Bacterial Aetiology of Neonatal Sepsis and Antimicrobial Resistance Pattern at the Regional Referral Hospital, Dar es Salam, Tanzania; A Call to Strengthening Antibiotic Stewardship Program
Abstract
:1. Introduction
2. Results
2.1. Patients’ Demographic and Clinical Characteristics
2.2. Laboratory-Confirmed Neonatal Sepsis and Distribution of Causative Pathogens
2.3. Antibiotic Resistance by Pathogens Causing Neonatal Sepsis
2.4. Empirical Treatment and Antibiotic Resistance Pattern
2.5. Prevalence of Multidrug-Resistant Strains Causing Neonatal Sepsis
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Study Population
4.3. Data and Sample Collection
4.4. Laboratory Procedures
4.4.1. Isolation and Identification
4.4.2. Antibiotic Susceptibility Testing
4.4.3. Quality Control Measures
4.4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wynn, J.L.; Wong, H.R.; Shanley, T.P.; Bizzarro, M.J.; Saiman, L.; Polin, R.A. Time for a neonatal–specific consensus definition for sepsis. Pediatr. Crit. Care Med. 2014, 15, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal sepsis. Lancet 2017, 390, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Speer, C.P. Late-onset neonatal sepsis: Recent developments. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F257–F263. [Google Scholar] [CrossRef]
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E.; Cummings, J.; Juul, S.; Hand, I.; Eichenwald, E.; Poindexter, B.; Stewart, D.L.; Aucott, S.W.; et al. Management of neonates born at ≥35 0/7 weeks’ gestation with suspected or proven early-onset bacterial sepsis. Paediatrics 2018, 142, e20182894. [Google Scholar] [CrossRef]
- Schrag, S.J.; Farley, M.M.; Petit, S.; Reingold, A.; Weston, E.J.; Pondo, T.; Hudson Jain, J.; Lynfield, R. Epidemiology of invasive early-onset neonatal sepsis, 2005 to 2014. Paediatrics 2016, 138, e20162013. [Google Scholar] [CrossRef]
- Giannoni, E.; Agyeman, P.K.; Stocker, M.; Posfay-Barbe, K.M.; Heininger, U.; Spycher, B.D.; Bernhard-Stirnemann, S.; Niederer-Loher, A.; Kahlert, C.R.; Donas, A.; et al. Neonatal sepsis of early onset, and hospital-acquired and community-acquired late onset: A prospective population-based cohort study. J. Pediatr. 2018, 201, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.B.; Kumar, R. Early onset neonatal sepsis: Diagnostic dilemmas and practical management. Arch. Dis. Child.-Fetal Neonatal Ed. 2015, 100, F350–F354. [Google Scholar] [CrossRef] [PubMed]
- Shalini Tripathi, S.; Malik, G.K. Neonatal Sepsis: Past, present and future; a review article. Inter. J. Med. Update 2010, 5, 45–54. [Google Scholar]
- Edmond, K.; Zaidi, A. New approaches to preventing, diagnosing, and treating neonatal sepsis. PLoS Med. 2010, 7, e1000213. [Google Scholar] [CrossRef]
- Mhada, T.V.; Fredrick, F.; Matee, M.I.; Massawe, A. Neonatal sepsis at Muhimbili National Hospital, Dar es Salaam, Tanzania; aetiology, antimicrobial sensitivity pattern and clinical outcome. BMC Public Health 2012, 12, 904. [Google Scholar] [CrossRef]
- Weiss, S.L.; Peters, M.J.; Alhazzani, W.; Agus, M.S.; Flori, H.R.; Inwald, D.P.; Nadel, S.; Schlapbach, L.J.; Tasker, R.C.; Argent, A.C.; et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020, 46, 10–67. [Google Scholar] [CrossRef] [PubMed]
- Brady, M.T.; Polin, R.A. Prevention and management of infants with suspected or proven neonatal sepsis. Pediatrics 2013, 132, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Jia, X.; He, X.; Su, Y.; Zhou, L.; Shen, Y.; Sheng, C.; Liao, A.; Li, C.; Li, Q. Emerging threat of multidrug-resistant pathogens from neonatal sepsis. Front. Cell. Infect. Microbiol. 2021, 11, 694093. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.W.; Patel, M. Management of antibiotic-resistant infection in the newborn. Arch. Dis. Child.-Educ. Pract. 2011, 96, 122–127. [Google Scholar] [CrossRef]
- Moremi, N.; Claus, H.; Silago, V.; Kabage, P.; Abednego, R.; Matee, M.; Vogel, U.; Mshana, S.E. Hospital surface contamination with antimicrobial-resistant gram-negative organisms in Tanzanian regional and tertiary hospitals: The need to improve environmental cleaning. J. Hosp. Infect. 2019, 102, 98–100. [Google Scholar] [CrossRef]
- Kayange, N.; Kamugisha, E.; Mwizamholya, D.L.; Jeremiah, S.; Mshana, S.E. Predictors of positive blood culture and deaths among neonates with suspected neonatal sepsis in a tertiary hospital, Mwanza-Tanzania. BMC Pediatr. 2010, 10, 39. [Google Scholar] [CrossRef]
- Vergnano, S.; Sharland, M.; Kazembe, P.; Mwansambo, C.; Heath, P.T. Neonatal sepsis: An international perspective. Arch. Dis. Child.-Fetal Neonatal Ed. 2005, 90, F220–F224. [Google Scholar] [CrossRef]
- Xiao, T.; Chen, L.P.; Liu, H.; Xie, S.; Luo, Y.; Wu, D.C. The analysis of etiology and risk factors for 192 cases of neonatal sepsis. BioMed Res. Int. 2017, 2017, 8617076. [Google Scholar] [CrossRef]
- Chan, G.J.; Baqui, A.H.; Modak, J.K.; Murillo-Chaves, A.; Mahmud, A.A.; Boyd, T.K.; Black, R.E.; Saha, S.K. Early-onset neonatal sepsis in Dhaka, Bangladesh: Risk associated with maternal bacterial colonisation and chorioamnionitis. Trop. Med. Int. Health 2013, 18, 1057–1064. [Google Scholar]
- Muller-Pebody, B.; Johnson, A.P.; Heath, P.T.; Gilbert, R.E.; Henderson, K.L.; Sharland, M.; iCAP Group (Improving Antibiotic Prescribing in Primary Care). Empirical treatment of neonatal sepsis: Are the current guidelines adequate? Arch. Dis. Child.-Fetal Neonatal Ed. 2011, 96, F4–F8. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Sánchez, P.J.; Faix, R.G.; Poindexter, B.B.; Van Meurs, K.P.; Bizzarro, M.J.; Goldberg, R.N.; Frantz, I.D., 3rd; Hale, E.C.; et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Early onset neonatal sepsis: The burden of group B Streptococcal and E. coli disease continues. Pediatrics 2011, 127, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Amare, H.T.; Amare, A.T. Etiology, clinical features, and short-term outcome of seizures in newborns admitted to the University Of Gondar Hospital, Ethiopia. Pediatr. Health Med. Ther. 2019, 10, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Sorsa, A. Epidemiology of neonatal sepsis and associated factors implicated: Observational study at neonatal intensive care unit of Arsi University Teaching and Referral Hospital, South East Ethiopia. Ethiop. J. Health Sci. 2019, 29, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Omoregie, R.; Egbe, C.A.; Dirisu, J.; Ogefere, H.O. Microbiology of neonatal septicemia in a tertiary hospital in Benin City, Nigeria. Biomark. Genom. Med. 2013, 5, 142–146. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Higgins, R.D.; Fanaroff, A.A.; Duara, S.; Goldberg, R.; Laptook, A.; Walsh, M.; Oh, W.; Hale, E. Very low birth weight preterm infants with early onset neonatal sepsis: The predominance of gram-negative infections continues in the National Institute of Child Health and Human Development Neonatal Research Network, 2002–2003. Pediatr. Infect. Dis. J. 2005, 24, 635–639. [Google Scholar] [CrossRef]
- Huang, S.Y.; Tang, R.B.; Chen, S.J.; Chung, R.L. Coagulase-negative staphylococcal bacteremia in critically ill children: Risk factors and antimicrobial susceptibility. J. Microbiol. Immunol. Infect. Wei Mian Yu Gan Ran Za Zhi 2003, 36, 51–55. [Google Scholar]
- Ehlers, M.M.; Strasheim, W.; Lowe, M.; Ueckermann, V.; Kock, M.M. Molecular epidemiology of Staphylococcus epidermidis implicated in catheter-related bloodstream infections at an Academic Hospital in Pretoria, South Africa. Front. Microbiol. 2018, 9, 417. [Google Scholar] [CrossRef]
- Isaacs, D. Australasian Study Group For Neonatal, I. A ten year, multicentre study of coagulase negative staphylococcal infections in Australasian neonatal units. Arch. Dis. Child.-Fetal Neonatal Ed. 2003, 88, F89–F93. [Google Scholar] [CrossRef]
- Kari, A.; Simonsen, A.L.-B. Early-Onset Neonatal Sepsis. Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar]
- Ying, Q.; Wang, S.; Lou, X.; Ding, J.; Ding, J. Burden and risk factors of invasive group B Streptococcus disease among neonates in a Chinese maternity hospital. BMC Infect. Dis. 2019, 19, 123. [Google Scholar] [CrossRef]
- Edmond, K.M.; Kortsalioudaki, C.; Scott, S.; Schrag, S.J.; Zaidi, A.K.; Cousens, S.; Heath, P.T. Group B streptococcal disease in infants aged younger than 3 months: Systematic review and meta-analysis. Lancet 2012, 379, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Msanga, D.R.; Parpia, F.; Konje, E.T.; Hokororo, A.; Mshana, S.E. High Mortality among Premature Neonates with Positive Blood Culture Neonatal Sepsis in a Tertiary Hospital, Tanzania: A Call for Action. Children 2021, 8, 1037. [Google Scholar] [CrossRef] [PubMed]
- Marando, R.; Seni, J.; Mirambo, M.M.; Falgenhauer, L.; Moremi, N.; Mushi, M.F.; Kayange, N.; Manyama, F.; Imirzalioglu, C.; Chakraborty, T.; et al. Predictors of the extended-spectrum-beta lactamases producing Enterobacteriaceae neonatal sepsis at a tertiary hospital, Tanzania. Int. J. Med. Microbiol. 2018, 308, 803–811. [Google Scholar] [CrossRef]
- Khalil, M.R.; Uldbjerg, N.; Thorsen, P.B.; Møller, J.K. Intrapartum PCR assay versus antepartum culture for assessment of vaginal carriage of group B streptococci in a Danish cohort at birth. PLoS ONE 2017, 12, e0180262. [Google Scholar] [CrossRef]
- Puopolo, K.M.; Draper, D.; Wi, S.; Newman, T.B.; Zupancic, J.; Lieberman, E.; Smith, M.; Escobar, G.J. Estimating the probability of neonatal early-onset infection on the basis of maternal risk factors. Pediatrics 2011, 128, e1155–e1163. [Google Scholar] [CrossRef]
- Committee on Obstetric Practice. Prevention of early-onset group B streptococcal disease in newborns. Obstet. Gynecol. 2019, 134, e19–e40. [Google Scholar]
- Versporten, A.; Bielicki, J.; Drapier, N.; Sharland, M.; Goossens, H. ARPEC Project Group. The worldwide antibiotic resistance and prescribing in European children (ARPEC) point prevalence survey: Developing hospital-quality indicators of antibiotic prescribing for children. J. Antimicrob. Chemother. 2016, 71, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Mboya, E.A.; Sanga, L.A.; Ngocho, J.S. Irrational use of antibiotics in the Moshi Municipality Northern Tanzania: A cross-sectional study. Pan Afr. Med. J. 2018, 31, 165. [Google Scholar] [CrossRef] [PubMed]
- Ndaki, P.M.; Mushi, M.F.; Mwanga, J.R.; Konje, E.T.; Ntinginya, N.E.; Mmbaga, B.T.; Benitez-Paez, F. Dispensing antibiotics without prescription at community pharmacies and accredited drug dispensing outlets in Tanzania: A cross-sectional study. Antibiotics 2021, 10, 1025. [Google Scholar] [CrossRef]
- Klingenberg, C.; Olomi, R.; Oneko, M.; Sam, N.; Langeland, N. Neonatal morbidity and mortality in a Tanzanian tertiary care hospital. Ann. Trop. Paediatr. 2003, 23, 293–299. [Google Scholar] [CrossRef]
- Musoke, R.N.; Revathi, G. Emergence of multidrug-resistance gram-negative organisms in a neonatal unit and therapeutic implications. J. Trop. Pediatr. 2000, 46, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Geyesus, T.; Moges, F.; Eshetie, S.; Yeshitela, B.; Abate, E. Bacterial etiologic agents causing neonatal sepsis and associated risk factors in Gondar, Northwest Ethiopia. BMC Pediatr. 2017, 17, 137. [Google Scholar]
- Chaurasia, S.; Sivanandan, S.; Agarwal, R.; Ellis, S.; Sharland, M.; Sankar, M.J. Neonatal sepsis in South Asia: Huge burden and spiralling antimicrobial resistance. BMJ 2019, 364, k5314. [Google Scholar] [CrossRef] [PubMed]
- Yusef, D.; Shalakhti, T.; Awad, S.; Algharaibeh, H.; Khasawneh, W. Clinical characteristics and epidemiology of sepsis in the neonatal intensive care unit in the era of multi-drug resistant organisms: A retrospective review. Pediatr. Neonatol. 2018, 59, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Chen, S.Q.; Yan, Y.Y.; Hu, Y.-Y.; Wei, J.; Wu, Q.-P.; Lin, Z.-L.; Lin, J. Identification and antimicrobial resistance of pathogens in neonatal septicemia in China—A meta-analysis. Int. J. Infect. Dis. 2018, 71, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Vikesland, P.; Garner, E.; Gupta, S.; Kang, S.; Maile-Moskowit, A.; Zhu, N. Differential drivers of antimicrobial resistance across the world. Acc. Chem. Res. 2019, 52, 916–924. [Google Scholar] [CrossRef]
- Gera, T.; Shah, D.; Garner, P.; Richardson, M.; Sachdev, H.S. Integrated management of childhood illness (IMCI) strategy for children under five. Cochrane Database Syst. Rev. 2016, 22, CD010123. [Google Scholar] [CrossRef]
- Hudzicki, J. Kirby-Bauer disk diffusion susceptibility test protocol. Am. Soc. Microbiol. 2009, 15, 55–63. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. In CLSI Supplement M100: Clinical and Laboratory Standards Institute; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.; Giske, C.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
Variable | Frequency (n) | Percent (%) | |
---|---|---|---|
Age | Median (IQR) | 2 (1–8) | |
0–3 | 401 | 60.9 | |
≥4 | 257 | 39.1 | |
Gender | Male | 310 | 47.1 |
Female | 348 | 52.9 | |
Place of birth | MRRH | 325 | 49.4 |
Other health facilities | 333 | 50.6 | |
Mode of delivery | Cesarian section | 115 | 17.5 |
Vaginal delivery | 543 | 82.5 | |
Gestation age at delivery * | <37 weeks | 104 | 16.1 |
≥37 weeks | 541 | 83.9 | |
Birth weight (grams) | Mean (SD) | 2989.9 (±596.1) | |
<2500 | 97 | 14.7 | |
≥2500 | 561 | 85.3 | |
Antibiotic use before # | Yes | 104 | 16.4 |
No | 531 | 83.6 | |
Onset of sepsis features | Early (≤3 days) | 405 | 61.6 |
Late (>3 days) | 239 | 38.4 | |
Clinical features | Median (IQR) | 2 (2–3) | |
2 | 411 | 62.5 | |
>2 | 247 | 37.5 | |
Fever (≥38 °C) | Yes | 518 | 78.7 |
No | 140 | 21.3 | |
Birth Asphyxia | Yes | 50 | 7.6 |
No | 608 | 92.4 | |
Empirical treatment | 1st line regimen only | 542 | 82.4 |
1st and 2nd line regimens | 116 | 17.6 | |
Clinical outcome | Discharged | 592 | 90.0 |
Death | 28 | 4.3 | |
Referred | 38 | 5.8 |
Variable | Frequency (n) | Percent (%) | |
---|---|---|---|
Culture results | Bacterial growth | 460 | 72.0 |
No bacterial growth | 179 | 28.0 | |
Isolate type | Gram-positive | 374 | 81.3 |
Gram-negative | 86 | 18.7 | |
Isolated pathogen | CoNS | 163 | 35.4 |
Streptococcus agalactiae | 99 | 21.5 | |
Staphylococcus aureus | 94 | 20.4 | |
Escherichia coli | 42 | 9.1 | |
Klebsiella pneumoniae | 25 | 5.4 | |
Enterococcus faecalis | 18 | 3.9 | |
Pseudomonas aeruginosa | 9 | 2.0 | |
* Other GNB | 10 | 2.2 |
Antibiotic | CoNS (N = 161) | S. aureus (N = 92) | S. agalactiae (N = 98) | E. faecalis (N = 18) | Overall |
---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | % | |
AMP | NA | NA | 90 (91.8) | 4 (22.2) | 81.0 |
PEN | 151 (94.4) | 86 (93.5) | 93 (94.9) | 12 (66.7) | 92.9 |
OXA | 102 (63.4) | 52 (56.5) | NA | NA | 60.9 |
GEN | 114 (70.8) | 56 (60.9) | NA | 10 (55.6) | 66.4 |
CRO | NA | NA | 77 (78.6) | NA | 78.6 |
CIP | 63 (39.1) | 52 (56.5) | 50 (51.0) | NA | 47.0 |
ERY | 138 (85.7) | 79 (85.9) | 85 (86.7) | NA | 86.0 |
CLI | 62 (38.5) | 49 (53.3) | 29 (29.6) | NA | 39.9 |
CHL | 39 (24.2) | 32 (34.8) | 10 (10.2) | NA | 23.1 |
LNZ | 92 (57.5) | 66 (72.5) | NA | NA | 62.9 |
SXT | 114 (70.8) | 74 (83.1) | NA | NA | 74.3 |
Antibiotic | E. coli (N = 42) | Klebsiella pneumoniae (N = 24) | P. aeruginosa (N = 14) | * Other GNB (N = 10) | Overall |
---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | % | |
AMP | 37 (86.0) | 23 (95.8) | NA | 9 (90.0) | 90.7 |
SXT | 39 (92.9) | 20 (83.3) | 9 (100.0) | 10 (100.0) | 86.6 |
CHL | 9 (21.4) | 13 (54.2) | 4 (44.4) | 6 (60.0) | 35.5 |
AMC | 37 (88.1) | 20 (83.3) | 8 (88.9) | 10 (100.0) | 88.2 |
CIP | 20 (47.6) | 8 (33.3) | 5 (55.6) | 5 (50.0) | 42.2 |
PIP | 30 (71.4) | 10 (41.7) | 6 (66.7) | 8 (80.0) | 63.5 |
PIP/TZ | 7 (16.7) | 8 (33.3) | 3 (33.3) | 4 (40.0) | 25.9 |
CAZ | 30 (71.4) | 17 (70.4) | 8 (88.9) | 10 (100.0) | 76.5 |
CRO | 21 (50.0) | 12 (50.0) | 7 (77.5) | 8 (80.0) | 53.3 |
GEN | 19 (45.2) | 12 (50.0) | 5 (55.6) | 6 (60.0) | 46.7 |
AMK | 9 (21.4) | 6 (25.0) | 2 (22.2) | 4 (40.0) | 24.7 |
MEM | 9 (21.4) | 10 (41.7) | 1 (11.1) | 3 (30.0) | 27.1 |
Empirical Therapy | Result of Antibiotic Susceptibility | ||
---|---|---|---|
Total Susceptibility Tests | Appropriate * n (%) | Inappropriate n (%) | |
Overall 1st line regimen | 454 | 198 (43.6) | 256 (56.4) |
1st line only regimen | 372 | 165 (44.4) | 207 (55.6) |
2nd line regimen | 35 | 9 (25.7) | 26 (74.3) |
Variable | Frequency # | Antibiotic Classes Resisted | MDR Strains n (%) | p-Value | ||||
---|---|---|---|---|---|---|---|---|
1–2 | 3 | 4 | 5 | |||||
Isolate type | Gram-positive | 351 | 106 | 92 | 86 | 65 | 243(69.2) | 0.334 |
Gram-negative | 85 | 21 | 13 | 13 | 38 | 64(75.3) | ||
Isolated pathogen | Streptococcus agalactiae | 98 | 58 | 34 | 6 | 0 | 40 (40.8) | |
CoNS | 161 | 33 | 47 | 51 | 30 | 128 (79.5) | ||
Staphylococcus aureus | 92 | 15 | 11 | 29 | 35 | 75 (81.5) | ||
Klebsiella pneumoniae | 24 | 10 | 3 | 3 | 8 | 14 (58.3) | ||
Escherichia coli | 42 | 10 | 6 | 10 | 16 | 32 (76.2) | ||
Pseudomonas aeruginosa | 9 | 1 | 3 | 0 | 5 | 8 (88.9) | ||
* Other GNB | 10 | 0 | 1 | 0 | 9 | 10 (100.0) | ||
Total | 436 | 127 | 105 | 99 | 103 | 307 (70.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majigo, M.; Makupa, J.; Mwazyunga, Z.; Luoga, A.; Kisinga, J.; Mwamkoa, B.; Kim, S.; Joachim, A. Bacterial Aetiology of Neonatal Sepsis and Antimicrobial Resistance Pattern at the Regional Referral Hospital, Dar es Salam, Tanzania; A Call to Strengthening Antibiotic Stewardship Program. Antibiotics 2023, 12, 767. https://doi.org/10.3390/antibiotics12040767
Majigo M, Makupa J, Mwazyunga Z, Luoga A, Kisinga J, Mwamkoa B, Kim S, Joachim A. Bacterial Aetiology of Neonatal Sepsis and Antimicrobial Resistance Pattern at the Regional Referral Hospital, Dar es Salam, Tanzania; A Call to Strengthening Antibiotic Stewardship Program. Antibiotics. 2023; 12(4):767. https://doi.org/10.3390/antibiotics12040767
Chicago/Turabian StyleMajigo, Mtebe, Jackline Makupa, Zivonishe Mwazyunga, Anna Luoga, Julius Kisinga, Bertha Mwamkoa, Sukyung Kim, and Agricola Joachim. 2023. "Bacterial Aetiology of Neonatal Sepsis and Antimicrobial Resistance Pattern at the Regional Referral Hospital, Dar es Salam, Tanzania; A Call to Strengthening Antibiotic Stewardship Program" Antibiotics 12, no. 4: 767. https://doi.org/10.3390/antibiotics12040767
APA StyleMajigo, M., Makupa, J., Mwazyunga, Z., Luoga, A., Kisinga, J., Mwamkoa, B., Kim, S., & Joachim, A. (2023). Bacterial Aetiology of Neonatal Sepsis and Antimicrobial Resistance Pattern at the Regional Referral Hospital, Dar es Salam, Tanzania; A Call to Strengthening Antibiotic Stewardship Program. Antibiotics, 12(4), 767. https://doi.org/10.3390/antibiotics12040767