Analyzing Antibiotic Resistance in Bacteria from Wastewater in Pakistan Using Whole-Genome Sequencing
Abstract
:1. Introduction
2. Results
2.1. Bacterial Isolation and Species Identification
2.2. Phylogroups, MLST, Serotypes, and Capsule Types
2.3. Antimicrobial Sensitivity Assay (ASA)
2.4. Detection of ARGs
2.5. Detection of Integrons–Integrases
2.6. Detection of Plasmid Replicons
2.7. Plasmid Sequence Analysis of E. coli 41EC2 and Localization of Its ARGs
3. Discussion
4. Materials and Methods
4.1. Sample Collection, Microbiological Analysis, and Antimicrobial Sensitivity Assay (ASA)
4.2. Whole-Genome Sequencing and Bioinformatics Analysis
5. Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. List of Drug-Resistant Bacteria Most Threatening to Human Health Available; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Jean, S.S.; Harnod, D.; Hsueh, P.R. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front. Cell. Infect. Microbiol. 2022, 12, 823684. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, M.; Azam, M.; ur Rahman, S.; Esposito, F.; Sellera, F.P.; Monte, D.F.; Cerdeira, L.; Lincopan, N. Genomic background of a colistin-resistant and highly virulent MCR-1-positive Escherichia coli ST6395 from a broiler chicken in Pakistan. Pathog. Dis. 2019, 77, ftz064. [Google Scholar] [CrossRef] [PubMed]
- Zafar, R.; Bashir, S.; Nabi, D.; Arshad, M. Occurrence and quantification of prevalent antibiotics in wastewater samples from Rawalpindi and Islamabad, Pakistan. Sci. Total Environ. 2021, 764, 142596. [Google Scholar] [CrossRef]
- Stange, C.; Sidhu, J.P.S.; Tiehm, A.; Toze, S. Antibiotic resistance and virulence genes in coliform water isolates. Int. J. Hyg. Environ. Health 2016, 219, 823–831. [Google Scholar] [CrossRef]
- Hamelin, K.; Bruant, G.; El-Shaarawi, A.; Hill, S.; Edge, T.A.; Fairbrother, J.; Harel, J.; Maynard, C.; Masson, L.; Brousseau, R. Occurrence of virulence and antimicrobial resistance genes in Escherichia coli isolates from different aquatic ecosystems within the St. Clair River and Detroit River areas. Appl. Environ. Microbiol. 2007, 73, 477–484. [Google Scholar] [CrossRef]
- Talukdar, P.K.; Rahman, M.; Rahman, M.; Nabi, A.; Islam, Z.; Hoque, M.M.; Endtz, H.P.; Islam, M.A. Antimicrobial Resistance, Virulence Factors and Genetic Diversity of Escherichia coli Isolates from Household Water Supply in Dhaka, Bangladesh. PLoS ONE 2013, 8, e61090. [Google Scholar] [CrossRef]
- Ahmed, T.; Zounemat-Kermani, M.; Scholz, M. Climate change, water quality and water-related challenges: A review with focus on Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 8518. [Google Scholar] [CrossRef] [PubMed]
- Fida, M.; Li, P.; Wang, Y.; Alam, S.M.K.; Nsabimana, A. Water contamination and human health risks in Pakistan: A review. Expo. Health 2023, 15, 619–639. [Google Scholar] [CrossRef]
- Hall, R.M. Integrons and gene cassettes: Hotspots of diversity in bacterial genomes. Ann. New York Acad. Sci. 2012, 1267, 71–78. [Google Scholar] [CrossRef]
- Mazel, D. Integrons: Agents of bacterial evolution. Nat. Rev. Microbiol. 2006, 4, 608–620. [Google Scholar] [CrossRef]
- Gillings, M.R.; Gaze, W.H.; Pruden, A.; Smalla, K.; Tiedje, J.M.; Zhu, Y.G. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 2015, 9, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Ghaly, T.M.; Chow, L.; Asher, A.J.; Waldron, L.S.; Gillings, M.R. Evolution of class 1 integrons: Mobilization and dispersal via food-borne bacteria. PLoS ONE 2017, 12, e0179169. [Google Scholar] [CrossRef] [PubMed]
- Bleichenbacher, S.; Stevens, M.J.A.; Zurfluh, K.; Perreten, V.; Endimiani, A.; Stephan, R.; Nüesch-Inderbinen, M. Environmental dissemination of carbapenemase-producing Enterobacteriaceae in rivers in Switzerland. Environ. Pollut. 2020, 265, 115081. [Google Scholar] [CrossRef]
- Gomi, R.; Matsumura, Y.; Yamamoto, M.; Tanaka, M.; Komakech, A.J.; Matsuda, T.; Harada, H. Genomic surveillance of antimicrobial-resistant Escherichia coli in fecal sludge and sewage in Uganda. Water Res. 2024, 248, 120830. [Google Scholar] [CrossRef]
- Falgenhauer, L.; Schwengers, O.; Schmiedel, J.; Baars, C.; Lambrecht, O.; Heß, S.; Berendonk, T.U.; Falgenhauer, J.; Chakraborty, T.; Imirzalioglu, C. Multidrug-Resistant and Clinically Relevant Gram-Negative Bacteria Are Present in German Surface Waters. Front. Microbiol. 2019, 10, 2779. [Google Scholar] [CrossRef]
- Ahsan, A.; Rehman, T.A.U.; Irshad, H.; Shahzad, M.A.; Siddique, A.; Jamil, A.; Ali, A. Antibiotic resistance pattern and molecular detection of ESBL-associated genes in E. coli from surface and wastewater of Islamabad capital territory, Pakistan. J. Water Health 2022, 20, 601–609. [Google Scholar] [CrossRef]
- Saima, S.; Fiaz, M.; Manzoor, M.; Zafar, R.; Ahmed, I.; Nawaz, U.; Arshad, M. Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan. 3 Biotech 2020, 10, 378. [Google Scholar] [CrossRef] [PubMed]
- Khan, G.A.; Berglund, B.; Khan, K.M.; Lindgren, P.E.; Fick, J. Occurrence and Abundance of Antibiotics and Resistance Genes in Rivers, Canal and near Drug Formulation Facilities—A Study in Pakistan. PLoS ONE 2013, 8, e62712. [Google Scholar] [CrossRef]
- Yasmin, S.; Karim, A.M.; Lee, S.H.; Zahra, R. Temporal Variation of Meropenem Resistance in E. coli Isolated from Sewage Water in Islamabad, Pakistan. Antibiotics 2022, 11, 635. [Google Scholar] [CrossRef]
- Zahra, R.; Javeed, S.; Malala, B.; Babenko, D.; Toleman, M.A. Analysis of Escherichia coli STs and resistance mechanisms in sewage from Islamabad, Pakistan indicates a difference in E. coli carriage types between South Asia and Europe. J. Antimicrob. Chemother. 2018, 73, 1781–1785. [Google Scholar] [CrossRef]
- Mustafa, S.S.; Batool, R.; Kamran, M.; Javed, H.; Jamil, N. Evaluating the Role of Wastewaters as Reservoirs of Antibiotic-Resistant ESKAPEE Bacteria Using Phenotypic and Molecular Methods. Infect. Drug Resist. 2022, 15, 5715–5728. [Google Scholar] [CrossRef]
- Ahmad, K.; Khattak, F.; Ali, A.; Rahat, S.; Noor, S.; Mahsood, N.; Somayya, R. Carbapenemases and extended-spectrum β-lactamase–producing multidrug-resistant Escherichia coli isolated from retail chicken in peshawar: First report from Pakistan. J. Food Prot. 2018, 81, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Apanga, P.A.; Ahmed, J.; Tanner, W.; Starcevich, K.; VanDerslice, J.A.; Rehman, U.; Channa, N.; Benson, S.; Garn, J.V. Carbapenem-resistant Enterobacteriaceae in sink drains of 40 healthcare facilities in Sindh, Pakistan: A cross-sectional study. PLoS ONE 2022, 17, e0263297. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Rosado, M.; Sands, K.; Portal, E.A.R.; Thomson, K.M.; Carvalho, M.J.; Mathias, J.; Milton, R.; Dyer, C.; Akpulu, C.; Boostrom, I.; et al. Colonisation of hospital surfaces from low- and middle-income countries by extended spectrum β-lactamase- and carbapenemase-producing bacteria. Nat. Commun. 2024, 15, 2758. [Google Scholar] [CrossRef]
- Khawaja, T.; Mäklin, T.; Kallonen, T.; Gladstone, R.A.; Pöntinen, A.K.; Mero, S.; Thorpe, H.A.; Samuelsen, Ø.; Parkhill, J.; Izhar, M.; et al. Deep sequencing of Escherichia coli exposes colonisation diversity and impact of antibiotics in Punjab, Pakistan. Nat. Commun. 2024, 15, 5196. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, S.; Rasool, M.H.; Arshed, M.J.; Qamar, M.U.; Aslam, B.; Almatroudi, A.; Khurshid, M. The Escherichia coli sequence type 131 harboring extended-spectrum beta-lactamases and carbapenemases genes from poultry birds. Infect. Drug Resist. 2021, 14, 805–813. [Google Scholar] [CrossRef]
- Ilyas, S.; Qamar, M.U.; Rasool, M.H.; Abdulhaq, N.; Nawaz, Z. Multidrug-resistant pathogens isolated from ready-to-eat salads available at a local market in Pakistan. Br. Food J. 2016, 118, 2068–2075. [Google Scholar] [CrossRef]
- D’Souza, A.W.; Potter, R.F.; Wallace, M.; Shupe, A.; Patel, S.; Sun, X.; Gul, D.; Kwon, J.H.; Andleeb, S.; Burnham, C.A.D.; et al. Spatiotemporal dynamics of multidrug resistant bacteria on intensive care unit surfaces. Nat. Commun. 2019, 10, 4569. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.-F.; Mohamed, K.; Fan, Y.; Achtman, M.; Brown, D.; Chattaway, M.; Dallman, T.; Delahay, R.; Kornschober, C. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef]
- Chiu, S.K.; Huang, L.Y.; Chen, H.; Tsai, Y.K.; Liou, C.H.; Lin, J.C.; Siu, L.K.; Chang, F.Y.; Yeh, K.M. Roles of ramR and tet(A) mutations in conferring tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae clinical isolates. Antimicrob. Agents Chemother. 2017, 61, e00391-17. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Mills, M.C.; Lee, J. The threat of carbapenem-resistant bacteria in the environment: Evidence of widespread contamination of reservoirs at a global scale. Environ. Pollut. 2019, 255, 113143. [Google Scholar] [CrossRef] [PubMed]
- Puljko, A.; Barišić, I.; Dekić Rozman, S.; Križanović, S.; Babić, I.; Jelić, M.; Maravić, A.; Udiković-Kolić, N. Molecular epidemiology and mechanisms of carbapenem and colistin resistance in Klebsiella and other Enterobacterales from treated wastewater in Croatia. Environ. Int. 2024, 185, 108554. [Google Scholar] [CrossRef]
- Chaurasia, S.; Sivanandan, S.; Agarwal, R.; Ellis, S.; Sharland, M.; Sankar, M.J. Neonatal sepsis in South Asia: Huge burden and spiralling antimicrobial resistance. Br. Med. J. 2019, 364, k5314. [Google Scholar] [CrossRef] [PubMed]
- Malchione, M.D.; Torres, L.M.; Hartley, D.M.; Koch, M.; Goodman, J.L. Carbapenem and colistin resistance in Enterobacteriaceae in Southeast Asia: Review and mapping of emerging and overlapping challenges. Int. J. Antimicrob. Agents 2019, 54, 381–399. [Google Scholar] [CrossRef]
- Abdullah, S.; Almusallam, A.; Li, M.; Mahmood, M.S.; Mushtaq, M.A.; Eltai, N.O.; Toleman, M.A.; Mohsin, M. Whole genome-based genetic insights of bla NDM producing clinical E. coli isolates in hospital settings of Pakistan. Microbiol. Spectr. 2023, 11, e00584-23. [Google Scholar] [CrossRef]
- Ahlstrom, C.A.; Woksepp, H.; Sandegren, L.; Mohsin, M.; Hasan, B.; Muzyka, D.; Hernandez, J.; Aguirre, F.; Tok, A.; Söderman, J.; et al. Genomically diverse carbapenem resistant Enterobacteriaceae from wild birds provide insight into global patterns of spatiotemporal dissemination. Sci. Total Environ. 2022, 824, 153632. [Google Scholar] [CrossRef]
- Habib, A.; Lo, S.; Villageois-Tran, K.; Petitjean, M.; Malik, S.A.; Armand-Lefèvre, L.; Ruppé, E.; Zahra, R. Dissemination of carbapenemase-producing Enterobacterales in the community of Rawalpindi, Pakistan. PLoS ONE 2022, 17, e0270707. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, M.; Pérez-Viso, B.; León-Sampedro, R.; Navarro-San Francisco, C.; López-Fresneña, N.; Díaz-Agero, C.; Morosini, M.I.; Ruiz-Garbajosa, P.; Cantón, R. Outbreak of NDM-1+CTX-M-15+DHA-1-producing Klebsiella pneumoniae high-risk clone in Spain owing to an undetectable colonised patient from Pakistan. Int. J. Antimicrob. Agents 2019, 54, 233–239. [Google Scholar] [CrossRef]
- Bilal, H.; Zhang, G.; Rehman, T.; Han, J.; Khan, S.; Shafiq, M.; Yang, X.; Yan, Z.; Yang, X. First report of blandm-1 bearing incx3 plasmid in clinically isolated st11 klebsiella pneumoniae from Pakistan. Microorganisms 2021, 9, 951. [Google Scholar] [CrossRef]
- Chaudhry, T.H.; Aslam, B.; Arshad, M.I.; Alvi, R.F.; Muzammil, S.; Yasmeen, N.; Aslam, M.A.; Khurshid, M.; Rasool, M.H.; Baloch, Z. Emergence of blandm-1 harboring klebsiella pneumoniae st29 and st11 in veterinary settings and waste of Pakistan. Infect. Drug Resist. 2020, 13, 3033–3043. [Google Scholar] [CrossRef] [PubMed]
- Lascols, C.; Cherney, B.; Conley, A.B.; Rishishwar, L.; Crawford, M.A.; Morse, S.A.; Fisher, D.J.; Anderson, K.; Hodge, D.R.; Pillai, S.P.; et al. Investigation of multidrug-resistant plasmids from carbapenemase-producing Klebsiella pneumoniae clinical isolates from Pakistan. Front. Microbiol. 2023, 14, 1192097. [Google Scholar] [CrossRef]
- Ejaz, H.; Ahmad, M.; Younas, S.; Junaid, K.; Abosalif, K.O.A.; Abdalla, A.E.; Alameen, A.A.M.; Elamir, M.Y.M.; Bukhari, S.N.A.; Ahmad, N.; et al. Molecular epidemiology of extensively-drug resistant acinetobacter baumannii sequence type 2 co-harboring blandm and blaoxa from clinical origin. Infect. Drug Resist. 2021, 14, 1931–1939. [Google Scholar] [CrossRef]
- Saikia, S.; Gogoi, I.; Oloo, A.; Sharma, M.; Puzari, M.; Chetia, P. Co-production of metallo-β-lactamase and OXA-type β-lactamases in carbapenem-resistant Acinetobacter baumannii clinical isolates in North East India. World J. Microbiol. Biotechnol. 2024, 40, 167. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC β-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Walckenaer, E.; Poirel, L.; Leflon-Guibout, V.; Nordmann, P.; Nicolas-Chanoine, M.H. Genetic and Biochemical Characterization of the Chromosomal Class A β-Lactamases of Raoultella (formerly Klebsiella) planticola and Raoultella ornithinolytica. Antimicrob. Agents Chemother. 2004, 48, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhu, Z.; Chen, Y.; Wang, W.; He, F. The Plasmid-Borne tet(A) Gene Is an Important Factor Causing Tigecycline Resistance in ST11 Carbapenem-Resistant Klebsiella pneumoniae Under Selective Pressure. Front. Microbiol. 2021, 12, 644949. [Google Scholar] [CrossRef]
- Moghnia, O.H.; Al-Sweih, N.A. Whole Genome Sequence Analysis of Multidrug Resistant Escherichia coli and Klebsiella pneumoniae Strains in Kuwait. Microorganisms 2022, 10, 507. [Google Scholar] [CrossRef]
- Bilal, H.; Khan, M.N.; Rehman, T.; Hameed, M.F.; Yang, X. Antibiotic resistance in Pakistan: A systematic review of past decade. BMC Infect. Dis. 2021, 21, 244. [Google Scholar] [CrossRef]
- Ito, R.; Mustapha, M.M.; Tomich, A.D.; Callaghan, J.D.; McElheny, C.L.; Mettus, R.T.; Shanks, R.M.Q.; Sluis-Cremer, N.; Doi, Y. Widespread fosfomycin resistance in gram-negative bacteria attributable to the chromosomal fosA gene. mBio 2017, 8, e00749-17. [Google Scholar] [CrossRef]
- Lv, J.; Mohsin, M.; Lei, S.; Srinivas, S.; Wiqar, R.T.; Lin, J.; Feng, Y. Discovery of a mcr-1-bearing plasmid in commensal colistin-resistant Escherichia coli from healthy broilers in Faisalabad, Pakistan. Virulence 2018, 9, 994–999. [Google Scholar] [CrossRef]
- Luo, Q.; Yu, W.; Zhou, K.; Guo, L.; Shen, P.; Lu, H.; Huang, C.; Xu, H.; Xu, S.; Xiao, Y.; et al. Molecular epidemiology and colistin resistant mechanism of mcr-positive and mcr-negative clinical isolated Escherichia coli. Front. Microbiol. 2017, 8, 2262. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhang, Z.; Shi, L.; Hua, S.; Luan, T.; Lin, Q.; Zheng, Z.; Feng, X.; Liu, M.; Li, X. In silico characterization of IncX3 plasmids carrying bla OXA-181 in Enterobacterales. Front. Cell. Infect. Microbiol. 2022, 12, 988236. [Google Scholar] [CrossRef]
- Shropshire, W.C.; Konovalova, A.; McDaneld, P.; Gohel, M.; Strope, B.; Sahasrabhojane, P.; Tran, C.N.; Greenberg, D.; Kim, J.; Zhan, X.; et al. Systematic Analysis of Mobile Genetic Elements Mediating β-Lactamase Gene Amplification in Noncarbapenemase-Producing Carbapenem-Resistant Enterobacterales Bloodstream Infections. mSystems 2022, 7, e0047622. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, M.; Yan, C.; Zhang, Y.; He, X.; Wu, L.; Xu, J.; Lu, J.; Bao, Q.; Hu, Y.; et al. Class 1 integrons and multiple mobile genetic elements in clinical isolates of the Klebsiella pneumoniae complex from a tertiary hospital in eastern China. Front. Microbiol. 2023, 14, 985102. [Google Scholar] [CrossRef]
- Godziszewska, J.; Kuliñska, A.; Jagura-Burdzy, G. MobC of conjugative RA3 plasmid from IncU group autoregulates the expression of bicistronic mobC-nic operon and stimulates conjugative transfer. BMC Microbiol. 2014, 14, 235. [Google Scholar] [CrossRef]
- Bashir, S.; Haque, A.; Sarwar, Y.; Ali, A.; Anwar, M.I. Virulence profile of different phylogenetic groups of locally isolated community acquired uropathogenic E. coli from Faisalabad region of Pakistan. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 23. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; CLSI Supplement M100-S30; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Zheng, Z.; Gorden, P.J.; Xia, X.; Zheng, Y.; Li, G. Whole-genome analysis of Klebsiella pneumoniae from bovine mastitis milk in the U.S. Environ. Microbiol. 2022, 24, 1183–1199. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Chen, X.; Liu, W.; Li, H.; Yan, S.; Jiang, F.; Cai, W.; Li, G. Whole genome sequencing analysis of avian pathogenic Escherichia coli from China. Vet. Microbiol. 2021, 259, 109158. [Google Scholar] [CrossRef]
- Chklovski, A.; Parks, D.H.; Woodcroft, B.J.; Tyson, G.W. CheckM2: A rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 2023, 20, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Lumpe, J.; Gumbleton, L.; Gorzalski, A.; Libuit, K.; Varghese, V.; Lloyd, T.; Tadros, F.; Arsimendi, T.; Wagner, E.; Stephens, C.; et al. GAMBIT (Genomic Approximation Method for Bacterial Identification and Tracking): A methodology to rapidly leverage whole genome sequencing of bacterial isolates for clinical identification. PLoS ONE 2023, 18, e0277575. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Waters, N.R.; Abram, F.; Brennan, F.; Holmes, A.; Pritchard, L. Easy phylotyping of Escherichia coli via the EzClermont web app and command-line tool. Access Microbiol. 2020, 2, e000143. [Google Scholar] [CrossRef]
- Jolley, K.A.; Maiden, M.C.J. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef]
- Haft, D.H.; DiCuccio, M.; Badretdin, A.; Brover, V.; Chetvernin, V.; O’Neill, K.; Li, W.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; et al. RefSeq: An update on prokaryotic genome annotation and curation. Nucleic Acids Res. 2018, 46, D851–D860. [Google Scholar] [CrossRef]
- Néron, B.; Littner, E.; Haudiquet, M.; Perrin, A.; Cury, J.; Rocha, E.P.C. IntegronFinder 2.0: Identification and Analysis of Integrons across Bacteria, with a Focus on Antibiotic Resistance in Klebsiella. Microorganisms 2022, 10, 700. [Google Scholar] [CrossRef]
- Ghaly, T.M.; Gillings, M.R.; Rajabal, V.; Paulsen, I.T.; Tetu, S.G. Horizontal gene transfer in plant microbiomes: Integrons as hotspots for cross-species gene exchange. Front. Microbiol. 2024, 15, 1338026. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Zhou, J.; Imanian, B. PlasmidHunter: Accurate and fast prediction of plasmid sequences using gene content profile and machine learning. Brief. Bioinform. 2024, 25, bbae322. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, N.F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.; Nash, J.H.E. MOB-suite: Software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 2018, 4, e000206. [Google Scholar] [CrossRef]
Sample ID | Species | Antimicrobial Susceptibility Profile | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
β-lactams | Quinolones | Combination | Aminoglycosides | ||||||||
Carbapenem | Cephalosporins | ||||||||||
IPM | MEM | DOR | ETP | CTX | CAZ | CIP | NAL | SXT | GEN | ||
19EC2 | Escherichia coli | I | S | S | I | R | R | R | R | R | S |
20EC1 | Escherichia coli | R | R | R | R | R | R | R | R | R | R |
21EC2 | Escherichia coli | R | R | R | R | R | R | R | R | R | R |
22EC1 | Escherichia coli | R | R | R | R | R | R | R | R | I | I |
22EC2 | Escherichia coli | R | R | R | R | R | R | R | R | S | R |
23EC1 | Escherichia coli | R | R | R | R | R | R | R | R | S | I |
23AC1 | Escherichia coli | R | R | R | R | R | R | R | R | R | R |
26AC1 | Escherichia coli | R | R | R | R | R | R | R | R | R | I |
30EC1 | Escherichia coli | R | R | R | R | R | R | R | R | R | R |
36AC2 | Escherichia coli | R | R | R | R | R | R | R | R | R | I |
37EC1 | Escherichia coli | S | R | I | R | R | R | R | I | S | S |
37EC2 | Escherichia coli | R | R | R | R | R | R | R | R | R | R |
41EC2 | Escherichia coli | R | R | R | R | R | R | R | R | R | I |
42AC1 | Escherichia coli | S | S | S | R | R | S | S | S | S | S |
43EC1 | Escherichia coli | R | I | R | R | R | R | R | R | R | R |
45EC1 | Escherichia coli | R | R | R | R | R | R | R | R | R | I |
68EC2 | Escherichia coli | I | I | R | S | R | R | R | R | S | S |
76EC1 | Escherichia coli | I | S | S | S | R | I | I | I | R | S |
EB7-1 | Klebsiella quasipneumoniae | R | R | R | R | R | R | R | R | R | I |
EC117 | Klebsiella pneumoniae | I | I | I | I | R | S | R | I | I | S |
EC118 | Klebsiella pneumoniae | S | I | S | S | I | S | I | S | S | S |
EC139 | Klebsiella pneumoniae | S | I | I | I | R | I | R | S | S | S |
22EB1 | Klebsiella pneumoniae | R | R | R | R | R | R | R | R | S | I |
EB1-3 | Citobacter telavivensis | S | R | I | S | R | S | I | S | S | S |
66EB1 | Citobacter portucalensis | R | S | I | I | I | R | S | R | R | S |
17EB1 | Raoultella ornithinolytica | S | S | S | S | S | S | R | S | R | S |
68EB1 | Raoultella planticola | I | I | I | R | R | R | I | I | R | R |
EC145 | Enterobacter cloacae | R | S | I | I | R | I | R | S | S | R |
51AC1 | Acinetobacter baumannii | R | R | R | R | R | I | R | S | I | S |
77AC2 | Morganella morganii | R | I | R | S | R | R | R | R | R | R |
78EB1 | Serratia ureilytica | R | I | R | S | R | I | S | S | S | S |
78EB2 | Serratia nevei | I | S | S | S | R | I | I | S | S | S |
Sample ID | Species | βlactam | Quinolones | Combination | Aminoglycosides | No Phenotypes Tested | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Carbapenem | Cephalosporins | |||||||||||
Phenotype | Genetic Mechanism | Phenotype | Genetic Mechanism | Phenotype | Genetic Mechanism | Phenotype | Genetic Mechanism | Phenotype | Genetic Mechanism | Other Genetic Mechanism | ||
19EC2 | Escherichia coli | I (IPM, ETP), S (MEM, DOR) | fstI I336IKYR1 | R | OXA-1, CTX-M-15, CMY-16 | R | aac(6′)-Ib-cr_1, gyrA (S83L and D837N), parC (S80I and S57T), parE (S458A) | R | sul2, dfrA1 | S | aph(3″)-Ib_2, aph(6)-Id_1 | tet(A), glpT_E448K |
20EC1 | Escherichia coli | R | NDM-5, fstI N337NYRIN | R | OXA-1, CTX-M-15, TEM-1B | R | aac(6′)-Ib-cr_1, gyrA (S83L and D837N), parC (S80I), parE (S458A) | R | sul1, dfrA17 | R | aadA5, aac(3)-IIa | catA1, mph(A), tet(B), ble, qacEdelta1, glpT_E448K, cyanA_S352T |
21EC2 | Escherichia coli | R | NDM-5, fstI I336IKYR1 | R | OXA-1, CTX-M-15 | R | aac(6′)-Ib-cr_1, gyrA (S83L and D837N), parC (S80I), parE (S458A) | R | sul1, dfrA17 | R | aac(6′)-Ib-cr_1, aadA5, aac(3)-IIa | mph(A), ble, qacEdelta1, glpT_E448K |
22EC1 | Escherichia coli | R | OXA-181 | R | CTX-M-15, TEM-35, blaTEMp_C32T | R | qnrS1 | I | I | glpT_E448K | ||
22EC2 | Escherichia coli | R | Nil | R | CTX-M-15, TEM-35, blaTEMp_C32T | R | qnrS1 | S | R | glpT_E448K | ||
23EC1 | Escherichia coli | R | Nil | R | TEM-1B | R | gyrA (S83L and D837N), parC (S80I), parE (S458A) | S | Nil | I | Nil | mph(A), pmrB_Y358N, glpT_E448K |
23AC1 | Escherichia coli | R | OXA-181, fstI N337NYRIN | R | OXA-1, CTX-M-15, CMY-2 | R | qnrS1, aac(6′)-Ib-cr_1, gyrA (S83L and D837N), parC (S80I), parE (S458A), parE (S458A) | R | sul1, sul2 | R | aac(6′)-Ib-cr_1, aadA5, aac(3)-IId, aph(3″)-Ib_5, aph(6)-Id | mph(A), tet(B), qacEdelta1, pmrB_Y358N, glpT_E448K |
26AC1 | Escherichia coli | R | OXA-181, fstI I336IKYR1 | R | CTX-M-15 | R | qnrS1, gyrA (S83L and D837N), parC (S80I), parE (S458A) | R | sul1, dfrA17 | I | aadA5, | mph(A), qacEdelta1, pmrB_Y358N, glpT_E448K |
30EC1 | Escherichia coli | R | NDM-5, fstI N337NYRIN | R | OXA-1 | R | gyrA (S83L and D837N), parC (S80I), parE (S458A) | R | sul1, dfrA12 | R | aadA2, | glpT_E448K |
36AC2 | Escherichia coli | R | OXA-181, fstI I336IKYR1 | R | CTX-M-15, TEM-169 | R | qnrS1, gyrA (S83L and D837N), parC (S80I), parE (S458A) | R | sul1, dfrA17 | I | aadA5, | mph(A), qacEdelta1, pmrB_Y358N, glpT_E448K |
37EC1 | Escherichia coli | R (MEM, ETP), I (DOR), S (IMP) | OXA-181 | R | CTX-M-15, TEM-35, blaTEMp_C32T | R (CIP), I (NAL) | qnrS1 | S | Nil | S | Nil | mph(A), glpT_E448K |
37EC2 | Escherichia coli | R | NDM-5, fstI I336IKYR1 | R | OXA-1, CTX-M-15 | R | aac(6′)-Ib-cr_1, gyrA (S83L and D837N), parC (S80I), parE (S458A) | R | sul1, dfrA12, dfrA17 | R | aadA2, aadA5, aac(3)-IIa | mph(A), tet(B, ble, qacEdelta1, glpT_E448K, cyanA_S352T |
41EC2 | Escherichia coli | R | NDM-5, fstI N337NYRIN | R | OXA-1, CTX-M-15, TEM-1B | R | aac(6′)-Ib-cr_1, gyrA (S83L and D837N), parC (S80I), parE (S458A) | R | sul1, dfrA12 | I | aadA2, aac(6′)-Ib-cr_1 | mph(A), tet(A), ble, qacEdelta1, |
42AC1 | Escherichia coli | R (ETP), S (IPM, MEM, DOR) | OXA-181, fstI I336IKYR1 | R (CTX), S (CAZ) | CTX-M-15, TEM-169 | S | qnrS1, gyrA (S83L and D837N), parC (S80I), parE (S458A) | S | sul1 | S | aadA5 | mph(A), qacEdelta1, pmrB_Y358N, glpT_E448K |
43EC1 | Escherichia coli | R (IPM, DOR, ETP), I (MEM) | fstI N337NYRIN | R | TEM-35 | R | gyrA (S83L and D837N), parC (S80I and E84G) | R | sul2, dfrA1 | R | aph(3″)-Ib_5 | mph(A), tet(B), |
45EC1 | Escherichia coli | R | NDM-5, fstI I336IKYR1 | R | CMY-16 | R | gyrA (S83L and D837N), parC (S80I) | R | sul1, dfrA1, dfrA12 | I | aadA2, | mph(A), tet(A), ble, qacEdelta1, pmrB_Y358N, glpT_E448K |
68EC2 | Escherichia coli | R (DOR), I (IPM, MEM), S (ETP) | Nil | R | SHV-12 | R | qnrS1 | S | Nil | S | Nil | glpT_E448K |
76EC1 | Escherichia coli | I (IPM), S (ETP, MEM, DOR) | Nil | R (CTX), I (CAZ) | CTX-M-15, TEM-1B | I | qnrS1 | R | sul2, dfrA14 | S | aph(3″)-Ib_5, aph(6)-Id | tet(A) |
EB7-1 | Klebsiella quasipneumoniae | R | Nil | R | OKP-B-15, OXA-1, CTX-M-15, TEM-1B | R | qnrB1, aac(6′)-Ib-cr5, oqxA/B | R | sul2, dfrA14 | I | aph(3″)-Ib_5, aph(6)-Id | fosA_6, tet(A) |
EC117 | Klebsiella pneumoniae | I | Nil | R (CTX), I (CAZ) | SHV-187 | R (CIP), I (NAL) | qnrS1, oqxA/B | I | dfrA14 | S | Nil | fosA_3 |
EC118 | Klebsiella pneumoniae | I (MEM), S (IPM, ETP, DOR) | Nil | I (CTX), S (CAZ) | SHV-187 | I (CIP), S (NAL) | oqxA/B | S | Nil | S | Nil | fosA_3 |
EC139 | Klebsiella pneumoniae | I (MEM, ETP, DOR), S (IPM) | Nil | R (CTX), I (CAZ) | SHV-187 | R (CIP), S (NAL) | oqxA/B | S | Nil | S | Nil | fosA_3 |
22EB1 | Klebsiella pneumoniae | R | NDM-1 | I | OXA-9, CTX-M-15, DHA-1, SHV-145, TEM-1A | R | qnrS1, oqxA/B | S | Nil | I | aadA1, aac(6′)-Ib, aph(3″)-Ib_2, aph(3′)-VI, aph(6)-Id | ble, fosA6 |
EB1-3 | Citobacter telavivensis | R(MEM), I(DOR), S (IPM, ETP) | Nil | R (CTX), I (CAZ) | SED1 | I (CIP), S (NAL) | oqxA/B | S | Nil | S | Nil | Nil |
66EB1 | Citobacter portucalensis | R (IPM), I (ETP, DOR), S (MEM) | Nil | R (CAZ), I (CTX) | CMY-119, DHA-1 | S (CIP), R (NAL) | qnrB43, qnrB4 | R | Sul1, dfrA7 | S | Nil | mph(A), tet(A) |
17EB1 | Raoultella ornithinolytica | S | Nil | S | LAP-2, PLA-1a | R (CIP), S (NAL) | qnrS1 | R | Sul1, dfrA1 | S | Nil | fosA_2, tet(B), qacEdelta1 |
68EB1 | Raoultella planticola | R (ETP), I (IMP, MEM, DOR) | Nil | R | CTX-M-15, PLA-5A, TEM-1A | I | qnrB1, oqxB | R | Sul2, dfrA14 | R | aac(3)-IId, aph(3″)-Ib_5, aph(6)-Id | fosA_2 |
EC145 | Enterobacter cloacae | R (IPM), I (ETP, DOR), S (MEM) | Nil | R (CTX), I (CAZ) | CMH_3 | R (CIP), S (NAL) | Nil | S | Nil | R | Nil | Nil |
51AC1 | Acinetobacter baumannii | R | OXA-72 | R (CTX), I (CAZ) | OXA-70, ADC_25 | R (CIP), S (NAL) | Nil | I | Nil | S | ant(3″)_IIa | Nil |
77AC2 | Morganella morganii | R (IMP, DOR), I (MEM), S (ETP) | Nil | R | DHA-13 | R | Nil | R | sul1, dfrA10 | R | ant(2″)_Ia, aph(3′)-Ia | catA1, tet(B), qacEdelta1 |
78EB1 | Serratia ureilytica | R (IMP, DOR), I (MEM), S (ETP) | Nil | R (CTX), I (CAZ) | SST-1 | S | Nil | S | Nil | S | aac(6′)-Ic | |
78EB2 | Serratia nevei | I (IMP), S (MEM, ETP, DOR) | Nil | R (CTX), I (CAZ) | SRT-1 | I (CIP), S (NAL) | Nil | S | Nil | S | aac(6′)-Ic | Nil |
Sample ID | Species | Contig Origin | Size of Integron (bp) | Gene Cassette(s) and Order |
---|---|---|---|---|
20EC1 | Escherichia coli | P | 2802 | dfrA17-aadA5-qacEΔ1 |
21EC2 | Escherichia coli | P | 2802 | dfrA17- aadA5-qacEΔ1 |
30EC1 | Escherichia coli | P | 3366 | dfrA12-aadA2-qacEΔ1 |
41EC2 | Escherichia coli | P | 3240 | dfrA12-aadA2-qacEΔ1 |
45EC1 | Escherichia coli | P | 3240 | dfrA12-aadA2-qacEΔ1 |
76EC1 | Escherichia coli | P | 1952 | dfrA14-Tnp(partial) |
EB7-1 | Klebsiella quasipneumoniae | P | 2130 | dfrA14-mobC |
EC117 | Klebsiella pneumoniae | P | 2130 | dfrA14-mobC |
66EB1 | Citobacter portucalensis | C | 1691 | dfrA7-qacEΔ1 |
68EB1 | Raoultella planticola | P | 1723 | dfrA14 |
77AC2 | Morganella morganii | P | 2200 | ant(2″)-Ia- qacEΔ1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sattar, F.; Hu, X.; Saxena, A.; Mou, K.; Shen, H.; Ali, H.; Ghauri, M.A.; Sarwar, Y.; Ali, A.; Li, G. Analyzing Antibiotic Resistance in Bacteria from Wastewater in Pakistan Using Whole-Genome Sequencing. Antibiotics 2024, 13, 937. https://doi.org/10.3390/antibiotics13100937
Sattar F, Hu X, Saxena A, Mou K, Shen H, Ali H, Ghauri MA, Sarwar Y, Ali A, Li G. Analyzing Antibiotic Resistance in Bacteria from Wastewater in Pakistan Using Whole-Genome Sequencing. Antibiotics. 2024; 13(10):937. https://doi.org/10.3390/antibiotics13100937
Chicago/Turabian StyleSattar, Fazal, Xiao Hu, Anugrah Saxena, Kathy Mou, Huigang Shen, Hazrat Ali, Muhammad Afzal Ghauri, Yasra Sarwar, Aamir Ali, and Ganwu Li. 2024. "Analyzing Antibiotic Resistance in Bacteria from Wastewater in Pakistan Using Whole-Genome Sequencing" Antibiotics 13, no. 10: 937. https://doi.org/10.3390/antibiotics13100937
APA StyleSattar, F., Hu, X., Saxena, A., Mou, K., Shen, H., Ali, H., Ghauri, M. A., Sarwar, Y., Ali, A., & Li, G. (2024). Analyzing Antibiotic Resistance in Bacteria from Wastewater in Pakistan Using Whole-Genome Sequencing. Antibiotics, 13(10), 937. https://doi.org/10.3390/antibiotics13100937