Deploying a Novel Approach to Prepare Silver Nanoparticle Bellamya bengalensis Extract Conjugate Coating on Orthopedic Implant Biomaterial Discs to Prevent Potential Biofilm Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Leaf Extract
2.2.2. Biosynthesis of Silver Nanoparticles
2.2.3. Extraction of Antimicrobial Peptides from Bellamya bengalensis
2.2.4. Purification of Peptides Using Ion Exchange Chromatography
2.2.5. Preparation of AgNPs@BB Extract Conjugates
2.2.6. Preparation of Biomaterial Discs
2.2.7. Coating of AgNPs@BB Extract Composites on the Orthopedic Implants
2.3. Characterizations
2.3.1. Surface Characterization
2.3.2. Antimicrobial Assay of Silver/BB Composite Using Resazurin Microtiter Assay Method (REMA)
2.3.3. Bacterial Biofilm Formation on Biomaterial Discs
2.3.4. Confocal Analysis of Biofilm Inhibition
2.3.5. Inhibition of Biofilm Formation (Microtiter Plate Assay)
2.3.6. Cytotoxicity Analysis of AgNPs@BB Extract
2.4. Statistical Analysis
2.5. SEM Analysis of Uncoated and Coated Implants
3. Results and Discussion
3.1. UV Visible Spectroscopy
3.2. Physicochemical Characterization of AgNPs
3.3. FTIR Analysis
3.4. Minimum Inhibitory Concentration
3.5. SEM Micrographs Analysis
3.6. Confocal Analysis
3.7. Biofilm Inhibition—Quantitative Assay
3.8. Cytotoxicity Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vincent, G.K.; Velkoff, V.A. The Next Four Decades: The Older Population in the United States: 2010 to 2050; Current Population Reports, Population Estimates and Projections; United Census Bureau: Suitland, MD, USA, 2010.
- Ciarolla, A.A.; Lapin, N.; Williams, D.; Chopra, R.; Greenberg, D.E. Physical Approaches to Prevent and Treat Bacterial Biofilm. Antibiotics 2023, 12, 54. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Lau, E.; Watson, H.; Schmier, J.K.; Parvizi, J. Economic burden of periprosthetic joint infection in the United States. J. Arthroplast. 2012, 27 (Suppl. S8), 61–65.e1. [Google Scholar] [CrossRef] [PubMed]
- Tsaras, G.; Osmon, D.R.; Mabry, T.; Lahr, B.; Sauveur, J.S.; Yawn, B.; Kurland, R.; Berbari, E.F. Incidence, Secular Trends, and Outcomes of Prosthetic Joint Infection: A Population-Based Study, Olmsted County, Minnesota, 1969–2007. Infect. Control Hosp. Epidemiol. 2012, 33, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Dale, H.; Hallan, G.; Espehaug, B.; Havelin, L.I.; Engesæter, L.B. Increasing risk of revision due to deep infection after hip arthroplasty: A study on 97,344 primary total hip replacements in the Norwegian Arthroplasty Register from 1987 to 2007. Acta Orthop. 2009, 80, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Speziale, P.; Montanaro, L.; Costerton, J.W. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012, 33, 5967–5982. [Google Scholar] [CrossRef]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R. Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the infectious diseases Society of America. Clin. Infect. Dis. 2013, 56, e1–e25. [Google Scholar] [CrossRef]
- Mas-Moruno, C.; Su, B.; Dalby, M.J. Multifunctional Coatings and Nanotopographies: Toward Cell Instructive and Antibacterial Implants. Adv. Healthc. Mater. 2019, 8, 1801103. [Google Scholar] [CrossRef]
- Tsai, Y.; Chang, C.H.; Lin, Y.C.; Lee, S.H.; Hsieh, P.H.; Chang, Y. Different microbiological profiles between hip and knee prosthetic joint infections. J. Orthop. Surg. 2019, 27, 2309499019847768. [Google Scholar] [CrossRef]
- Guo, G.; Wang, J.; You, Y.; Tan, J.; Shen, H. Distribution characteristics of Staphylococcus spp. in different phases of periprosthetic joint infection: A review. Exp. Ther. Med. 2017, 13, 2599–2608. [Google Scholar] [CrossRef]
- Teixeira-Santos, R.; Lima, M.; Gomes, L.C.; Mergulhão, F.J. Antimicrobial coatings based on chitosan to prevent implant-associated infections: A systematic review. iScience 2021, 24, 103480. [Google Scholar] [CrossRef] [PubMed]
- Darwish, R.M.; Salama, A.H. Study the Effect of Conjugate Novel Ultra-Short Antimicrobial Peptide with Silver Nanoparticles against Methicillin Resistant S. aureus and ESBL E. coli. Antibiotics 2022, 11, 1024. [Google Scholar] [CrossRef]
- Kluytmans, J.; Van Belkum, A.; Verbrugh, H. Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 1997, 10, 505–520. [Google Scholar] [CrossRef]
- Schilcher, K.; Horswill, A.R. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol. Mol. Biol. Rev. 2020, 84, e00026-19. [Google Scholar] [CrossRef]
- Morris, J.L.; Letson, H.L.; Grant, A.; Wilkinson, M.; Hazratwala, K.; McEwen, P. Experimental model of peri-prosthetic infection of the knee caused by Staphylococcus aureus using biomaterials representative of modern TKA. Biol. Open 2019, 8, bio045203. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.; Singh, A.; Jackson, M.J.; Coelho, R.T.; Prakash, D.; Charalambous, C.P.; Ahmed, W.; Ribeiro da Sliva, L.R.; Lawrence, A.A. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Int. J. Adv. Manuf. Technol. 2022, 120, 1473–1530. [Google Scholar] [CrossRef] [PubMed]
- Darouiche, R.O. Treatment of Infections Associated with Surgical Implants. 2004. Available online: www.nejm.org (accessed on 1 April 2023).
- Chung, C.J.; Su, R.T.; Chu, H.J.; Chen, H.T.; Tsou, H.K.; He, J.L. Plasma electrolytic oxidation of titanium and improvement in osseointegration. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101B, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Croes, M.; De Visser, H.; Meij, B.P.; Lietart, K.; Van der Wal, B.C.H.; Vogely, H.C.; Fluit, A.C.; Boel, C.H.E.; Alblas, J.; Weinans, H.; et al. Data on a rat infection model to assess porous titanium implant coatings. Data Brief. 2018, 21, 1642–1648. [Google Scholar] [CrossRef]
- Alsaba, M.T.; Al Dushaishi, M.F.; Abbas, A.K. A comprehensive review of nanoparticles applications in the oil and gas industry. J. Pet. Explor. Prod. Technol. 2020, 10, 1389–1399. [Google Scholar] [CrossRef]
- Basova, T.V.; Vikulova, E.S.; Dorovskikh, S.I.; Hassan, A.; Morozova, N.B. The use of noble metal coatings and nanoparticles for the modification of medical implant materials. Mater. Des. 2021, 204, 109672. [Google Scholar] [CrossRef]
- Kuehl, R.; Brunetto, P.S.; Woischnig, A.K.; Varisco, M.; Rajacic, Z.; Vosbeck, J.; Terracciano, L.; Fromm, K.M.; Khanna, N. Preventing Implant-Associated infections by silver coating. Antimicrob. Agents Chemother. 2016, 60, 2467–2475. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Bassler, B.L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 2019, 17, 371–382. [Google Scholar] [CrossRef]
- Neethu, S.; Midhun, S.J.; Radhakrishnan, E.K.; Jyothis, M. Surface functionalization of central venous catheter with mycofabricated silver nanoparticles and its antibiofilm activity on multidrug resistant Acinetobacter baumannii. Microb. Pathog. 2020, 138, 103832. [Google Scholar] [CrossRef] [PubMed]
- Klaenhammer, T.R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 1993, 12, 39–85. [Google Scholar] [CrossRef]
- Gauri, S.S.; Mandal, S.M.; Pati, B.R.; Dey, S. Purification and structural characterization of a novel antibacterial peptide from Bellamya bengalensis: Activity against ampicillin and chloramphenicol resistant Staphylococcus epidermidis. Peptides 2011, 32, 691–696. [Google Scholar] [CrossRef]
- Elangovan, M.; Ramachandran, D.; Rajesh, K. Green synthesis of silver nanoparticles using flower extract of hemigraphis colorata as reducing agent and its biological activity. Lett. Appl. NanoBioSci. 2021, 10, 3343–3356. [Google Scholar] [CrossRef]
- Santhosh, N.A.; Cheruvathur, M.K.; Liji, G. Ecofriendly synthesis of silver nanoparticles using aqueous leaf extracts of Hemigraphis colorata (Blume) Hallier f. and their antibacterial activity. 2018;6(3):2630-5. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 2630–2635. [Google Scholar] [CrossRef]
- Babu, S.; Claville, M.O.; Ghebreyessus, K. Rapid synthesis of highly stable silver nanoparticles and its application for colourimetric sensing of cysteine. J. Exp. Nanosci. 2015, 10, 1242–1255. [Google Scholar] [CrossRef]
- Deb, N.; Besra, S.E. Activity of the lymph extracted from Bellamya bengalensis F. annandalei in rodent models. World J. Pharm. Res. 2017, 6, 772–783. [Google Scholar]
- Lüders, T.; Birkemo, G.A.; Fimland, G.; Nissen-Meyer, J.; Nes, I.F. Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 2003, 69, 1797–1799. [Google Scholar] [CrossRef]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M6, M7; Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2006. [Google Scholar]
- Garg, S.; Chandra, A.; Mazumder, A.; Mazumder, R. Green synthesis of silver nanoparticles using Arnebia nobilis root extract and wound healing potential of its hydrogel. Asian J. Pharm. 2014, 8, 95–101. [Google Scholar] [CrossRef]
- Elangovan, N.; Sowrirajan, S. Synthesis, single crystal (XRD), Hirshfeld surface analysis, computational study (DFT) and molecular docking studies of (E)-4-((2-hydroxy-3,5-diiodobenzylidene)amino)-N-(pyrimidine)-2-yl) benzenesulfonamide. Heliyon 2021, 7, e07724. [Google Scholar] [CrossRef]
- Nooralabettu, K. Effective anion exchange chromatographic purification of hepatopancreatic alkaline phosphatase of Red shrimp, Solenocera choprai. Int. J. Anal. Biosci. 2014, 2, 41–51. [Google Scholar]
- Rekha, S.; Anila, E.I. In vitro cytotoxicity studies of surface modified CaS nanoparticles on L929 cell lines using MTT assay. Mater. Lett. 2019, 236, 637–639. [Google Scholar] [CrossRef]
- Pal, I.; Bhattacharyya, D.; Kar, R.K.; Zarena, D.; Bhunia, A.; Atreya, H.S. A Peptide-Nanoparticle System with Improved Efficacy against Multidrug Resistant Bacteria. Sci. Rep. 2019, 9, 4485. [Google Scholar] [CrossRef] [PubMed]
- Goda, R.M.; El-Baz, A.M.; Khalaf, E.M.; Alharbi, N.K.; Elkhooly, T.A.; Shohayeb, M.M. Combating Bacterial Biofilm Formation in Urinary Catheter by Green Silver Nanoparticle. Antibiotics 2022, 11, 495. [Google Scholar] [CrossRef]
- Khalifa, R.A.; Nasser, M.S.; Gomaa, A.A.; Osman, N.M.; Salem, H.M. Resazurin Microtiter Assay Plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egypt. J. Chest Dis. Tuberc. 2013, 62, 241–247. [Google Scholar] [CrossRef]
- Bürgers, R.; Gerlach, T.; Hahnel, S.; Schwarz, F.; Handel, G.; Gosau, M. In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clin. Oral Implant. Res. 2010, 21, 156–164. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A modified microtiter-plate test for quantification of Staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Rasiukevičiūtė, N.; Viršilė, A.; Miliauskienė, J.; Laužikė, C.; Valiuškaitė, A.; Dėnė, L.; Chrapačienė, S.; et al. Phenolic Compounds Content Evaluation of Lettuce Grown under Short-Term Preharvest Daytime or Nighttime Supplemental LEDs. Plants 2022, 11, 1123. [Google Scholar] [CrossRef]
- Huang, W.; Fang, X.; Wang, H.; Chen, F.; Duan, H.; Bi, Y.; Yu, H. Biosynthesis of AgNPs by B. maydis and its antifungal effect against Exserohilum turcicum. IET Nanobiotechnol. 2018, 12, 585–590. [Google Scholar] [CrossRef]
- Das, M.R.; Sarma, R.K.; Borah, S.C.; Kumari, R.; Saikia, R.; Deshmukh, A.B.; Shelke, M.V.; Sengupta, P.; Szunerits, S.; Boukherroub, R. The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids Surf. B Biointerfaces 2013, 105, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Maayan, G.; Liu, L.K. Silver nanoparticles assemblies mediated by functionalized biomimetic oligomers. Biopolymers 2011, 96, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Bharath, L.V. Mechanism of plant-mediated synthesis of silver nanoparticles—A review on biomolecules involved, characterisation and antibacterial activity. Chem.-Biol. Interact. 2017, 273, 219–227. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, R. Enhanced bactericidal efficacy of polymer stabilized silver nanoparticles in conjugation with different classes of antibiotics. RSC Adv. 2019, 9, 1095–1105. [Google Scholar] [CrossRef]
- Duygu, D.Y.; Udoh, A.U.; Ozer, T.B.; Akbulut, A.; Erkaya, I.A.; Yildiz, K.; Guler, D. Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr. J. Biotechnol. 2012, 11, 3817–3824. [Google Scholar] [CrossRef]
- Abbasi, Z.; Feizi, S.; Taghipour, E.; Ghadam, P. Green synthesis of silver nanoparticles using aqueous extract of dried Juglans regia green husk and examination of its biological properties. Green Process. Synth. 2017, 6, 477–485. [Google Scholar] [CrossRef]
- Bethu, M.S.; Netala, V.R.; Domdi, L.; Tartte, V.; Janapala, V.R. Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: An insight into the mechanism. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. S1), 104–114. [Google Scholar] [CrossRef]
- Fu, W.; Mohd Noor, M.H.; Yusof, L.M.; Ibrahim, T.A.T.; Keong, Y.S.; Jaji, A.Z.; Zakaria, M.Z.A.B. In vitro evaluation of a novel pH sensitive drug delivery system based cockle shell-derived aragonite nanoparticles against osteosarcoma. J. Exp. Nanosci. 2017, 12, 166–187. [Google Scholar] [CrossRef]
- Dasari, S.; Suresh, K.A.; Rajesh, M.; Reddy, S.; Samba, C.; Hemalatha, C.S.; Wudayagiri, R.; Valluru, L. Biosynthesis, characterization, antibacterial and antioxidant activity of silver nanoparticles produced by lichens. J. Bionanosci. 2013, 7, 237–244. [Google Scholar] [CrossRef]
- Leela, K.; Anchana Devi, C. Isolation, Purification and Application of Secondary Metabolites from Lichen Parmelia perlata. Biosci. Biotechnol. Res. Asia 2017, 14, 1413–1428. [Google Scholar] [CrossRef]
- Cadinoiu, A.N.; Rata, D.M.; Daraba, O.M.; Ichim, D.L.; Popescu, I.; Solcan, C.; Solcan, G. Silver Nanoparticles Biocomposite Films with Antimicrobial Activity: In Vitro and In Vivo Tests. Int. J. Mol. Sci. 2022, 23, 10671. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.; Mukherjee, K.; Pal, B. Polyethylene in Orthopedic Implants: Recent Trends and Limitations. In Encyclopedia of Materials: Plastics and Polymers; Elsevier: Amsterdam, The Netherlands, 2022; pp. 777–794. [Google Scholar] [CrossRef]
- Fey, P.D.; Olson, M.E. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol. 2010, 5, 917–933. [Google Scholar] [CrossRef]
- Grover, V.; Chopra, P.; Mehta, M. Natural prokaryotic antimicrobial peptide coated titanium discs prevent Staphylococcus auerus growth and biofilm formation—Implications on peri-implant infections. Mater. Today Proc. 2022, 50, 673–678. [Google Scholar] [CrossRef]
- Kim, M.J.; Yoo, D.Y.; Yoon, Y.S. Effects of geometry and hybrid ratio of steel and polyethylene fibers on the mechanical performance of ultra-high-performance fiber-reinforced cementitious composites. J. Mater. Res. Technol. 2019, 8, 1835–1848. [Google Scholar] [CrossRef]
- Sousa, B.C.; Cote, D.L. Copper Cold Gas-Dynamic Spray Processing for Highly Effective Antipathogenic Coatings: An Integrated Microstructural, Mechanics, and Materials Chemistry Perspective. In Current Perspectives on Chemical Sciences; Sciencedomain International: Bhanjipur, India, 2021; Volume 9, pp. 55–97. [Google Scholar] [CrossRef]
- Cronholm, P.; Karlsson, H.L.; Hedberg, J.; Lowe, T.A.; Winnberg, L.; Elihn, K.; Wallinder, I.O.; Möller, L. Intracellular uptake and toxicity of Ag and CuO nanoparticles: A comparison between nanoparticles and their corresponding metal ions. Small 2013, 9, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Cannella, V.; Altomare, R.; Chiaramonte, G.; Di Bella, S.; Mira, F.; Russotto, L.; Pisano, P.; Guercio, A. Cytotoxicity evaluation of endodontic pins on L929 cell line. BioMed Res. Int. 2019, 2019, 3469525. [Google Scholar] [CrossRef]
- Oliver, S.; Wagh, H.; Liang, Y.; Yang, S.; Boyer, C. Enhancing the antimicrobial and antibiofilm effectiveness of silver nanoparticles prepared by green synthesis. J. Mater. Chem. B 2018, 6, 4124–4413. [Google Scholar] [CrossRef] [PubMed]
- Florea, D.A.; Grumezescu, V.; Bîrcă, A.C.; Vasile, B.Ș.; Mușat, M.; Chircov, C.; Stan, M.S.; Grumezescu, A.M.; Andronescu, E.; Chifiriuc, M.C. Design, Characterization, and Antibacterial Performance of MAPLE-Deposited Coatings of Magnesium Phosphate-Containing Silver Nanoparticles in Biocompatible Concentrations. Int. J. Mol. Sci. 2022, 23, 7910. [Google Scholar] [CrossRef]
- Barbalinardo, M.; Bertacchini, J.; Bergamini, L.; Magarò, M.S.; Ortolani, L.; Sanson, A.; Palumbo, C.; Cavallini, M.; Gentili, D. Surface properties modulate protein corona formation and determine cellular uptake and cytotoxicity of silver nanoparticles. Nanoscale 2021, 13, 14119–14129. [Google Scholar] [CrossRef]
- Gogoi, N.; Babu, P.J.; Mahanta, C.; Bora, U. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities. Mater. Sci. Eng. C 2015, 46, 463–469. [Google Scholar] [CrossRef]
Peaks | Functional Groups |
---|---|
3309 cm−1 | Hydroxyl group (-OH) stretching vibrations |
3100 cm−1 | Unsaturated C-H stretching vibration of AMP |
1635 cm−1 | Carbonyl (C=O) |
1200–1300 cm−1 | Aromatic -CH bending vibrations |
1000–1100 cm−1 | Phenolic (C-O-H stretching vibrations) |
MIC (μg/mL) | ||
---|---|---|
Staphylococcus aureus | Staphylococcus epidermidis | |
AgNPs | 7.8 ± 0.67 | 12.8 ± 0.67 |
BB extract | 31.2 ± 0.01 | 15.6 ± 4.3 |
AgNPs@BB extract conjugate | 3.9 ± 0.04 | 3.9 ± 0.01 |
Pathogens | Concentrations (µg/mL) | OD Values | Mean | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Staphylococcus aureus | Negative control | 0.01 | 0.01 | 0.02 | 0.01 |
Positive control | 0.38 | 0.43 | 0.58 | 0.46 | |
0.5 | 0.25 | 0.21 | 0.26 | 0.24 | |
1 | 0.05 | 0.06 | 0.05 | 0.05 | |
2 | 0.02 | 0.02 | 0.03 | 0.02 | |
Staphylococcus epidermidis | Negative control | 0.01 | 0.01 | 0.01 | 0.01 |
Positive control | 0.53 | 0.42 | 0.38 | 0.44 | |
0.5 | 0.31 | 0.32 | 0.27 | 0.3 | |
1 | 0.04 | 0.03 | 0.04 | 0.03 | |
2 | 0.01 | 0.02 | 0.02 | 0.01 |
Pathogens | Concentrations (µg/mL) | Biofilm Inhibition (%) * |
---|---|---|
Staphylococcus aureus | 0.5 | 47.4 ± 5.7 |
1 | 87.7 ± 1.2 | |
2 | 94.2 ± 1.2 | |
Staphylococcus epidermidis | 0.5 | 32.3 ± 5.9 |
1 | 91.7 ± 1.3 | |
2 | 96.2 ± 1.3 |
Concentration (µg/mL) | Cell Viability (%) |
---|---|
5 | 96.3 ± 3.2 |
25 | 83.8 ± 5.6 |
50 | 80.1 ± 3.8 |
75 | 79.6 ± 2.7 |
100 | 68.5 ± 6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qamer, S.; Che-Hamzah, F.; Misni, N.; Joseph, N.M.S.; Al-Haj, N.A.; Amin-Nordin, S. Deploying a Novel Approach to Prepare Silver Nanoparticle Bellamya bengalensis Extract Conjugate Coating on Orthopedic Implant Biomaterial Discs to Prevent Potential Biofilm Formation. Antibiotics 2023, 12, 1403. https://doi.org/10.3390/antibiotics12091403
Qamer S, Che-Hamzah F, Misni N, Joseph NMS, Al-Haj NA, Amin-Nordin S. Deploying a Novel Approach to Prepare Silver Nanoparticle Bellamya bengalensis Extract Conjugate Coating on Orthopedic Implant Biomaterial Discs to Prevent Potential Biofilm Formation. Antibiotics. 2023; 12(9):1403. https://doi.org/10.3390/antibiotics12091403
Chicago/Turabian StyleQamer, Shafqat, Fahrudin Che-Hamzah, Norashiqin Misni, Narcisse M. S. Joseph, Nagi A. Al-Haj, and Syafinaz Amin-Nordin. 2023. "Deploying a Novel Approach to Prepare Silver Nanoparticle Bellamya bengalensis Extract Conjugate Coating on Orthopedic Implant Biomaterial Discs to Prevent Potential Biofilm Formation" Antibiotics 12, no. 9: 1403. https://doi.org/10.3390/antibiotics12091403
APA StyleQamer, S., Che-Hamzah, F., Misni, N., Joseph, N. M. S., Al-Haj, N. A., & Amin-Nordin, S. (2023). Deploying a Novel Approach to Prepare Silver Nanoparticle Bellamya bengalensis Extract Conjugate Coating on Orthopedic Implant Biomaterial Discs to Prevent Potential Biofilm Formation. Antibiotics, 12(9), 1403. https://doi.org/10.3390/antibiotics12091403