (HPCIA) | 1 | 16 | 25% | 0% |
Chloramphenicol (CHL) | Amphenicols (HIA) | 16 | 32 | 22% | 22% |
Ciprofloxacin (CIP) | Quinolones (HPCIA) | 0.06 | 1 | 93% | 54% |
Colistin (COL) | Polymyxins (HPCIA) | 2 | 4 | 9% | 9% |
Gentamicin (GEN) | Aminoglycosides (CIA) | 2 | 16 | 30% | 25% |
Meropenem (MER) | Carbapenems (Human use only) | 0.06 | 4 | 3% | 1% |
Nalidixic acid (NAL) | Quinolones (HPCIA) | 8 | 32 | 64% | 57% |
Sulfamethoxazole (SUL) | Sulfonamides (HIA) | 64 | 512 | 75% | 74% |
Tetracycline (TET) | Tetracyclines (HIA) | 8 | 16 | 83% | 83% |
Tigecycline (TIG) | Glycylcycline (Human use only) | 0.5 | 0.5 3 | 2% | 24% |
Trimethoprim (TRI) | Diaminopyrimidine (HIA) | 2 | 16 | 71% | 71% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar Sani, R.; Sunandar, S.; Rachmawati, A.; Pertela, G.; Susanti, O.; Rahayu, K.P.; Allamanda, P.; Suandy, I.; Nurbiyanti, N.; Jahja, E.J.; et al. Antimicrobial Usage and Antimicrobial Resistance in Commensal Escherichia coli from Broiler Farms: A Farm-Level Analysis in West Java, Indonesia. Antibiotics 2024, 13, 1181. https://doi.org/10.3390/antibiotics13121181
Anwar Sani R, Sunandar S, Rachmawati A, Pertela G, Susanti O, Rahayu KP, Allamanda P, Suandy I, Nurbiyanti N, Jahja EJ, et al. Antimicrobial Usage and Antimicrobial Resistance in Commensal Escherichia coli from Broiler Farms: A Farm-Level Analysis in West Java, Indonesia. Antibiotics. 2024; 13(12):1181. https://doi.org/10.3390/antibiotics13121181
Chicago/Turabian StyleAnwar Sani, Rianna, Sunandar Sunandar, Annisa Rachmawati, Gian Pertela, Oli Susanti, Kanti Puji Rahayu, Puttik Allamanda, Imron Suandy, Nofita Nurbiyanti, Elvina J. Jahja, and et al. 2024. "Antimicrobial Usage and Antimicrobial Resistance in Commensal Escherichia coli from Broiler Farms: A Farm-Level Analysis in West Java, Indonesia" Antibiotics 13, no. 12: 1181. https://doi.org/10.3390/antibiotics13121181
APA StyleAnwar Sani, R., Sunandar, S., Rachmawati, A., Pertela, G., Susanti, O., Rahayu, K. P., Allamanda, P., Suandy, I., Nurbiyanti, N., Jahja, E. J., Purwanto, B., on behalf of CORNERSTONE Group, Velkers, F. C., Dinar, T., Wagenaar, J. A., & Speksnijder, D. C. (2024). Antimicrobial Usage and Antimicrobial Resistance in Commensal Escherichia coli from Broiler Farms: A Farm-Level Analysis in West Java, Indonesia. Antibiotics, 13(12), 1181. https://doi.org/10.3390/antibiotics13121181