A Scoping Review of Antimicrobial Usage and Antimicrobial Resistance in Beef Cow–Calf Herds in the United States and Canada
Abstract
:1. Introduction
2. Results
2.1. Overview of Captured Studies
2.2. Studies Reporting Antimicrobial Use
2.3. Studies Describing Antimicrobial Resistance
3. Discussion
4. Materials and Methods
4.1. Eligibility Criteria and Search Strategy
4.2. Search
4.3. Review Process, Data Cleaning and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strategic Framework for Collaboration on Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/9789240045408 (accessed on 22 April 2023).
- Newman, L.; Tewari, R.; Darroch, B. Consumer perception of antibiotic-free and hormone-free meat products. J. Food Stud. 2020, 9, 80–94. [Google Scholar] [CrossRef]
- Working Principles for Risk Analysis for Food Safety for Application by Governments. Available online: https://www.fao.org/documents/card/en/c/fdaaa09d-8a3f-50c6-b801-945ffcac73a2/ (accessed on 22 April 2023).
- Terrestrial Animal Health Code Volume 1. Available online: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/ (accessed on 22 April 2023).
- Pires, S.D.M.; Duarte, R.; Sofia, A.; Hald, T. Source attribution and risk assessment of antimicrobial resistance. Microbiol. Spect. 2019, 6, 619–635. [Google Scholar] [CrossRef]
- Beef Cow-Calf Health and Management Practices in the United States, 2017, Report 2. Available online: https://www.aphis.usda.gov/animal_health/nahms/beefcowcalf/downloads/beef2017/beef-2017-part2.pdf (accessed on 27 May 2023).
- Fossen, J.D.; Campbell, J.R.; Gow, S.P.; Erickson, N.; Waldner, C.L. Antimicrobial use in Canadian cow–calf herds. Vet. Sci. 2023, 10, 366. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Stewardship Definition and Core Principles 2023. Available online: https://www.avma.org/resources-tools/avma-policies/antimicrobial-stewardship-definition-and-core-principles (accessed on 17 June 2023).
- SAVI: The Stewardship of Antimicrobials by Veterinarians Initiative 2023. Available online: http://savi.canadianveterinarians.net/en/home/ (accessed on 17 June 2023).
- Responsible Use of Medically Important Antimicrobials in Animals. Available online: https://www.canada.ca/en/public-health/services/antibiotic-antimicrobial-resistance/animals/actions/responsible-use-antimicrobials.html (accessed on 27 May 2023).
- Veterinary Feed Directive (VFD) Basics 2022. Available online: https://www.avma.org/resources-tools/one-health/antimicrobial-use-and-antimicrobial-resistance/veterinary-feed-directive-basics (accessed on 22 April 2023).
- Guidance for Industry #263: Recommendations for Sponsors of Medically Important Antimicrobial Drugs Approved for Use in Animals to Voluntarily Bring under Veterinary Oversight All Products that Continue to be Available Over-the-Counter. Available online: https://www.fda.gov/media/130610/download (accessed on 27 May 2023).
- 2021 Veterinary Antimicrobial Sales Highlights Report 2022. Available online: https://www.canada.ca/en/health-canada/services/publications/drugs-health-products/2021-veterinary-antimicrobial-sales-highlights-report.html (accessed on 28 May 2023).
- 2021 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Available online: https://www.fda.gov/media/163739/download (accessed on 27 May 2023).
- Carson, C.A.; Reid-Smith, R.; Irwin, R.J.; Martin, W.S.; McEwen, S.A. Antimicrobial resistance in generic fecal Escherichia coli from 29 beef farms in Ontario. Can. J. Vet. Res. 2008, 72, 119–128. [Google Scholar] [PubMed]
- Carson, C.A.; Reid-Smith, R.; Irwin, R.J.; Martin, W.S.; McEwen, S.A. Antimicrobial use on 24 beef farms in Ontario. Can. J. Vet. Res. 2008, 72, 109–118. [Google Scholar]
- Ekakoro, J.E.; Caldwell, M.; Strand, E.B.; Strickland, L.; Okafor, C.C. A survey of antimicrobial use practices of Tennessee beef producers. BMC Vet. Res. 2019, 15, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Green, A.L.; Carpenter, L.R.; Edmisson, D.E.; Lane, C.D.; Welborn, M.G.; Hopkins, F.M.; Bemis, D.A.; Dunn, J.R. Producer attitudes and practices related to antimicrobial use in beef cattle in Tennessee. J. Am. Vet. Med. Assoc. 2010, 237, 1292–1298. [Google Scholar] [CrossRef]
- Must Do Requirements—Summary. Available online: http://www.verifiedbeef.ca/producer-resources/must-do-requirements.cfm (accessed on 27 May 2023).
- Peters, M.D.J.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, A.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated methodological guidance for the conduct of scoping reviews. JBI Evid. Synth. 2020, 18, 2119–2126. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Gow, S.P. Investigation of Antimicrobial Resistance and Antimicrobial Use in Western Canadian Cow-Calf Herds. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, September 2007. [Google Scholar]
- Agga, G.E.; Schmidt, J.W.; Arthur, T.A. Antimicrobial-resistant fecal bacteria from ceftiofur-treated and nonantimicrobial-treated comingled beef cows at a cow–calf operation. Microb. Drug Res. 2016, 2, 598–608. [Google Scholar] [CrossRef]
- Beef 2007–08 Antimicrobial Drug Use and Antimicrobial Resistance on U.S. Cow-Calf Operations, 2007–2008. Available online: https://www.aphis.usda.gov/animal_health/nahms/beefcowcalf/downloads/beef0708/Beef0708_ir_Antimicrobial_1.pdf (accessed on 27 May 2023).
- Schmidt, J.W.; Vikram, A.; Arthur, T.A.; Belk, K.E.; Morley, P.A.; Weinroth, M.D.; Wheeler, T.L. Antimicrobial resistance at two U.S. cull cow processing establishments. J. Food Protect. 2020, 83, 2216–2228. [Google Scholar] [CrossRef] [PubMed]
- Nobrega, N.; Andres-Lasheras, S.; Zaheer, R.; McAllister, T.; Homerosky, E.; Anholt, R.M.; Dorin, C. Prevalence, risk factors, and antimicrobial resistance profile of respiratory pathogens isolated from suckling beef calves to reprocessing at the feedlot: A longitudinal study. Front. Vet. Sci. 2021, 8, 764701. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; McMullen, C.; Timsit, E.; Hallewell, J.; Orsel, K.; van der Meere, F.; Yan, S.; Alexander, T.W. Genetic relatedness and antimicrobial resistance in respiratory bacteria from beef calves sampled from spring processing to 40 days after feedlot entry. Vet. Microbiol. 2020, 240, 108478. [Google Scholar] [CrossRef] [PubMed]
- Beef Cow-Calf Management Practices in the United States, 2017, Report 1. Available online: https://www.aphis.usda.gov/animal_health/nahms/beefcowcalf/downloads/beef2017/Beef2017_dr_PartI.pdf (accessed on 27 May 2023).
- Markland, S.; Weppelmann, T.A.; Ma, Z.; Lee, S.; Mir, R.A.; Teng, L.; Ginn, A.; Lee, C.; Ukhanova, M.; Galindo, S.; et al. High prevalence of cefotaxime resistant bacteria in grazing beef cattle: A cross sectional study. Front. Microbiol. 2019, 10, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldner, C.L.; Gow, S.; Parker, S.; Campbell, J.R. Antimicrobial resistance in fecal Escherichia coli and Campylobacter spp. from beef cows in western Canada and associations with herd attributes and antimicrobial use. Can. J. Vet. Res. 2019, 83, 80–89. [Google Scholar]
- Waldner, C.L.; Parker, S.; Gow, S.; Wilson, D.J.; Campbell, J.R. Antimicrobial usage in western Canadian cow-calf herds. Can. Vet. J. 2019, 60, 255–267. [Google Scholar]
- Waldner, C.L.; Parker, S.; Gow, S.; Wilson, D.J.; Campbell, J.R. Attitudes towards antimicrobial use and factors associated with antimicrobial use in western Canadian cow-calf herds. Can. Vet. J. 2019, 60, 391–398. [Google Scholar]
- Waldner, C.; Jelinski, M.D.; McIntyre-Zimmer, K. Survey of western Canadian beef producers regarding calf-hood diseases, management practices, and veterinary service usage. Can. Vet. J. 2013, 54, 559–564. [Google Scholar]
- Gow, S.P.; Waldner, C.L.; Rajic, A.; McFall, M.E.; Reid-Smith, R. Prevalence of antimicrobial resistance in fecal generic Escherichia coli isolated in western Canadian beef herds. Part II—Cows and cow-calf pairs. Can. J. Vet. Res. 2008, 72, 91–100. [Google Scholar]
- Bae, W.; Kaya, K.N.; Hancock, D.D.; Call, D.R.; Park, Y.H.; Besser, T.E. Prevalence and antimicrobial resistance of thermophilic Campylobacter spp. from cattle farms in Washington State. Appl. Environ. Microbiol. 2005, 71, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Gow, S.P.; Waldner, C.L.; Rajic, A.; McFall, M.E.; Reid-Smith, R. Prevalence of antimicrobial resistance in fecal generic Escherichia coli isolated in western Canadian cow-calf herds. Part I—Beef calves. Can. J. Vet. Res. 2008, 72, 82–90. [Google Scholar] [PubMed]
- Gow, S.P.; Waldner, C.L. Antimicrobial drug use and reason for treatment in 203 western Canadian cow–calf herds during calving season. Prev. Vet. Med. 2009, 90, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Gow, S.P.; Waldner, C.L. Antimicrobial resistance and virulence factors stx1, stx2, and eae in generic Escherichia coli isolates from calves in western Canadian cow-calf herds. Microb. Drug Res. 2009, 15, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Berge, A.C.; Hancock, D.D.; Sischo, W.M.; Besser, T.E. Geographic, farm, and animal factors associated with multiple antimicrobial resistance in fecal Escherichia coli isolates from cattle in the western United States. J. Am. Vet. Med. Assoc. 2010, 236, 1338–1344. [Google Scholar] [CrossRef]
- Doidge, C.; Dickie, J.; Lovatt, F.; Hudson, C.; Kaler, J. Evaluation of the use of antibiotic waste bins and medicine records to quantify antibiotic use on sheep, beef, and mixed species farms: A mixed methods study. Prev. Vet. Med. 2021, 197, 105505. [Google Scholar] [CrossRef]
- Hope, K.J.; Apley, M.D.; Schrag, N.F.D.; Lubbers, B.V.; Singer, R.S. Comparison of surveys and use records for quantifying medically important antimicrobial use in 18 U.S. beef feedyards. Zoonoses Public Health 2020, 67 (Suppl. 1), 111–123. [Google Scholar] [CrossRef]
- Baptiste, K.E. Associations of Penicillin-Resistant Staphylococcus aureus and β-Lactam Drug Usage in Danish Dairy Herds. Ph.D. Thesis, Royal Veterinary and Agricultural University, Copenhagen, Denmark, 2003. [Google Scholar]
- Collineau, L.; Belloc, C.; Stärk, K.D.C.; Hémonic, A.; Postma, M.; Dewulf, J.; Chauvin, C. Guidance on the selection of appropriate indicators for quantification of antimicrobial usage in humans and animals. Zoonoses Public Health 2016, 3, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Gozdzielewska, L.; King, C.; Flowers, P.; Mellor, D.; Dunlop, P.; Price, L. Scoping review of approaches for improving antimicrobial stewardship in livestock farmers and veterinarians. Prev. Vet. Med. 2020, 180, 105025. [Google Scholar] [CrossRef]
- Waldner, C.; Wilhelm, B.; Windeyer, C.; Parker, S.; Campbell, J. Improving beef calf health: Frequency of disease syndromes, uptake of management practices following calving, and potential for antimicrobial use reduction in western Canadian herds. Trans. An. Sci. 2022, 6, ptxac151. [Google Scholar] [CrossRef]
- Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 2018: Design and Methods. Available online: https://www.canada.ca/en/public-health/services/surveillance/canadian-integrated-program-antimicrobial-resistance-surveillance-cipars/cipars-reports/2018-annual-report-design-methods.html (accessed on 27 May 2023).
- Understanding Susceptibility Test Data as a Component of Antimicrobial Stewardship in Veterinary Settings. Available online: https://clsi.org/standards/products/veterinary-medicine/documents/vet09/ (accessed on 27 May 2023).
- Morris, C.; Wickramasingha, D.; Abdelfattah, E.M.; Pereira, R.V.; Okello, E.; Maier, G. Prevalence of antimicrobial resistance in fecal Escherichia coli and Enterococcus spp. isolates from beef cow-calf operations in northern California and associations with farm practices. Front. Microbiol. 2023, 14, 1086203. [Google Scholar] [CrossRef]
- Waldner, C.L. Western Canada study of animal health effects associated with exposure to emissions from oil and natural gas field facilities. Study design and data collection. 1. Herd performance records and management. Arch. Environ. Occ. Health. 2008, 63, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.J.; Payne, D.J.; Rappuoli, R.; De Gregorio, E. Technologies to address antimicrobial resistance. Proc. Natl. Acad. Sci. USA 2018, 115, 12887–12895. [Google Scholar] [CrossRef] [Green Version]
- Amat, S.; Timsit, E.; Workentine, M.; Schwinghamer, T.; van der Meer, F.; Guo, Y.; Alexander, T.W. A single intranasal dose of bacterial therapeutics to calves confers longitudinal modulation of the nasopharyngeal microbiota: A pilot study. mSystems 2023, 8, e01016-22. [Google Scholar] [CrossRef]
- Redweik, G.A.J.; Horak, M.K.; Hoven, R.; Ott, L.; Mellata, M. Evaluation of live bacterial prophylactics to decrease IncF plasmid transfer and association with intestinal small RNAs. Front. Microbiol. 2021, 11, 625286. [Google Scholar] [CrossRef]
- Ross, J.; Schatz, C.; Beaugrand, K.; Zuidhof, S.; Ralston, B.; Allan, N.; Olson, M. Evaluation of activated charcoal as an alternative to antimicrobials for the treatment of neonatal calf diarrhea. Vet. Med. 2021, 12, 359–369. [Google Scholar] [CrossRef]
- Carter, H.M.S.; Steele, M.A.; Costa, J.H.C.; Renaud, D.L. Evaluating the effectiveness of colostrum as a therapy for diarrhea in preweaned calves. J. Dairy Sci. 2022, 105, 9982–9994. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Nelson, C.D.; Driver, J.D.; Elzo, M.A.; Jeong, K.C. Animal breed composition is associated with the hindgut microbiota structure and beta-lactam resistance in the multibreed Angus-Brahman herd. Front. Microbiol. 2019, 10, 1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Teng, L.; DiLorenzo, N.; Weppelmann, T.A.; Jeong, K.C. Prevalence and molecular characteristics of extended-epectrum and AmpC b-Lactamase producing Escherichia coli in grazing beef cattle. Front. Microbiol. 2020, 10, 3076. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. J. Am. Med. Assoc. 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Mueller, M.; D’Addario, M.; Egger, M.; Cevallos, M.; Dekkers, O.; Mugglin, C.; Scott, P. Methods to systematically review and meta-analyse observational studies: A systematic scoping review of recommendations. BMC Med. Res. Methodol. 2018, 18, 44. [Google Scholar] [CrossRef] [Green Version]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Int. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munn, Z.; Sandeep Moola, S.; Lisy, K.; Riitano, D.; Tufanaru, C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int. J. Evid. Based Healthc. 2015, 13, 147–153. [Google Scholar] [CrossRef] [PubMed]
Citation | Year of Sampling | Location of Sampling | Broad Topic | Study Population a | Number Cow–Calf Herds | Herd Size Median (Range) |
---|---|---|---|---|---|---|
Fossen et al., 2023 [7] | 2019–2020 b | AB, BC, MB, ON, QC, NB, NS, SK, Canada | AMU c | Cows, Calves, Bulls | 146 | Med = 124 Range (14–1044) |
Schmidt et al., 2020 [25] | 2018 | FL, USA | AMR c | Cows | N/R | N/R |
Ekakoro et al., 2019 [17] | 2018 b | TN, USA | AMU c | All | 231 | Categorized Min = 1–49 Max = 500+ |
Nobrega et al., 2021 [26] | 2017 | AB, Canada | AMR c | Calves | 22 | Range (200, 3200) |
Guo et al., 2020 [27] | N/R | AB, Canada | AMR c | Calves | 3 | N/R |
United States Department of Agriculture (USDA) et al., 2020 [28] | 2017 b | 24 states d USA | AMU | Cows, Calves, Heifers | 2013 | Categorized Min = 1–49 Max = 200+ |
USDA et al., 2020 [6] | 2017 b | 24 states d USA | AMU | Cows, Calves, Heifers | 2013 | Categorized Min = 1–49 Max = 200+ |
Markland et al., 2019 [29] | 2016 b | FL, USA | AMR c | Cows, Calves | 17 | N/R |
Waldner et al., 2019 [30] | 2013–2014 | AB, SK, MB, Canada | AMU, AMR c | Cows | AMU = 98 AMR = 107 | Med = 228 IQR (159–354) |
Waldner et al., 2019 [31] | 2013–2014 | AB, SK, MB, Canada | AMU c | Cows, Heifers, Calves, Bulls | 100 | Med = 234 IQR = 160–359 |
Waldner et al., 2019 [32] | 2013–2014 b | AB, SK, MB, Canada | AMU | Cows, Calves, All | 100 | Categorized Moderate = 100–300 head Large = 300+ |
Agga et al., 2016 [23] | 2014 | NE, USA | AMR c | Cows | 1 | 6000 |
Waldner et al., 2013 [33] | 2010 | BC, AB, SK, Canada | AMU | Calves | 304 | Med = 132 (5th, 95th%: 32, 529) |
USDA et al., 2012 [24] | 2008 b | 24 states d USA | AMU c, AMR c | Cows, Calves, Heifers | AMU = 2159 AMR = 173 | Categorized Min = 1 head |
Green et al., 2010 [18] | 2007–2008 | TN, USA | AMU c | All | 1024 | N/R |
Gow, 2007 [22] e | 2002–2003 b | BC, AB, SK, Canada | AMU c, AMR c | Cows, Calves, Heifers | 203 | Med = 154 (53, 481) |
Gow et al., 2008 [34] e | 2002–2003 b | BC, AB, SK, Canada | AMR c | Cows, Calves | 2002 = 69 2003 = 10 | 2002: Med = 154 (74, 437) 2003: Med = 130 (86, 382) |
Bae et al., 2005 [35] | 2002–2003 | WA, USA | AMR c | Cows, Calves | 3 | N/R |
Gow et al., 2008 [36] e | 2002 b | BC, AB, SK, Canada | AMR c | Calves | Spring = 91 Fall = 45 | N/R; Herds < 50 excluded |
Gow and Waldner, 2009 [37] e | 2002 b | BC, AB, SK, Canada | AMU c | Cows, Calves, Heifers | 203 | Med = 154 (53, 481) |
Gow and Waldner, 2009 [38] e | 2002 | SK, Canada | AMR c | Calves | N/A Random isolates from [28,30] | |
Berge et al., 2010 [39] | 2001–2004 b | CA, OR, WA, USA | AMR c | Cows, Calves | 9 | N/R |
Carson et al., 2008 [15] | 2001 b | ON, Canada | AMR c | Cows, Calves | 8 | Med = 83 (9, 170) |
Carson et al., 2008 [16] | 1999–2002 b | ON, Canada | AMU c | Cows, Calves | 13 | Cow–calf: Med = 83 (9, 170) |
Citation | Population a | Sampling Year | Methods of Data Capture (Questionnaire Validation Reported) | Reason for Usage b | Route of Usage | Time Interval Covered | Metric Used c | Dosages Reported | MIA d Identified | Risk Factors Studied |
---|---|---|---|---|---|---|---|---|---|---|
Fossen et al., 2023 [7] | Cows, Calves, Bulls | 2019–2020 | Questionnaire (No) | Treatment, Prevention | Some | 1 Year | Count e,f | No | Yes | Yes |
Ekakoro et al., 2019 [17] | All cow–calf | 2018 | Questionnaire (No) | N/R | No | N/R | Count e | No | No | Yes |
USDA et al., 2020 [6] | Cows, Calves, Heifers | 2017 | Questionnaire (No) | Prevention, Control or Treatment | Yes | 1 Year | Count e,g | No | Yes | Yes |
USDA et al., 2020 [28] | Cows, Calves, Heifers | 2017 | Questionnaire (No) | N/R | Yes | 1 Year | Count e | No | No | Yes |
Waldner et al., 2019 [30] h | Cow, Calves | 2013–2014 | Questionnaire (No) | N/R | Some | 1 Year | Count e | No | Yes | No |
Waldner et al., 2019 [31] h | Cows, Calves, Bulls | 2013–2014 | Questionnaire (No) | Treatment, Prevention | Yes | 1 Year | Count e | No | Yes | Yes |
Waldner et al., 2019 [32] h | All cow–calf | 2013–2014 | Questionnaire (No) | Treatment, Prevention | Yes | 1 Year | Count e,f | No | Yes | Yes |
Waldner et al., 2013 [33] | Calves | 2010 | Questionnaire (No) | Treatment | Yes | 5 mo | Count e | No | No | Yes |
USDA et al., 2012 [24] | Cows, Calves, Heifers | 2008 | Questionnaire (No) | Treatment, Prevention | Yes | N/R | Count e,g | No | No | Yes |
Green et al., 2010 [18] | All cow–calf | 2007–2008 | Questionnaire (No) | N/R | Yes | N/R | Count e | No | Yes | Yes |
Gow and Waldner, 2009 [37] | Cows, Calves, Heifers | 2002 | Questionnaire (Yes), Diary, Individual Records | Treatment | Yes | 6 mo | Count e,g | No | No | Yes |
Carson et al., 2008 [16] | Cows, Calves | 1999–2002 | Questionnaire (Yes), Diary, Garbage can audit | N/R | Yes | 1 Year | Count e, Weight i ADD | Yes | Yes | No |
Citation | Population a | Sample Matrix | Bacterial Species Studied | Sampling Year | Sampling Plan: Number (Detail) (Sampling Scheme) | Hierarchical Level Outcome Reporting | Outcome Metric Used b | Method of Antimic-Robial Susceptibility Testing | Break-Points Used | Risk Factors Studied | Individual or Pooled Physical Sampling |
---|---|---|---|---|---|---|---|---|---|---|---|
Non-Speciated Bacteria | |||||||||||
Markland et al., 2019 [29] | Cows, Calves | Feces | Cefotaxime-resistant bacteria | 2016 | Herds: 17 (Random) Samples: 383 Calves, 457 Cows (Convenience) Environmental samples (n = 258) | Livestock Class | Count concentration | Broth microdilution | CLSI | Yes | Ind |
Enteric bacteria | |||||||||||
Schmidt et al., 2020 [25] | Cows | Colon content | E. coli, Salmonella spp. | 2018 | Herds: N/R Samples: 535 cow carcasses. (Convenience) Herds: 17 (Random) | Sector | Count | Agar with antimicrobial | N/R | Yes | Ind |
Waldner et al., 2019 [30] | Cows | Feces | E. coli, Campylobacter spp., Salmonella spp. | 2014 | Herds: 107 (Convenience) Samples: 107 (20 cows per herd pooled) (Systematic) | Isolate, Herd | Count | Broth microdilution | CLSI, NARMS | Yes | Pooled |
Agga et al., 2016 [23] | Cows | Feces | E. coli, Enterococcus spp. | 2014 | Herds: 1 (Purposive) Samples: 369 (Cows ≥ 8 yr, receiving either ceftiofur or no AM tx) (N/R) | Treatment group | Count MIC distribution | Agar with antimicrobial | NARMS | Yes | Ind |
USDA et al., 2012 [24] | Cows | Feces | E. coli, Salmonella spp., Campylobacter spp., Clostridium difficile | 2007–2008 | Herds: 175 (Convenience) Samples: N/R (up to 40 cows sampled depending on herd size) (Convenience) | Isolate | Count | Broth microdilution | CLSI, NARMS | Yes | Ind |
Gow et al., 2008 [34] | Cows, Calves | Feces | E. coli | 2002–2003 | Herds: 2002 = 69 2003 = 10 (Convenience) Samples: 2002 = 533 Ind 2003 = 105 (Convenience) | Isolate, Ind, Herd | Count MIC distribution | Broth microdilution | CLSI | Yes | Ind |
Bae et al., 2005 [35] | Cows, Calves | Feces | Campylobacter jejuni, Campylobacter coli | 2002–2003 | Herds: 3 (Convenience) Samples: 120 Ind (Convenience) (calves 2 to 4 weeks old (n = 20) and adult recently fresh cows (n = 20) per herd | Herd | Resistance Index | Agar dilution | ARR | Yes | Ind |
Gow et al., 2008 [36] | Calves | Feces | E. coli | 2002 | Herds: Spring = 91 Fall = 45 Samples: Spring = 480 Ind Fall = 394 Ind (Spring: Convenience; Fall: Random) | Isolate | Count c MIC distribution | Broth microdilution | CLSI | Yes | Ind |
Gow and Waldner, 2009 [38] | Calves | Feces | E. coli | 2002 | Herds: 57 Ind: 106 [Random) | Isolate | Count | Broth microdilution | CLSI | Yes | Ind |
Berge et al., 2010 [39] | Cows, Calves | Feces | E. coli | 2001–2004 | Herds: 9 ≤ 22 calves that were 2 to 4 weeks old and10 cows that had recently calved. | Production type | Count | Agar dilution | CLSI | Yes | Ind |
Carson et al., 2008 [15] | Cows, Calves | Feces | E. coli | 2001 | Herds: 13 Samples Pooled: N/R (pooled fecal pats collected 3 times per farm, 3 to 4 mo apart. Five groups of animals were selected) | Pooled: isolate, production type | Count | Broth microdilution | CLSI | Yes | Pooled |
Respiratory bacteria | |||||||||||
Nobrega et al., 2021 [26] | Calves | DNP swab | Histophilus somni, Mannheimia haemolytica, Mycoplasma bovis, and Pasteurella multocida | 2017 | Herds: 22 (Convenience) Samples: 660 calves (30 calves per herd) (Random) | Isolate | Count | Broth microdilution | CLSI | No | Ind |
Guo et al., 2020 [27] | Calves | DNP swab | Histophilus somni, Mannheimia haemolytica, and Pasteurella multocida | N/R | Herds: 3 (Convenience) Samples: 120 (40 calves sampled per participating herd) (N/R) | Isolate | Count | Broth microdilution | CLSI | No | Ind |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilhelm, B.; Fossen, J.; Gow, S.; Waldner, C. A Scoping Review of Antimicrobial Usage and Antimicrobial Resistance in Beef Cow–Calf Herds in the United States and Canada. Antibiotics 2023, 12, 1177. https://doi.org/10.3390/antibiotics12071177
Wilhelm B, Fossen J, Gow S, Waldner C. A Scoping Review of Antimicrobial Usage and Antimicrobial Resistance in Beef Cow–Calf Herds in the United States and Canada. Antibiotics. 2023; 12(7):1177. https://doi.org/10.3390/antibiotics12071177
Chicago/Turabian StyleWilhelm, Barbara, Jayce Fossen, Sheryl Gow, and Cheryl Waldner. 2023. "A Scoping Review of Antimicrobial Usage and Antimicrobial Resistance in Beef Cow–Calf Herds in the United States and Canada" Antibiotics 12, no. 7: 1177. https://doi.org/10.3390/antibiotics12071177
APA StyleWilhelm, B., Fossen, J., Gow, S., & Waldner, C. (2023). A Scoping Review of Antimicrobial Usage and Antimicrobial Resistance in Beef Cow–Calf Herds in the United States and Canada. Antibiotics, 12(7), 1177. https://doi.org/10.3390/antibiotics12071177