Timing of Revascularization and Parenteral Antibiotic Treatment Associated with Therapeutic Failures in Ischemic Diabetic Foot Infections
Abstract
:1. Introduction
2. Results
2.1. Study Populations
2.2. Angiologic Interventions
2.3. Infections and Antibiotic Treatments
2.4. Clinical and Microbiological Failures
2.5. Multivariate Adjustments
3. Discussion
3.1. Limitations
3.2. Conclusions
4. Methods
4.1. Setting and Management of Diabetic Foot Infections
4.2. Study Population, Follow-Ups, and Definitions
- (a)
- Does the sequence of when revascularization and orthopedic (debridement) surgery are completed affect the likelihood of clinical or microbiological failure?
- (b)
- Is the time interval between when revascularization and orthopedic (debridement) surgery are performed important (within a traditional time period of 2 weeks before and after surgery)?
- (c)
- Is the duration of the initial parenteral antibiotic therapy related to the likelihood of remission of an ischemic DFI?
4.3. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sen, P.; Demirdal, T.; Emir, B. Meta-analysis of risk factors for amputation in diabetic foot infections. Diabetes Metab. Res. Rev. 2019, 35, 3165. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, M. The current burden of diabetic foot disease. J. Clin. Orthop. Trauma 2021, 17, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Swerdlow, M.A.; Armstrong, A.A.; Conte, M.S.; Padula, W.V.; Bus, S.A. Five-year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J. Foot. Ankle Res. 2020, 13, 16. [Google Scholar] [CrossRef] [Green Version]
- Lipsky, B.A.; Senneville, É.; Abbas, Z.G.; Aragón-Sánchez, J.; Diggle, M.; Embil, J.M.; Kono, S.; Lavery, L.A.; Malone, M.; van Asten, S.A.; et al. Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36, 3280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haug, F.; Waibel, F.W.A.; Lisy, M.; Winkler, E.; Uçkay, I.; Schöni, M. The impact of the length of total and intravenous systemic antibiotic therapy for the remission of diabetic foot infections. Int. J. Infect. Dis. 2022, 120, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Gariani, K.; Lebowitz, D.; von Dach, E.; Kressmann, B.; Lipsky, B.A.; Uçkay, I. Remission in diabetic foot infections: Duration of antibiotic therapy and other possible associated factors. Diabetes Obes. Metab. 2019, 21, 244–251. [Google Scholar] [CrossRef]
- Waibel, F.W.; Schöni, M.; Kronberger, L.; Flury, A.; Berli, M.C.; Lipsky, B.A.; Uçkay, I.; Jud, L. Treatment Failures in Diabetic Foot Osteomyelitis Associated with Concomitant Charcot Arthropathy: The Role of Underlying Arteriopathy. Int. J. Infect. Dis. 2022, 114, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Hinchliffe, R.J.; Forsythe, R.O.; Apelqvist, J.; Boyko, E.J.; Fitridge, R.; Hong, J.P.; Katsanos, K.; Mills, J.L.; Nikol, S.; Reekers, J.; et al. Guidelines on diagnosis, prognosis, and management of peripheral artery disease in patients with foot ulcers and diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36, 3276. [Google Scholar] [CrossRef]
- Criqui, M.H.; Matsushita, K.; Aboyans, V.; Hess, C.N.; Hicks, C.W.; Kwan, T.W.; McDermott, M.M.; Misra, S.; Ujueta, F.; on behalf of the American Heart Association Council on Epidemiology and Prevention; et al. Lower Extremity Peripheral Artery Disease: Contemporary Epidemiology, Management Gaps, and Future Directions: A Scientific Statement From the American Heart Association. Circulation 2021, 144, 171–191. [Google Scholar] [CrossRef]
- Felipe, R.R.; Plata-Que, M.T. Predictors of Outcomes of Foot Ulcers among Individuals with Type 2 Diabetes Mellitus in an Outpatient Foot Clinic. J. ASEAN Fed. Endocr. Soc. 2021, 36, 189–195. [Google Scholar] [CrossRef]
- Prompers, L.; Schaper, N.; Apelqvist, J.; Edmonds, M.; Jude, E.; Mauricio, D.; Uccioli, L.; Urbancic, V.; Bakker, K.; Holstein, P.; et al. Prediction of outcome in individuals with diabetic foot ulcers: Focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetologia 2008, 51, 747–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebowitz, D.; Gariani, K.; Kressmann, B.; Dach, E.V.; Huttner, B.; Bartolone, P.; Lê, N.; Mohamad, M.; Lipsky, B.A.; Uçkay, I. Are antibiotic-resistant pathogens more common in subsequent episodes of diabetic foot infection? Int. J. Infect. Dis. 2017, 59, 61–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wuarin, L.; Abbas, M.; Harbarth, S.; Waibel, F.W.A.; Holy, D.; Burkhard, J.; Uçkay, I. Changing perioperative prophylaxis during antibiotic therapy and iterative debridement for orthopedic infections? PLoS ONE 2019, 14, 0226674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gariani, K.; Pham, T.T.; Kressmann, B.; Jornayvaz, F.R.; Gastaldi, G.; Stafylakis, D.; Philippe, J.; Lipsky, B.A.; Uçkay, I. Three Weeks Versus Six Weeks of Antibiotic Therapy for Diabetic Foot Osteomyelitis: A Prospective, Randomized, Noninferiority Pilot Trial. Clin. Infect. Dis. 2021, 73, 1539–1545. [Google Scholar] [CrossRef]
- Waibel, F.W.A.; Berli, M.C.; Catanzaro, S.; Sairanen, K.; Schöni, M.; Böni, T.; Burkhard, J.; Holy, D.; Huber, T.; Bertram, M.; et al. Optimization of the antibiotic management of diabetic foot infections: Protocol for two randomized controlled trials. Trials 2020, 21, 54. [Google Scholar] [CrossRef] [Green Version]
- Li, H.K.; Rombach, I.; Zambellas, R.; Walker, A.S.; McNally, M.A.; Atkins, B.L.; Lipsky, B.A.; Hughes, H.C.; Bose, D.; Kümin, M.; et al. Oral versus Intravenous Antibiotics for Bone and Joint Infection. N. Engl. J. Med. 2019, 80, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Carmona, G.A.; Lacraz, A.; Hoffmeyer, P.; Assal, M. Incidence of major lower limb amputation in Geneva: Twenty-one years of observation. Rev. Med. Suisse 2014, 10, 1997–1998. [Google Scholar]
- Uçkay, I.; Holy, D.; Betz, M.; Sauer, R.; Huber, T.; Burkhard, J. Osteoarticular infections: A specific program for older patients? Aging Clin. Exp. Res. 2021, 33, 703–710. [Google Scholar] [CrossRef]
- Peter-Riesch, B.; Czock, A.; Uçkay, I.; Interdisciplinary Expert Group on the Diabetic Foot. Swiss interdisciplinary guidance on good practices for acute and complicated diabetic foot syndromes. Swiss. Med. Wkly. 2021, 11, 30045. [Google Scholar] [CrossRef]
- Cates, N.K.; Elmarsafi, T.; Bunka, T.J.; Walters, E.T.; Akbari, C.M.; Zarick, C.; Evans, K.K.; Steinberg, J.S.; Attinger, C.E.; Kim, P.J. Peripheral Vascular Disease Diagnostic Related Outcomes in Diabetic Charcot Reconstruction. J. Foot. Ankle Surg. 2019, 58, 1058–1063. [Google Scholar] [CrossRef]
- Darbellay, P.; Uçkay, I.; Dominguez, D.; Mugnai, D.; Filtri, L.; Lew, D.; Assal, M. Diabetic foot infection: A multidisciplinary approach. Rev. Med. Suisse 2011, 7, 894–897. [Google Scholar] [PubMed]
- Gariani, K.; Lebowitz, D.; Kressmann, B.; von Dach, E.; Sendi, P.; Waibel, F.; Berli, M.; Huber, T.; Lipsky, B.A.; Uçkay, I. Oral amoxicillin-clavulanate for treating diabetic foot infections. Diabetes Obes. Metab. 2019, 21, 1483–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontaine, R.; Kim, M.; Kieny, R. Surgical treatment of peripheral circulation disorders. Helv. Chir. Acta 1954, 21, 499–533. [Google Scholar] [PubMed]
- Bandyk, D.F. The diabetic foot: Pathophysiology, evaluation, and treatment. Semin. Vasc. Surg. 2018, 31, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Graziani, L.; Silvestro, A.; Bertone, V.; Manara, E.; Andreini, R.; Sigala, A.; Mingardi, R.; De Giglio, R. Vascular involvement in diabetic subjects with ischemic foot ulcer: A new morphologic categorization of disease severity. Eur. J. Vasc. Endovasc. Surg. 2007, 33, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soyoye, D.O.; Ankle-Brachial Indexodun, O.O.; Ikem, R.T.; Kolawole, B.A.; Akintomide, A.O. Diabetes and peripheral artery disease: A review. World J. Diabetes 2021, 12, 827–838. [Google Scholar] [CrossRef]
- Stoberock, K.; Kaschwich, M.; Nicolay, S.S.; Mahmoud, N.; Heidemann, F.; Rieß, H.C.; Debus, E.S.; Behrendt, C.A. The interrelationship between diabetes mellitus and peripheral arterial disease. Vasa 2021, 50, 323–330. [Google Scholar] [CrossRef]
- Hingorani, A.; LaMuraglia, G.M.; Henke, P.; Meissner, M.H.; Loretz, L.; Zinszer, K.M.; Driver, V.R.; Frykberg, R.; Carman, T.L.; Marston, W.; et al. The management of diabetic foot: A clinical practice guideline by the Society for Vascular Surgery in collaboration with the American Podiatric Medical Association and the Society for Vascular Medicine. J. Vasc. Surg. 2016, 63, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Gazzaruso, C.; Gallotti, P.; Pujia, A.; Montalcini, T.; Giustina, A.; Coppola, A. Predictors of healing, ulcer recurrence and persistence, amputation and mortality in type 2 diabetic patients with diabetic foot: A 10-year retrospective cohort study. Endocrine 2021, 71, 59–68. [Google Scholar] [CrossRef]
- Forsythe, R.O.; Apelqvist, J.; Boyko, E.J.; Fitridge, R.; Hong, J.P.; Katsanos, K.; Mills, J.L.; Nikol, S.; Reekers, J.; Venermo, M.; et al. Effectiveness of revascularisation of the ulcerated foot in patients with diabetes and peripheral artery disease: A systematic review. Diabetes Metab. Res. Rev. 2020, 36, 279. [Google Scholar] [CrossRef] [Green Version]
- Elgzyri, T.; Larsson, J.; Nyberg, P.; Thörne, J.; Eriksson, K.F.; Apelqvist, J. Early revascularization after admittance to a diabetic foot center affects the healing of ischemic foot ulcer in patients with diabetes. Eur. J. Vasc. Endovasc. Surg. 2014, 48, 440–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckman, J.A.; Schneider, P.A.; Conte, M.S. Advances in Revascularization for Peripheral Artery Disease: Revascularization in PAD. Circ. Res. 2021, 128, 1885–1912. [Google Scholar] [CrossRef]
- Uçkay, I.; Schöni, M.; Berli, M.C.; Niggli, F.; Noschajew, E.; Lipsky, B.A.; Waibel, F.W.A. The association of chronic, enhanced immunosuppression with outcomes of diabetic foot infections. Endocrinol. Diabetes Metab. 2022, 5, 00298. [Google Scholar] [CrossRef] [PubMed]
- Zingg, M.; Lacraz, A.; Robert-Ebadi, H.; Waibel, F.; Berli, M.C.; Uçkay, I. Transcutaneous oxygen pressure values often fail to predict stump failures after foot or limb amputation in chronically ischemic patients. Clin. Surg. 2019, 1–6. [Google Scholar]
- Berli, M.C.; Jundt-Ecker, M.; Meier, M.R.; Hofer, M.; Schöni, M.; Götschi, T.; Uçkay, I.; Böni, T.; Waibel, F.W.A. Resting TcPO2 levels decrease during liner wear in persons with a transtibial amputation. PLoS ONE 2020, 15, 0239930. [Google Scholar] [CrossRef] [PubMed]
- Soldevila-Boixader, L.; Fernández, A.P.; Laguna, J.M.; Uçkay, I. Local Antibiotics in the Treatment of Diabetic Foot Infections: A Narrative Review. Antibiotics 2023, 12, 124. [Google Scholar] [CrossRef]
- Forsythe, R.O.; Apelqvist, J.; Boyko, E.J.; Fitridge, R.; Hong, J.P.; Katsanos, K.; Mills, J.L.; Nikol, S.; Reekers, J.; Venermo, M.; et al. Performance of prognostic markers in the prediction of wound healing or amputation among patients with foot ulcers in diabetes: A systematic review. Diabetes Metab. Res. Rev. 2020, 36, 3278. [Google Scholar] [CrossRef]
- Elgzyri, T.; Larsson, J.; Thörne, J.; Eriksson, K.F.; Apelqvist, J. Outcome of ischemic foot ulcer in diabetic patients who had no invasive vascular intervention. Eur. J. Vasc. Endovasc. Surg. 2013, 46, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.I.; Luime, J.J.; Uçkay, I.; Hannouche, D.; Hoffmeyer, P.; Lübbeke, A. Is There an Association Between Smoking Status and Prosthetic Joint Infection After Primary Total Joint Arthroplasty? J. Arthroplast. 2018, 33, 2218–2224. [Google Scholar] [CrossRef]
- Vas, P.R.J.; Demetriou, M.; Papanas, N. Oral antibiotic therapy in diabetic foot osteomyelitis: One small step or a giant leap of faith? Ann. Transl. Med. 2019, 7, 266. [Google Scholar] [CrossRef]
- Golledge, J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nat. Rev. Cardiol. 2022, 19, 456–474. [Google Scholar] [CrossRef]
- Wolf, S.; Spirk, D.; Forgo, G.; Sebastian, T.; Voci, D.; Kucher, N.; Barco, S. Prevalent use of high-intensity statin therapy and LDL-C target attainment among PAD patients undergoing angioplasty. Vasa 2022, 51, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Uçkay, I.; Aragón-Sánchez, J.; Lew, D.; Lipsky, B.A. Diabetic foot infections: What have we learned in the last 30 years? Int. J. Infect. Dis. 2015, 40, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uçkay, I.; Berli, M.; Sendi, P.; Lipsky, B.A. Principles and practice of antibiotic stewardship in the management of diabetic foot infections. Curr. Opin. Infect. Dis. 2019, 32, 95–101. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 838; %) | Revascularized Patients (n = 608; %) | |
---|---|---|
Age (median, in years) | 69.3 (834) | 69.5 (605) |
Female sex | 167 (19.9%) | 98 (16.1%) |
Body mass index (median; kg/m2) | 29.6 (388) | 29.7 (261) |
Glycated hemoglobulin level at admission (%, median) | 8 (44) | 8 (35) |
Glomerular filtration rate (mL/min/1.73 m2) | 57 (472) | 55 (341) |
Smoking, pack-years (median; years) | 37 (446) | 40 (335) |
Insulin treatment at admission No Yes | 187 (22.3%) 651 (77.7%) | 140 (23.0%) 468 (77.0%) |
Renal dialysis at admission No Yes | 750 (89.5%) 88 (10.5%) | 544 (89.5%) 64 (10.5%) |
Statin medication at admission No Yes | 234 (32.6%) 484 (67.4%) | 148 (28.9%) 364 (71.1%) |
Total duration of antibiotic therapy (median; days) | 20 days | 21 days |
Duration of intravenous antibiotic (median; days) | 5 days | 7 days |
C-reactive protein level at admission (median; mg/L) | 72.8 (179) | 71.8 (123) |
Peripheral arterial disease localization Pelvis Thigh Lower leg Multilevel Acral | 9 (1.1%) 84 (10.0%) 342 (40.8%) 294 (35.1%) 2 (0.2%) | 6 (1.0%) 58 (9.5%) 242 (39.8%) 269 (44.2%) NA |
Chronic anticoagulation No anticoagulation No documentation Acetylsalicylic acid Clopidogrel Acetylsalicylic acid + Clopidogrel Phenprocoumon (coumarin) Rivaroxaban Apixaban Acetylsalicylic acid + Phenprocoumon Other combinations | 62 (7.4%) 42 (5.0%) 360 (43.0%) 45 (5.4%) 93 (11.1%) 82 (9.8%) 5 (0.6%) 5 (0.6%) 25 (4.9%) 41 (4.9%) | 26 (4.3%) 29 (4.8%) 255 (41.9%) 34 (5.6%) 85 (14.0%) 50 (8.2%) 1 (0.2%) 5 (0.8%) 16 (2.6%) 40 (6.6%) |
Absent pedal pulses (median; SD) | 646 (77.1%) | 477 (78.5%) |
Ankle–brachial index (median; SD) | 0.8 (193) | 0.8 (148) |
Toe systolic pressure (median; SD) | 70 (134) | 63 (95) |
Transcutaneous oxygen pressure (mmHg) Tibia Upper ankle joint Medial malleolus Lateral malleolus | 49.5 (28) 41 (62) 43 (110) 42.5 (84) | 49 (23) 40 (39) 40.5 (78) 42 (63) |
Runoff type 3-vessel runoff 2-vessel runoff 1-vessel runoff Only collaterals | 49 (5.9%) 140 (16.7%) 121 (14.4%) 12 (1.4%) | 36 (5.9%) 105 (17.3%) 110 (19.1%) 10 (57.1%) |
Obstructed vessel in case of 2-vessel runoff A. tibialis posterior A. tibialis anterior A. fibularis | 82 (9.8%) 49 (5.9%) 9 (1.1%) | 57 (9.4%) 43 (7.1%) 5 (0.8%) |
Open vessel in case of 1-vessel runoff A. fibularis A. tibialis anterior A. tibialis posterior | 62 (7.4%) 35 (4.2%) 22 (2.6%) | 56 (9.2%) 31 (5.1%) 20 (3.3%) |
In-stent stenosis No Yes | - | 295 (87.5%) 42 (12.5%) |
Angioplasty success No Yes | - | 97 (23.5%) 316 (76.5%) |
Angioplasty A. femoralis superficialis No Yes | 620 (74.0%) 218 (26.0%) | - |
Angioplasty A. poplitea No Yes | 696 (83.1%) 142 (16.9%) | - |
Angioplasty A. tibialis anterior No Yes | 619 (73.7%) 219 (26.1%) | - |
Angioplasty A. tibialis posterior No Yes | 681 (81.3%) 157 (18.7%) | - |
Angioplasty A. fibularis No Yes | 664 (79.2%) 174 (20.8%) | - |
Stratified delays between admission and angioplasty at 25% percentile at 50% percentile at 75% percentile at 100% percentile | - | 104 (17.1%) 107 (17.6%) 164 (27.0%) 233 (38.3%) |
Variables (with Median Values) | Remission (n = 426) | Failure (n = 182) | p Value |
---|---|---|---|
Age | 69.6 years | 69.5 years | 0.21 |
Glycated hemoglobulin level at admission | 8% | 8% | 0.23 |
Ankle–brachial index | 0.8 | 0.8 | 0.63 |
Delay between angioplasty and surgery | 7 days | 7 days | 0.36 |
Surgery after angioplasty | 259 (94%) | 114 (90%) | 0.18 |
Initial success of angioplasty | 204 (78%) | 86 (77%) | 0.18 |
Receiving statin medication | 260 (71%) | 104 (70%) | 0.80 |
Total duration of antibiotic use | 20 days | 28 days | 0.01 |
Duration of parenteral antibiotic use | 7 days | 8 days | 0.03 |
Variables, n = 608 | Univariate Results | Multivariate Results |
---|---|---|
Male sex | 1.5 (1.0–2.3) | - |
Age | 1.0 (1.0–1.0) | 1.0 (0.9–1.1) |
Body mass index | 1.0 (0.9–1.0) | - |
Toe systolic pressure | 1.0 (1.0–1.0) | 1.0 (1.0–1.0) |
Anticoagulation | 1.1 (1.0–1.1) | 0.3 (0.1–1.0) |
Statin medication | 1.4 (1.0–2.1) | - |
Insulin | 1.3 (0.9–1.9) | - |
Renal dialysis | 1.6 (1.0–2.5) | - |
Antibiotic duration postoperative | 1.0 (1.0–1.0) | 1.0 (1.0–1.0) |
Duration of parenteral antibiotic | 1.0 (1.0–1.0) | 1–0 (0.9–1.1) |
Peripheral arterial disease (stages according to Fontaine) Stage 1 Stage 2 Stage 3 Stage 4 Stage unknown | Reference 1.4 (0.9–2.1) 0.4 (0.1–2.8) 1.4 (0.9–2.1) 1.1 (0.6–1.9) | - |
Pulse (palpable) A. dorsalis pedis + A. tibialis posterior A. dorsalis pedis A. tibialis posterior No vessel | Reference 1.4 (0.7–3.1) 1.2 (0.4–3.1) 1.3 (0.7–2.4) | 1.6 (0.6–4.2) |
Run off type 3-vessel runoff 2-vessel runoff 1-vessel runoff Only collaterals | Reference 1.5 (0.7–3.1) 1.0 (0.5–2.0) 0.3 (0.1–1.4) | - |
Ankle–brachial index | 4.3 (0.8–23.9) | - |
Delay revascularization (continuous variable) | 1.0 (1.0–1.0) | 1.0 (1.0–1.0) |
Delay revascularization (stratified variable) 25% percentile of the overall delay 50% percentile 75% percentile | Reference 1.1 (0.6–1.7) 1.0 (0.7–1.6) | 1.0 (1.0–1.0) 0.1 (0.0–9.7) 0.0 (0.0–8.3) |
Angioplasty after surgery | 0.9 (0.5–1.8) | 1 (omitted) |
Closed vessel in 2-vessel runoff A. tibialis posterior A. tibialis anterior A. fibularis | Reference 0.5 (0.2–1.0) 0.1 (0.0–2.3) | - |
Run off 1 | 1.0 (0.6–1.6) | - |
In-stent stenosis | 0.7 (0.4–1.5) | - |
Angioplasty A. femoralis superficialis | 1.2 (0.9–1.7) | 0.2 (0.0–5.1) |
Angioplasty A. poplitea | 1.2 (0.9–1.8) | - |
Angioplasty A. tibialis anterior | 1.2 (0.9–1.7) | - |
Angioplasty A. tibialis posterior | 1.5 (1.0–2.1) | - |
Variables, n = 608 | Univariate Analysis | Multivariate Analysis |
---|---|---|
Male sex | 6.6 (0.9–48.6) | - |
Age | 1.0 (1.0–1.1) | - |
Body mass index | 0.8 (0.7–1.0) | - |
Smoking (pack-years) | 1.0 (1.0–1.0) | 1.0 (1.0–1.0) |
Anticoagulation | 1.0 (0.8–1.2) | - |
Statin medication | 2.6 (0.7–9.2) | - |
Insulin | 1.4 (0.5–3.8) | - |
Dialysis | 1.5 (0.5–4.3) | - |
Antibiotic duration postoperative | 1.0 (1.0–1.0) | 1.0 (1.0–1.0) |
Parenteral antibiotic duration | 1.0 (1.0–1.0) | 1.0 (0.8–1.1) |
Peripheral arterial disease (stages according to Fontaine) Stage 1 Stage 2 Stage 3 Stage 4 | Reference 1.3 (0.5–3.2) 0.4 (0.1–2.8) 0.8 (0.3–2.3) | - |
Pulse (palpable) A. dorsalis pedis + A. tibialis posterior A. dorsalis pedis A. tibialis posterior | Reference 2.7 (0.2–30.1) 2.1 (0.1–34.1) | - |
Toe systolic pressure | 1.0 (1.0–1.0) | 1.0 (1.0–1.0) |
Run off type 3-vessel runoff 2-vessel runoff 1-vessel runoff Only collaterals | Reference 2.8 (0.3–22.4) 1.5 (0.2–12.7) ns | - |
Ankle–brachial index | 0.6 (0.4–1.0) | 2.3 (0.6–9.4) |
Angioplasty “entirely successful” | 1.4 (0.5–4.1) | 1.1 (0.1–11.4) |
Delay revascularization (continuous variable) | 1.0 (1.0–1.0) | 1.0 (1.0–1.1) |
Delay revascularization (stratified variable) 25% percentile 50% percentile 75% percentile | Reference 1.7 (0.5–5.9) 1.3 (0.4–4.2) | 0.2 (0.0–32.6) 0.2 (0.0–33.0) |
Angioplasty after amputation | 1.2 (0.3–5.4) | 1 (omitted) |
Closed vessel in 2-vessel runoff A. tibialis posterior A. tibialis anterior A. fibularis | Reference 0.5 (0.1–2.4) 1.5 (0.2–14.1) | - |
Run off 1 | 1.2 (0.4–3.5) | - |
In-stent stenosis | 0.4 (0.1–2.9) | - |
Angioplasty A. femoralis superficialis | 2.0 (1.0–4.2) | - |
Angioplasty A. poplitea | 1.6 (0.7–3.6) | - |
Angioplasty A. tibialis anterior | 2.0 (0.9–4.1) | - |
Angioplasty A. tibialis posterior | 1.5 (0.7–3.4) | - |
Angioplasty A. fibularis | 1.6 (0.7–3.4) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altmann, D.; Waibel, F.W.A.; Forgo, G.; Grigorean, A.; Lipsky, B.A.; Uçkay, I.; Schöni, M. Timing of Revascularization and Parenteral Antibiotic Treatment Associated with Therapeutic Failures in Ischemic Diabetic Foot Infections. Antibiotics 2023, 12, 685. https://doi.org/10.3390/antibiotics12040685
Altmann D, Waibel FWA, Forgo G, Grigorean A, Lipsky BA, Uçkay I, Schöni M. Timing of Revascularization and Parenteral Antibiotic Treatment Associated with Therapeutic Failures in Ischemic Diabetic Foot Infections. Antibiotics. 2023; 12(4):685. https://doi.org/10.3390/antibiotics12040685
Chicago/Turabian StyleAltmann, Dominique, Felix W. A. Waibel, Gabor Forgo, Alexandru Grigorean, Benjamin A. Lipsky, Ilker Uçkay, and Madlaina Schöni. 2023. "Timing of Revascularization and Parenteral Antibiotic Treatment Associated with Therapeutic Failures in Ischemic Diabetic Foot Infections" Antibiotics 12, no. 4: 685. https://doi.org/10.3390/antibiotics12040685
APA StyleAltmann, D., Waibel, F. W. A., Forgo, G., Grigorean, A., Lipsky, B. A., Uçkay, I., & Schöni, M. (2023). Timing of Revascularization and Parenteral Antibiotic Treatment Associated with Therapeutic Failures in Ischemic Diabetic Foot Infections. Antibiotics, 12(4), 685. https://doi.org/10.3390/antibiotics12040685