Antifungal Susceptibility Data and Epidemiological Distribution of Candida spp.: An In Vitro Five-Year Evaluation at University Hospital Policlinico of Catania and a Comprehensive Literature Review
Abstract
:1. Introduction
1.1. Antifungal Resistance in Candida albicans
1.2. Antifungal Resistance in Candida glabrata
1.3. Antifungal Resistance in Candida parapsilosis
1.4. Antifungal Resistance in Candida tropicalis
1.5. Antifungal Resistance in Candida krusei
1.6. Antifungal Resistance in Uncommon Candida species
1.7. Antifungal Resistance in Candida auris
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dawoud, A.M.; Saied, S.A.; Torayah, M.M.; Ramadan, A.E.; Elaskary, S.A. Antifungal susceptibility and virulence determinants profile of candida species isolated from patients with candidemia. Sci. Rep. 2024, 14, 11597. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Posteraro, B.; De Carolis, E.; Criscuolo, M.; Ballanti, S.; De Angelis, G.; Del Principe, M.I.; Delia, M.; Fracchiolla, N.; Marchesi, F.; Nadali, G.; et al. Candidaemia in haematological malignancy patients from a SEIFEM study: Epidemiological patterns according to antifungal prophylaxis. Mycoses 2020, 63, 900–910. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Dos Santos Fontenelle, R.O.; de Brito, E.H.S.; de Morais, S.M. Biofilm of Candida albicans: Formation, regulation and resistance. J. Appl. Microbiol. 2021, 131, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Tortorano, A.M.; Prigitano, A.; Morroni, G.; Brescini, L.; Barchiesi, F. Candidemia: Evolution of Drug Resistance and Novel Therapeutic Approaches. Infect. Drug Resist. 2021, 14, 5543–5553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoenigl, M.; Salmanton-García, J.; Egger, M.; Gangneux, J.P.; Bicanic, T.; Arikan-Akdagli, S.; Alastruey-Izquierdo, A.; Klimko, N.; Barac, A.; Özenci, V.; et al. Guideline adherence and survival of patients with candidaemia in Europe: Results from the ECMM Candida III multinational European observational cohort study. Lancet Infect. Dis. 2023, 23, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and Mechanisms of Antifungal Resistance. Antibiotics 2020, 9, 312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Costa-de-Oliveira, S.; Rodrigues, A.G. Candida albicans Antifungal Resistance and Tolerance in Bloodstream Infections: The Triad Yeast-Host-Antifungal. Microorganisms 2020, 8, 154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carolus, H.; Pierson, S.; Lagrou, K.; Van Dijck, P. Amphotericin B and Other Polyenes—Discovery, Clinical Use, Mode of Action and Drug Resistance. J. Fungi 2020, 6, 321. [Google Scholar] [CrossRef]
- Perlin, D.S. Echinocandin Resistance in Candida. Clin. Infect. Dis. 2015, 61, S612–S617. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trovato, L.; Bongiorno, D.; Calvo, M.; Migliorisi, G.; Boraccino, A.; Musso, N.; Oliveri, S.; Stefani, S.; Scalia, G. Resistance to Echinocandins Complicates a Case of Candida albicans Bloodstream Infection: A Case Report. J. Fungi 2021, 7, 405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martins, M.D.; Lozano-Chiu, M.; Rex, J.H. Declining rates of oropharyngeal candidiasis and carriage of Candida albicans associated with trends toward reduced rates of carriage of fluconazole-resistant C. albicans in human immunodeficiency virus-infected patients. Clin. Infect. Dis. 1998, 27, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Ceballos-Garzon, A.; Peñuela, A.; Valderrama-Beltrán, S.; Vargas-Casanova, Y.; Ariza, B.; Parra-Giraldo, C.M. Emergence and circulation of azole-resistant C. albicans, C. auris and C. parapsilosis bloodstream isolates carrying Y132F, K143R or T220L Erg11p substitutions in Colombia. Front. Cell. Infect. Microbiol. 2023, 13, 1136217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frías-De-León, M.G.; Hernández-Castro, R.; Conde-Cuevas, E.; García-Coronel, I.H.; Vázquez-Aceituno, V.A.; Soriano-Ursúa, M.A.; Farfán-García, E.D.; Ocharán-Hernández, E.; Rodríguez-Cerdeira, C.; Arenas, R.; et al. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021, 13, 1529. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hassan, Y.; Chew, S.Y.; Than, L.T.L. Candida glabrata: Pathogenicity and Resistance Mechanisms for Adaptation and Survival. J. Fungi 2021, 7, 667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Posteraro, B.; Torelli, R.; Vella, A.; Leone, P.M.; De Angelis, G.; De Carolis, E.; Ventura, G.; Sanguinetti, M.; Fantoni, M. Pan-Echinocandin-Resistant Candida glabrata Bloodstream Infection Complicating COVID-19: A Fatal Case Report. J. Fungi 2020, 6, 163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Branco, J.; Miranda, I.M.; Rodrigues, A.G. Candida parapsilosis Virulence and Antifungal Resistance Mechanisms: A Comprehensive Review of Key Determinants. J. Fungi 2023, 9, 80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Escribano, P.; Guinea, J. Fluconazole-Resistant Candida parapsilosis: A new emerging threat in the fungi arena. Front. Fungal Biol. 2022, 3, 1010782. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, D.; An, N.; Yang, Y.; Yang, X.; Fan, Y.; Feng, J. Candida tropicalis distribution and drug resistance is correlated with ERG11 and UPC2 expression. Antimicrob. Resist. Infect. Control 2021, 10, 54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Fan, X.; Wang, H.; Kudinha, T.; Mei, Y.N.; Ni, F.; Pan, Y.H.; Gao, L.M.; Xu, H.; Kong, H.S.; et al. Continual Decline in Azole Susceptibility Rates in Candida tropicalis Over a 9-Year Period in China. Front. Microbiol. 2021, 12, 702839. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rex, J.H.; Cooper, C.R., Jr.; Merz, W.G.; Galgiani, J.N.; Anaissie, E.J. Detection of amphotericin B-resistant Candida isolates in a broth-based system. Antimicrob. Agents Chemother. 1995, 39, 906–909. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lima, R.; Ribeiro, F.C.; Colombo, A.L.; de Almeida, J.N., Jr. The emerging threat antifungal-resistant Candida tropicalis in humans, animals, and environment. Front. Fungal Biol. 2022, 3, 957021. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jamiu, A.T.; Albertyn, J.; Sebolai, O.M.; Pohl, C.H. Update on Candida krusei, a potential multidrug-resistant pathogen. Med. Mycol. 2021, 59, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Hakki, M.; Staab, J.F.; Marr, K.A. Emergence of a Candida krusei isolate with reduced susceptibility to caspofungin during therapy. Antimicrob. Agents Chemother. 2006, 50, 2522–2524. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Xiao, J.; Du, M.; Lei, W.; Yang, W.; Xue, X. Post-Translational modifications confer amphotericin B resistance in Candida krusei isolated from a neutropenic patient. Front. Immunol. 2023, 14, 1148681. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, S.; Kumar, A.; Roudbary, M.; Mohammadi, R.; Černáková, L.; Rodrigues, C.F. Overview on the Infections Related to Rare Candida Species. Pathogens 2022, 11, 963. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmad, S.; Khan, Z.; Al-Sweih, N.; Alfouzan, W.; Joseph, L.; Asadzadeh, M. Candida kefyr in Kuwait: Prevalence, antifungal drug susceptibility and genotypic heterogeneity. PLoS ONE 2020, 15, e0240426. [Google Scholar] [CrossRef]
- Dagi, H.T.; Findik, D.; Senkeles, C.; Arslan, U. Identification and antifungal susceptibility of Candida species isolated from bloodstream infections in Konya, Turkey. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 36. [Google Scholar] [CrossRef]
- Peyron, F.; Favel, A.; Michel-Nguyen, A.; Gilly, M.; Regli, P.; Bolmström, A. Improved Detection of Amphotericin B-Resistant Isolates of Candida lusitaniae by Etest. J. Clin. Microbiol. 2001, 39, 339–342. [Google Scholar] [CrossRef]
- Beyda, N.D.; Lewis, R.E.; Garey, K.W. Echinocandin Resistance in Candida Species: Mechanisms of Reduced Susceptibility and Therapeutic Approaches. Ann. Pharmacother. 2012, 46, 1086–1096. [Google Scholar] [CrossRef]
- Marcos-Zambrano, L.J.; Puig-Asensio, M.; Pérez-García, F.; Escribano, P.; Sánchez-Carrillo, C.; Zaragoza, O.; Padilla, B.; Cuenca-Estrella, M.; Almirante, B.; Martín-Gómez, M.T.; et al. Candida guilliermondii Complex Is Characterized by High Antifungal Resistance but Low Mortality in 22 Cases of Candidemia. Antimicrob. Agents Chemother. 2017, 61, e00099-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- López-Soria, L.M.; Bereciartua, E.; Santamaría, M.; Soria, L.M.; Hernández-Almaraz, J.L.; Mularoni, A.; Nieto, J.; Montejo, M. Primer caso de fungemia asociada a catéter por Candida nivariensis en la Península Ibérica [First case report of catheter-related fungemia by Candida nivariensis in the Iberian Peninsula]. Rev. Iberoam. Micol. 2013, 30, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Abbasi, A.F.; Prakash, S.; Mangat, J.; Hosein, Z.; Haider, N.; Chan, J. Candida auris: An Overview of the Emerging Drug-Resistant Fungal Infection. Infect. Chemother. 2022, 54, 236–246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Casadevall, A.; Kontoyiannis, D.P.; Robert, V. On the Emergence of Candida auris: Climate Change, Azoles, Swamps, and Birds. mBio 2019, 10, e01397-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soriano, A.; Honore, P.M.; Puerta-Alcalde, P.; Garcia-Vidal, C.; Pagotto, A.; Gonçalves-Bradley, D.C.; Verweij, P.E. Invasive candidiasis: Current clinical challenges and unmet needs in adult populations. J. Antimicrob. Chemother. 2023, 78, 1569–1585. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Azim, A.; Ahmed, A. Diagnosis and management of invasive fungal diseases in non-neutropenic ICU patients, with focus on candidiasis and aspergillosis: A comprehensive review. Front. Cell. Infect. Microbiol. 2024, 14, 1256158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiao, Z.; Wang, Q.; Zhu, F.; An, Y. Epidemiology, species distribution, antifungal susceptibility and mortality risk factors of candidemia among critically ill patients: A retrospective study from 2011 to 2017 in a teaching hospital in China. Antimicrob. Resist. Infect. Control 2019, 8, 89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Savini, V.; Catavitello, C.; Onofrillo, D.; Masciarelli, G.; Astolfi, D.; Balbinot, A.; Febbo, F.; D’Amario, C.; D’Antonio, D. What do we know about Candida guilliermondii? A voyage throughout past and current literature about this emerging yeast. Mycoses 2011, 54, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Randazza, O.; Erickson, K.; Denmeade, T.; Luther, V.; Palavecino, E.; Beardsley, J. Treatment of Candida nivariensis Blood Stream Infection with Oral Isavuconazole. Cureus 2022, 14, e32137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haseeb, U.L.; Rasool, M.; Swaminathan, G.; Hosna, A.U.; Ishfaq, S.; Trandafirescu, T. Candida lusitaniae, an Emerging Opportunistic Pathogen in Immunocompetent Populations: A Case Report. Cureus 2023, 15, e43211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beyda, N.D.; Chuang, S.H.; Alam, M.J.; Shah, D.N.; Ng, T.M.; McCaskey, L.; Garey, K.W. Treatment of Candida famata bloodstream infections: Case series and review of the literature. J. Antimicrob. Chemother. 2013, 68, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Javorova Rihova, Z.; Slobodova, L.; Hrabovska, A. Micafungin Is an Efficient Treatment of Multi Drug-Resistant Candida glabrata Urosepsis: A Case Report. J. Fungi 2021, 7, 800. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borman, A.M.; Muller, J.; Walsh-Quantick, J.; Szekely, A.; Patterson, Z.; Palmer, M.D.; Fraser, M.; Johnson, E.M. Fluconazole Resistance in Isolates of Uncommon Pathogenic Yeast Species from the United Kingdom. Antimicrob. Agents Chemother. 2019, 63, e00211-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esposto, M.C.; Prigitano, A.; Romeo, O.; Criseo, G.; Trovato, L.; Tullio, V.; Fadda, M.E.; Tortorano, A.M.; FIMUA Working Group. Looking for Candida nivariensis and C. bracarensis among a large Italian collection of C. glabrata isolates: Results of the FIMUA working group. Mycoses 2013, 56, 394–396. [Google Scholar] [CrossRef] [PubMed]
- Ahmady, L.; Gothwal, M.; Mukkoli, M.M.; Bari, V.K. Antifungal drug resistance in Candida: A special emphasis on amphotericin B. APMIS 2024, 132, 291–316. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.F. Matrix-Assisted Laser Desorption Ionization Time-of-Flight for Fungal Identification. Clin. Lab. Med. 2021, 41, 267–283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galia, L.; Pezzani, M.D.; Compri, M.; Callegari, A.; Rajendran, N.B.; Carrara, E.; Tacconelli, E. The Combacte Magnet Epi-Net Network. Surveillance of Antifungal Resistance in Candidemia Fails to Inform Antifungal Stewardship in European Countries. J. Fungi 2022, 8, 249. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arendrup, M.C.; Dzajic, E.; Jensen, R.H.; Johansen, H.K.; Kjaeldgaard, P.; Knudsen, J.D.; Kristensen, L.; Leitz, C.; Lemming, L.E.; Nielsen, L.; et al. Epidemiological changes with potential implication for antifungal prescription recommendations for fungaemia: Data from a nationwide fungaemia surveillance programme. Clin. Microbiol. Infect. 2013, 19, e343–e353. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.amcli.it/wp-content/uploads/2015/10/DocAgg2015Candida-Aspergillus.pdf (accessed on 23 July 2024).
- Trovato, L.; Calvo, M.; Scalia, G.; Oliveri, S. A Comparative Prospective Study in Evaluating Candida spp. In Vitro Susceptibility through Micronaut-AM and Sensititre Yeast-One. Microbiol. Res. 2023, 14, 1077–1088. [Google Scholar] [CrossRef]
- Calvo, M.; Scalia, G.; Palermo, C.I.; Oliveri, S.; Trovato, L. Comparison between EUCAST Broth Microdilution and MIC Strip Test in Defining Isavuconazole In Vitro Susceptibility against Candida and Rare Yeast Clinical Isolates. Antibiotics 2023, 12, 251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Available online: https://www.thermofisher.com/order/catalog/product/YO9 (accessed on 2 January 2020).
- CLSI. Performance Standards for Antifungal Susceptibility Testing of Yeasts, 3rd ed.; CLSI Supplement M27M44S; Clinical and Laboratory Standards Institute, 2022; Available online: https://clsi.org/media/osthhxax/m27m44sed3e_sample.pdf (accessed on 20 August 2022).
- CLSI. Epidemiological Cutoff Values for Antifungal Susceptibility Testing, 4th ed.; CLSI Supplement M57S; Clinical and Laboratory Standards Institute, 2022; Available online: https://clsi.org/media/tbvf5qr2/m57sed4e_sample.pdf (accessed on 20 August 2022).
Candida Species | Total (%) | 2020 (%) | 2021 (%) | 2022 (%) | 2023 (%) | 2024 (%) | p |
---|---|---|---|---|---|---|---|
Candida albicans | 82 (47.7) | 20 (48.8) | 22 (55.0) | 16 (44.4) | 14 (58.3) | 10 (32.2) | 0.279 |
Candida parapsilosis | 44 (25.6) | 8 (19.5) | 10 (25.0) | 13 (36.1) | 4 (16.7) | 9 (29.0) | 0.393 |
Candida glabrata | 18 (10.5) | 6 (14.6) | 4 (10.0) | 3 (8.3) | 1 (4.2) | 4 (12.9) | 0.706 |
Candida krusei | 7 (4.1) | 4 (9.7) | 0 | 0 | 2 (8.3) | 1 (3.2) | 0.099 |
Candida tropicalis | 16 (9.3) | 3 (7.3%) | 3 (7.5) | 3 (8.3) | 2 (8.3) | 5 (16.1) | 0.712 |
Candida guilliermondii | 1 (0.6) | 0 | 0 | 1 (2.7) | 0 | 0 | 0.433 |
Candida famata | 1 (0.6) | 0 | 1 (2.5) | 0 | 0 | 0 | 0.505 |
Candida lusitaniae | 2 (1.2) | 0 | 0 | 0 | 1 (4.2) | 1 (3.2) | 0.353 |
Candida nivariensis | 1 (0.6) | 0 | 0 | 0 | 0 | 1 (3.2) | 0.333 |
Total | 172 (100) | 41 (23.8) | 40 (23.2) | 36 (20.9) | 24 (13.9) | 31 (18.0) |
Candida Species | Total (%) | ICU | NICU | Hematology a | Surgery | Pneumology | Internal Medicine | p Value |
---|---|---|---|---|---|---|---|---|
Candida albicans | 82 (47.7) | 20 (39.2) | 0 | 4 (30.8) | 16 (53.3) | 5 (50.0) | 37 (49.3) | 0.334 |
Candida parapsilosis | 44 (25.6) | 10 (19.6) | 2 (66.7) | 4 (30.8) | 7 (23.3) | 0 | 21 (28.0) | 0.177 |
Candida glabrata | 18 (10.5) | 6 (11.8) | 0 | 1 (7.7) | 5 (16.7) | 2 (20.0) | 4 (5.3) | 0.410 |
Candida krusei | 7 (4.1) | 0 | 1 (33.3) | 2 (15.4) | 0 | 0 | 4 (5.3) | 0.107 |
Candida tropicalis | 16 (9.3) | 4 (7.8) | 0 | 2 (15.4) | 2 (6.7) | 1 (10.0) | 7 (9.3) | 0.938 |
Others b | 5 (2.9) | 1 (1.9) | 0 | 0 | 0 | 2 (20.0) | 2 (2.7) | 0.02 |
Total | 172 (100) | 51 (29.6) | 3 (1.7) | 13 (7.5) | 30 (17.4) | 10 (5.8) | 75 (43.6) |
Candida Species and Antifungal Agent | Minimum Inhibitory Concentration | In Vitro Susceptibility; No. (%) | |||||
---|---|---|---|---|---|---|---|
Range (mg/L) | 50 | 90 | S | I | SDD | R | |
Candida albicans (82) | |||||||
Amphotericin B | <0.12–1 | 0.25 | 0.5 | 82 (100) a | 0 | 0 | 0 |
Fluconazole | <0.12–256 | 0.25 | 0.5 | 80 (97.6) | - | 0 | 2 (2.5) |
Anidulafungin | <0.008–1 | 0.015 | 0.12 | 80 (97.6) | 0 | - | 2 (2.5) |
Micafungin | <0.008–4 | 0.015 | 0.03 | 80 (97.6) | 0 | - | 2 (2.5) |
Caspofungin | 0.008–>8 | 0.03 | 0.12 | 81 (98.8) | 0 | - | 1 (1.2) |
Voriconazole | <0.008–>8 | 0.008 | 0.015 | 80 (97.6) | 0 | - | 2 (2.5) |
Candida parapsilosis (44) | |||||||
Amphotericin B | <0.12–1 | 0.25 | 0.5 | 44 (100) a | 0 | 0 | 0 |
Fluconazole | 0.06–>128 | 0.5 | 8 | 36 (81.8) | - | 2 (4.5) | 6 (13.6) |
Anidulafungin | 0.5–4 | 0.5 | 2 | 43 (97.7) | 1 (2.3) | - | 0 |
Micafungin | 0.015–2 | 1 | 2 | 44 (100) | 0 | - | 0 |
Caspofungin | 0.12–2 | 0.5 | 1 | 44 (100) | 0 | - | 0 |
Voriconazole | <0.008–1 | 0.015 | 0.25 | 39 (88.6) | 4 (9.1) | - | 1 (2.3) |
Candida glabrata (18) | |||||||
Amphotericin B | <0.12–1 | 0.5 | 1 | 18 (100) a | 0 | 0 | 0 |
Fluconazole | 4–>256 | 16 | 128 | - | - | 15 (83.3) | 3 (16.6) |
Anidulafungin | <0.015–0.12 | 0.03 | 0.06 | 18 (100) | 0 | - | 0 |
Micafungin | 0.015–0.03 | 0.015 | 0.03 | 18 (100) | 0 | - | 0 |
Caspofungin | 0.03–0.5 | 0.06 | 0.12 | 16 (88.8) | 1 (5.5) | - | 1 (5.5) |
Voriconazole | 0.25–8 | 0.5 | 2 | 3 (16.6%) a | 0 | 0 | 15 (83.3%) a |
Candida krusei (7) | |||||||
Amphotericin B | <0.12–1 | * | * | 7 (100) a | 0 | 0 | 0 |
Fluconazole | 64–128 | * | * | 0 | - | 0 | 7 (100) |
Anidulafungin | 0.03–0.12 | * | * | 7 (100) | 0 | - | 0 |
Micafungin | 0.12–0.25 | * | * | 7 (100) | 0 | - | 0 |
Caspofungin | 0.06–1 | * | * | 4 (57.1) | 2 (28.6) | - | 1 (14.3) |
Voriconazole | 0.25–1 | * | * | 7 (100) | 0 | - | 0 |
Candida tropicalis (16) | |||||||
Amphotericin B | <0.12–1 | 0.5 | 1 | 16 (100) a | 0 | 0 | 0 |
Fluconazole | 0.5–8 | 2 | 4 | 13 (81.2) | - | 2 (12.5) | 1 (6.2) |
Anidulafungin | <0.015–0.12 | 0.06 | 0.12 | 16 (100) | 0 | - | 0 |
Micafungin | <0.008–0.06 | 0.03 | 0.06 | 16 (100) | 0 | - | 0 |
Caspofungin | 0.008–0.5 | 0.06 | 0.12 | 15 (93.7) | 1 (6.2) | - | 0 |
Voriconazole | 0.015–1 | 0.125 | 0.25 | 8 (50) | 7 (43.7) | - | 1 (6.2) |
Candida guilliermondii (1) | |||||||
Amphotericin B | 1 | * | * | 1 (100) a | 0 | 0 | 0 |
Fluconazole | 64 | * | * | 1 (100) | 0 | 0 | 0 |
Anidulafungin | 0.12 | * | * | 1 (100) | 0 | - | 0 |
Micafungin | 0.25 | * | * | 1 (100) | 0 | - | 0 |
Caspofungin | 0.12 | * | * | 1 (100) | 0 | - | 0 |
Voriconazole | 1 | * | * | IE | IE | IE | IE |
Candida famata (1) | |||||||
Amphotericin B | <0.12 | * | * | IE | IE | IE | IE |
Fluconazole | 4 | * | * | IE | IE | IE | IE |
Anidulafungin | 0.5 | * | * | IE | IE | IE | IE |
Micafungin | 0.25 | * | * | IE | IE | IE | IE |
Caspofungin | 0.06 | * | * | IE | IE | IE | IE |
Voriconazole | 0.12 | * | * | IE | IE | IE | IE |
Candida lusitaniae (2) | |||||||
Amphotericin B | <0.12–0.25 | * | * | 2 (100) a | 0 | 0 | 0 |
Fluconazole | 1 | * | * | 2 (100) | 0 | 0 | 0 |
Anidulafungin | 0.03–0.12 | * | * | 2 (100) | 0 | 0 | 0 |
Micafungin | 0.015–0.125 | * | * | 2 (100) | 0 | 0 | 0 |
Caspofungin | 0.06–0.5 | * | * | 2 (100) | 0 | 0 | 0 |
Voriconazole | 0.015 | * | * | IE | IE | IE | IE |
Candida nivariensis (1) | |||||||
Amphotericin B | 0.5 | * | * | IE | IE | IE | IE |
Fluconazole | 8 | * | * | IE | IE | IE | IE |
Anidulafungin | 0.03 | * | * | IE | IE | IE | IE |
Micafungin | 0.03 | * | * | IE | IE | IE | IE |
Caspofungin | 0.06 | * | * | IE | IE | IE | IE |
Voriconazole | 0.25 | * | * | IE | IE | IE | IE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvo, M.; Scalia, G.; Trovato, L. Antifungal Susceptibility Data and Epidemiological Distribution of Candida spp.: An In Vitro Five-Year Evaluation at University Hospital Policlinico of Catania and a Comprehensive Literature Review. Antibiotics 2024, 13, 914. https://doi.org/10.3390/antibiotics13100914
Calvo M, Scalia G, Trovato L. Antifungal Susceptibility Data and Epidemiological Distribution of Candida spp.: An In Vitro Five-Year Evaluation at University Hospital Policlinico of Catania and a Comprehensive Literature Review. Antibiotics. 2024; 13(10):914. https://doi.org/10.3390/antibiotics13100914
Chicago/Turabian StyleCalvo, Maddalena, Guido Scalia, and Laura Trovato. 2024. "Antifungal Susceptibility Data and Epidemiological Distribution of Candida spp.: An In Vitro Five-Year Evaluation at University Hospital Policlinico of Catania and a Comprehensive Literature Review" Antibiotics 13, no. 10: 914. https://doi.org/10.3390/antibiotics13100914
APA StyleCalvo, M., Scalia, G., & Trovato, L. (2024). Antifungal Susceptibility Data and Epidemiological Distribution of Candida spp.: An In Vitro Five-Year Evaluation at University Hospital Policlinico of Catania and a Comprehensive Literature Review. Antibiotics, 13(10), 914. https://doi.org/10.3390/antibiotics13100914