Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria
Abstract
:1. Introduction
2. Results
2.1. Surface Morphology
2.2. Chemical Composition
2.3. Raman Spectroscopy
2.4. UV-Vis and PL Measurements
2.5. Singlet Oxygen Generation
2.6. Antibacterial Activity
2.7. Morphology of Bacterial Strains
2.8. Cytotoxicity
2.9. Fluorescence Microscopy
3. Discussion
4. Materials and Methods
4.1. CQDs Synthesis and Characterization
4.2. Antibacterial Activity
4.3. Morphology of Bacterial Strains
4.4. Cytotoxicity Assay
4.5. Fluorescence Microscopy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinna, D. Microbial growth and its effects on inorganic heritage materials. In Microorganisms in the Deterioration and Preservation of Cultural Heritage; Joseph, E., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Clause, C.A. Bacterial associations with decaying wood: A review. Int. Biodeter. Biodegr. 1996, 37, 101–107. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Wu, N.; Zhao, Z.; Xu, W.; Ma, Y.; Niu, Z. Colonization characteristics of bacterial communities on plastic debris influenced by environmental factors and polymer types in the haihe estuary of bohai bay, China. Environ. Sci. Technol. 2019, 53, 10763–10773. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.D.; Brooks, A.E. Therapeutic strategies to combat antibiotic resistance. Adv. Drug Deliv. Rev. 2014, 78, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 2013, 65, 1803–1815. [Google Scholar] [CrossRef] [PubMed]
- Fabio, G.B.; Martin, B.A.; Dalmolin, L.F.; Lopez, R.F.V. Antimicrobial photodynamic therapy and the advances impacted by the association with nanoparticles. J. Drug Deliv. Sci. Technol. 2023, 80, 104147. [Google Scholar] [CrossRef]
- Silvestre, A.L.P.; Di Filippo, L.D.; Besegato, J.F.; de Annunzio, S.R.; Almeida Furquim de Camargo, B.; de Melo, P.B.G.; Rastelli, A.N.S.; Fontana, C.R.; Chorilli, M. Current applications of drug delivery nanosystems associated with Antimicrobial photodynamic therapy for oral infections. Int. J. Pharm. 2021, 5925, 120078. [Google Scholar] [CrossRef]
- Marković, Z.M.; Todorović Marković, B.M. Novel antimicrobial strategies to combat biomaterial infections. In Urinary Stents; Soria, F., Rako, D., de Graaf, P., Eds.; Springer: Cham, Switzerland, 2022; pp. 305–313. [Google Scholar]
- Wang, Y.; Hu, A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C 2014, 2, 6921–6939. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef]
- Travlou, N.A.; Giannakoudakis, D.A.; Algarra, M.; Labella, M.A.; Rodríguez–Castellón, E.; Bandosz, T.J. S– and N–doped carbon quantum dots: Surface chemistry dependent antibacterial activity. Carbon 2018, 135, 104–111. [Google Scholar] [CrossRef]
- Badran, Z.; Rahmna, B.; DE Bonfils, P.; Nun, P.; Coeffard, V.; Verron, E. Antibacterial nanophotosensitizers in photodynamic therapy: An update. Drug Discov. Today 2023, 28, 103493. [Google Scholar] [CrossRef]
- Dong, X.; Liang, W.; Meziani, M.J.; Sun, Y.P.; Yang, L. Carbon dots as potent antimicrobial agents. Theranostics 2020, 10, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Chatzimitakos, T.; Stalikas, C. Antimicrobial Properties of Carbon Quantum Dots (Chapter 14). In NANOTOXICITY (Prevention and Antibacterial Applications of Nanomaterials); Elsevier: Amsterdam, The Netherlands, 2020; pp. 301–315. [Google Scholar]
- Ghirardello, M.; Ramos-Soriano, J.; Galan, M.C. Carbon dots as an emergent class of antimicrobial agents. Nanomaterials 2021, 11, 1877. [Google Scholar] [CrossRef] [PubMed]
- Stanković, N.K.; Bodik, M.; Šiffalovič, P.; Kotlar, M.; Mičušik, M.; Špitalsky, Z.; Danko, M.; Milivojević, D.D.; Kleinova, A.; Kubat, P.; et al. Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots Langmuir—Blodgett thin films. ACS Sustain. Chem. Eng. 2018, 6, 4154–4163. [Google Scholar] [CrossRef]
- Marković, Z.M.; Kováčová, M.; Jeremić, S.R.; Nagy, Š.; Milivojević, D.D.; Kubat, P.; Kleinová, A.; Budimir, M.D.; Mojsin, M.M.; Stevanović, M.J.; et al. Highly effificient antibacterial polymer composites based on hydrophobic riboflflavin carbon polymerized dots. Nanomaterials 2022, 12, 4070. [Google Scholar] [CrossRef]
- Jovanović, S.; Marković, Z.; Budimir, M.; Prekodravac, J.; Zmejkoski, D.; Kepić, D.; Bonasera, A.; Marković Todorović, B. Lights and dots toward therapy—Carbon-based quantum dots as new agents for photodynamic therapy. Pharmaceutics 2023, 15, 1170. [Google Scholar] [CrossRef]
- Du, X.; Zhang, M.; Ma, Y.; Wang, X.; Lin, Y.; Huang, H.; Kang, Z. Size–dependent antibacterial of carbon dots by selective absorption and differential oxidative stress of bacteria. J. Colloid Interface Sci. 2023, 634, 44–53. [Google Scholar] [CrossRef]
- Chai, S.; Zhou, L.; Pei, S.; Zhu, Z.; Chen, B. P–doped carbon quantum dots with antibacterial activity. Micromachines 2021, 12, 1116. [Google Scholar] [CrossRef]
- Marković, Z.M.; Budimir, M.D.; Danko, M.; Milivojević, D.D.; Kubat, P.; Zmejkoski, D.Z.; Pavlović, V.B.; Mojsin, M.M.; Stevanović, M.J.; Todorović Marković, B.M. Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o–phenylenediamine. Beilstein J. Nanotechnol. 2023, 14, 165–174. [Google Scholar] [CrossRef]
- Bianco, G.V.; Sacchetti, A.; Grande, M.; D’Orazio, A.; Milella, A.; Bruno, G. Effective hole conductivity in nitrogen-doped CVD-graphene by singlet oxygen treatment under photoactivation conditions. Sci. Rep. 2022, 12, 8703. [Google Scholar] [CrossRef]
- STERIS: Gamma Irradiation Processing. Available online: https://www.steris–ast.com/solutions/gamma–irradiation/ (accessed on 7 April 2023).
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X–ray Photoelectron Spectroscopy; Physical Electronics Inc.: Eden Prairie, MN, USA, 1995. [Google Scholar]
- Lawrence, R.T.; Lu, C.; Croxall, M.P.; Yu, K.; Cynthia Goh, M. Facile oxidation reaction to produce monolayered highly crystalline nitrogen–doped graphene quantum dots. Appl. Surf. Sci. 2022, 578, 151919. [Google Scholar] [CrossRef]
- IR Spectrum Table & Chart. Available online: https://www.sigmaaldrich.com/RS/en/technical–documents/technical–article/analytical–chemistry/photometry–and–reflflectometry/ir–spectrum–table (accessed on 19 April 2023).
- Table of Characteristic IR Absorptions. Available online: https://ih.pmf.ukim.edu.mk (accessed on 19 April 2023).
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 14, 47–57. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 2002, 51, 1–186. [Google Scholar] [CrossRef]
- Gao, Y.; Jiao, Y.; Lu, W. Carbon dots with red emission as a fluorescent and colorimeteric dual–readout probe for the detection of chromium(vi) and cysteine and its logic gate operation. J. Mater. Chem. B 2018, 6, 6099–6107. [Google Scholar] [CrossRef]
- Langer, M.; Paloncýová, M.; Medved, M.; Pykal, M.; Nachtigallová, D.; Shid, B.; Aquino, A.J.A.; Lischka, H.; Otyepka, M. Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. Appl. Mater. Today 2021, 22, 100924. [Google Scholar] [CrossRef]
- Wen, X.; Yu, P.; Toh, Y.R.; Hao, X.; Tang, J. Intrinsic and extrinsic fluorescence in carbon nanodots: Ultrafast time–resolved fluorescence and carrier dynamics. Adv. Opt. Mater. 2013, 1, 173–178. [Google Scholar] [CrossRef]
- Entradas, T.; Waldron, S.; Volk, M. The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J. Photochem. Photobiol. B Biol. 2020, 204, 111787. [Google Scholar] [CrossRef]
- Marković, Z.M.; Jovanović, S.P.; Mašković, P.Z.; Danko, M.; Mičušik, M.; Pavlović, V.B.; Milivojević, D.D.; Kleinova, A.; Špitalsky, Z.; Todorović Marković, B.M. Photo–induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. RSC Adv. 2018, 8, 31337. [Google Scholar] [CrossRef]
- Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; et al. A Graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596. [Google Scholar] [CrossRef]
- Park, H.Y.; Sin, D.D. Stress–induced premature senescence: Another mechanism involved in the process of accelerated aging in chronic obstructive pulmonary disease in inflammation. In Advancing Age and Nutrition, 1st ed.; Rahman, I., Bagchi, D., Eds.; Elsevier: London, UK, 2013; Chapter 16; pp. 193–194. [Google Scholar]
- Rieske, P.; Krynska, B.; Azizi, A.S. Human fibroblast–derived cell lines have characteristics of embryonic stem cells and cells of neuro–ectodermal origin. Differentiation 2005, 73, 474–483. [Google Scholar] [CrossRef]
- Varghese, M.; Balachandran, M. Antibacterial efficiency of carbon dots against gram–positive and gram–negative bacteria: A review. J. Environ. Chem. Eng. 2021, 9, 106821. [Google Scholar] [CrossRef]
- Mazumdar, A.; Haddad, Y.; Milosavljevic, V.; Michalkova, H.; Guran, R.; Bhowmick, S.; Moulick, A. Peptide–carbon quantum dots conjugate, derived from human retinoic acid receptor responder protein 2, against antibiotic–resistant gram positive and gram negative pathogenic bacteria. Nanomaterials 2020, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.M.; Jeong, H.J. Current status and future direction of nanomedicine: Focus on advanced biological and medical applications. Nucl. Med. Mol. Imaging 2017, 51, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Kováčová, M.; Marković, Z.M.; Humpolíček, P.; Mičušík, M.; Švajdlenková, H.; Kleinová, A.; Danko, M.; Kubát, P.; Vajďák, J.; Capáková, Z.; et al. Carbon quantum dots modified polyurethane nanocomposites as effective photocatalytic and antibacterial agents. ACS Biomater. Sci. Eng. 2018, 4, 3983–3993. [Google Scholar] [CrossRef]
- Azam, N.; Ali, M.N.; Khan, T.J. Carbon quantum dots for biomedical applications: Review and analysis. Front. Mater. 2021, 8, 700403. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: Open–source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Li, X.; Lau, S.P.; Tang, L.; Ji, R.; Yang, P. Multicolour light emission from chlorine–doped graphene quantum dots. J. Mater. Chem. C 2013, 1, 7308–7313. [Google Scholar] [CrossRef]
Dose (kGy) | C (at.%) | O (at.%) | N (at.%) |
---|---|---|---|
0 | 77.6 ± 0.7 | 19.0 ± 0.7 | 3.4 ± 0.5 |
25 | 71.6 ± 0.4 | 27.5 ± 0.6 | 1.0 ± 0.2 |
50 | 74.8 ± 0.5 | 24.6 ± 0.7 | 0.6 ± 0.2 |
100 | 79.1 ± 0.7 | 20.4 ± 0.7 | 0.5 ± 0.2 |
200 | 68.9 ± 1.7 | 31.2 ± 1.7 | 0.0 |
G Band (cm−1) | CQD_0 | CQD_25 | CQD_50 | CQD_100 | CQD_200 |
---|---|---|---|---|---|
G11 | 1580.2 | 1575.7 | 1575.6 | ||
G12 | 1590.6 | 1593.6 | 1591.6 | 1591.5 | |
G2 | 1602.5 | 1614.3 | 1612.3 | 1606.2 | 1610.3 |
FWHM1 | 12.7 | 18.0 | 19.7 | ||
FWHM2 | 25.1 | 30.4 | 20.8 | 26.8 | |
FWHM3 | 44.7 | 17.2 | 43.2 | 27.6 | |
ID/IG | 1.6 | 1.5 | 1.9 | 1.8 | 2.1 |
Sample | P1 (nm) | P (nm) | P2 (nm) | S1/S2 |
---|---|---|---|---|
CQD_0 | 472.29 | 484.65 | 519.89 | 1.37 |
CQD_25 | 473.55 | 487.31 | 521.88 | 1.09 |
CQD_50 | 474.48 | 489.69 | 523.61 | 1.07 |
CQD_100 | 477.42 | 495.89 | 528.08 | 1.09 |
CQD_200 | 483.26 | 498.46 | 536.68 | 1.18 |
Sample | λexc (nm) | QY |
---|---|---|
CQD_0 | 440 | 0.738 |
CQD_25 | 440 | 0.250 |
CQD_50 | 440 | 0.199 |
CQD_100 | 440 | 0.148 |
CQD_200 | 440 | 0.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marković, Z.M.; Mišović, A.S.; Zmejkoski, D.Z.; Zdravković, N.M.; Kovač, J.; Bajuk-Bogdanović, D.V.; Milivojević, D.D.; Mojsin, M.M.; Stevanović, M.J.; Pavlović, V.B.; et al. Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. Antibiotics 2023, 12, 919. https://doi.org/10.3390/antibiotics12050919
Marković ZM, Mišović AS, Zmejkoski DZ, Zdravković NM, Kovač J, Bajuk-Bogdanović DV, Milivojević DD, Mojsin MM, Stevanović MJ, Pavlović VB, et al. Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. Antibiotics. 2023; 12(5):919. https://doi.org/10.3390/antibiotics12050919
Chicago/Turabian StyleMarković, Zoran M., Aleksandra S. Mišović, Danica Z. Zmejkoski, Nemanja M. Zdravković, Janez Kovač, Danica V. Bajuk-Bogdanović, Dušan D. Milivojević, Marija M. Mojsin, Milena J. Stevanović, Vladimir B. Pavlović, and et al. 2023. "Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria" Antibiotics 12, no. 5: 919. https://doi.org/10.3390/antibiotics12050919
APA StyleMarković, Z. M., Mišović, A. S., Zmejkoski, D. Z., Zdravković, N. M., Kovač, J., Bajuk-Bogdanović, D. V., Milivojević, D. D., Mojsin, M. M., Stevanović, M. J., Pavlović, V. B., & Marković, B. M. T. (2023). Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. Antibiotics, 12(5), 919. https://doi.org/10.3390/antibiotics12050919