Parasiticides: Weapons for Controlling Microbial Vector-Borne Diseases in Veterinary Medicine; The Potential of Ethnobotanic/Phytoparasiticides: An Asset to One Health
Abstract
:1. Introduction
2. Results and Discussion
2.1. Data Considering Plant Phytoectoparasiticide Potential and Animal Species Mentioned
2.2. Plant Species Selected with the Most Ectoparasiticide Potential
2.2.1. Plant Species Mentioned in the Ethnobotanical Survey
2.2.2. Refined Plants Selection through Bibliographic Research
3. Methods
3.1. Data Source
3.2. Data Analysis and Data Selection
3.3. Bibliographic Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Survey Code (a) | Plant Species (b) | Plant Common Name | Utilized Plant Part | Illness/Health Problem | Livestock Species (c) | Preparation Type (d) | Description of Use |
---|---|---|---|---|---|---|---|
Vet 1 to Vet 56 |
References
- Wall, R.; Shearer, D. Veterinary Ectoparasites: Biology, Pathology and Control, 2nd ed.; Blackwell Science: Hoboken, NJ, USA, 2001; ISBN 978-0-632-05618-7. [Google Scholar]
- Imtiaz Rafiqi, S.; Kumar, S.; Chaudhary, R.; Bin Farooq, U.; Kirthika, P. Ectoparasites of Companion Animals and their Control. Int. J. Anim. Vet. Sci. 2016, 3, 15–18. [Google Scholar]
- Gorman, C. Evolution of ectoparasiticide formulations and strategies. Parasitology 2016, 21, 79–88. [Google Scholar] [CrossRef]
- Morelli, S.; Diakou, A.; Di Cesare, A.; Colombo, M.; Traversa, D. Canine and Feline Parasitology: Analogies, Differences, and Relevance for Human Health. Clin. Microbiol. Rev. 2021, 34, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.C.P.; Oliveira, W.S.M.; Brito, R.S.; Lima, T.A.R.F.; Giannelli, A.; Carvalho, G.A.; Ramos, R.A.N. Ectoparasites infesting animals living in close contact with human beings: A real trouble for One Health perspective? Arq. Bras. Med. Veterinária E Zootec. 2021, 73, 55–61. [Google Scholar] [CrossRef]
- Hopla, C.E.; Durden, L.A.; Keirans, J.E. Ectoparasites and classification. Rev. Sci. Tech. Int. Off. Epizoot. 1994, 13, 985–1017. [Google Scholar] [CrossRef]
- Modular Guide Series Control of Ectoparasites in Dogs and Cats; Guideline 3; ESCCAP: Malvern, UK, 2018. Available online: https://www.esccap.org/uploads/news/fsql9ip5/MG3%20Control%20of%20Ectoparasites%20in%20Dogs%20and%20Cats.pdf (accessed on 13 October 2022).
- Wells, B.; Burgess, S.T.G.; McNeilly, T.N.; Huntley, J.F.; Nisbet, A.J. Recent developments in the diagnosis of ectoparasite infections and disease through a better understanding of parasite biology and host responses. Mol. Cell. Probes 2012, 26, 47–53. [Google Scholar] [CrossRef]
- Meng, C.Q.; Sluder, A.E. (Eds.) Ectoparasites: Drug Discovery against Moving Targets (Drug Discovery in Infectious Diseases); Wiley-VCH: Hoboken, NJ, USA, 2018; Volume 8, ISBN 978-3-527-80290-6. [Google Scholar]
- Duvallet, G.; Boulanger, N.; Robert, V. Arthropods: Definition and Medical Importance. In Skin and Arthropod Vectors; Elsevier: Amsterdam, The Netherlands, 2018; pp. 29–54. ISBN 978-0-12-811436-0. [Google Scholar]
- Beugnet, F.; Franc, M. Insecticide and acaricide molecules and/or combinations to prevent pet infestation by ectoparasites. Trends Parasitol. 2012, 28, 267–279. [Google Scholar] [CrossRef]
- Mike Service. Medical Entomology for Students, 5th ed.; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-107-66818-8. [Google Scholar]
- Wall, R. Ectoparasites: Future challenges in a changing world. Vet. Parasitol. 2007, 148, 62–74. [Google Scholar] [CrossRef]
- Pereira, A.; Martins, Â.; Brancal, H.; Vilhena, H.; Silva, P.; Pimenta, P.; Diz-Lopes, D.; Neves, N.; Coimbra, M.; Alves, A.C.; et al. Parasitic zoonoses associated with dogs and cats: A survey of Portuguese pet owners’ awareness and deworming practices. Parasit. Vectors 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Elsheikha, H.; Wright, I.M.; McGarry, J.W. Parasites and Pets: A Veterinary Nursing Guide; CABI: Boston, MA, USA, 2018; ISBN 978-1-78639-406-4. [Google Scholar]
- Mackenzie, J.S.; Jeggo, M. The One Health Approach—Why Is It So Important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef]
- ESCCAP. Control of Ectoparasites in Dogs and Cats; ESCCAP: Malvern, UK, 2018; Available online: https://www.esccap.org/uploads/docs/4ce0ad9k_0720_ESCCAP_GL3__English_v17_1p.pdf (accessed on 13 October 2022).
- World Health Organization. Chapter 4: Bedbugs, fleas, lice, ticks and mites. In World Health Organization; WHO: Geneva, Switzerland, 2008; pp. 237–261. [Google Scholar]
- Sykes, J.E. Bartonellosis. In Canine and Feline Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2014; Volume 52, pp. 498–511. ISBN 978-1-4377-0795-3. [Google Scholar]
- Ehrlichiosis. Available online: https://www.cdc.gov/ehrlichiosis/index.html (accessed on 13 October 2022).
- Crimean-Congo Hemorrhagic Fever (CCHF). Available online: https://www.cdc.gov/vhf/crimean-congo/transmission/index.html (accessed on 9 September 2020).
- Durden, L.A.; Mullen, G.R. Medical and Veterinary Entomology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2019; p. 16. ISBN 978-0-12-814043-7. [Google Scholar]
- Tularemia. Available online: https://www.cdc.gov/tularemia/index.html (accessed on 9 September 2020).
- Diaz, J.H. Mite-Transmitted Dermatoses and Infectious Diseases in Returning Travelers. J. Travel Med. 2010, 17, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, W.L.; Paddock, C.D. Travelers’ Health. Available online: https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-related-infectious-diseases/rickettsial-including-spotted-fever-and-typhus-fever-rickettsioses-scrub-typhus-anaplasmosis-and-ehr (accessed on 20 September 2020).
- Mites and Ticks as Vectors (With Diagram). Available online: https://www.biologydiscussion.com/invertebrate-zoology/arthropods/mites-and-ticks-as-vectors-with-diagram/62377 (accessed on 9 November 2022).
- Rift Valley Fever. Available online: https://www.who.int/news-room/fact-sheets/detail/rift-valley-fever (accessed on 12 November 2020).
- Thompson, P.N. Rift Valley Fever in Animals. Available online: https://www.merckvetmanual.com/generalized-conditions/rift-valley-fever/rift-valley-fever-in-animals (accessed on 1 November 2022).
- Arther, R.G. Mites and Lice: Biology and Control. Vet. Clin. N. Am.–Small Anim. Pract. 2009, 39, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Control of Vector-Borne Diseases in Dogs and Cats; ESCCAP: Malvern, UK, 2019.
- European Union. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC; Official Journal of the European Union: Luxembourg, 2019; pp. 43–167.
- Chaves, D.S.A. The importance of the pet market for the development of new products based on medicinal plants and their derivatives. Ann. Phytomed. Int. J. 2020, 9, 1–5. [Google Scholar] [CrossRef]
- Molento, M.B.; Chaaban, A.; Gomes, E.N.; Santos, V.M.C.S.; Maurer, J.B.B. Plant extracts used for the control of endo and ectoparasites of livestock: A review of the last 13 years of science. Arch. Vet. Sci. 2020, 25, 01–27. [Google Scholar] [CrossRef]
- Palai, S.; Kesh, S.; Awuchi, C.; Abdulrahman, S.; Egbuna, C. Role of Phytochemicals in the Treatment of Ectoparasitic Infections: Scabies and Myiasis. In Neglected Tropical Diseases and Phytochemicals in Drug Discovery; Wiley: Hoboken, NJ, USA, 2021; pp. 477–498. ISBN 978-1-119-61714-3. [Google Scholar]
- Ozaki, A.; Duarte, P. Fitoterápicos utilizados na medicina veterinária, em cães e gatos. Infarma 2006, 18, 17–25. [Google Scholar]
- Khare, R.; Das, G.; Kumar, S.; Bendigeri, S.; Sachan, S.; Saiyam, R.; Khare, D. Herbal insecticides and Acaricides: Challenges and constraints. Int. J. Chem. Stud. 2019, 7, 118–125. [Google Scholar]
- Waap, H.; Nunes, T.; Mul, M.; Gomes, J.; Bartley, K. Survey on the prevalence of Dermanyssus gallinae in commercial laying farms in Portugal. Avian Pathol. 2019, 48, S2–S9. [Google Scholar] [CrossRef]
- Geddes, E.; Mohr, S.; Mitchell, E.S.; Robertson, S.; Brzozowska, A.M.; Burgess, S.T.G.; Busin, V. Exploiting Scanning Surveillance Data to Inform Future Strategies for the Control of Endemic Diseases: The Example of Sheep Scab. Front. Vet. Sci. 2021, 8, 647711. [Google Scholar] [CrossRef]
- Farinha, N.; Póvoa, O. Levantamento de etnobotânica aplicada à veterinária na região Alentejo. In Proceedings of the III Seminário de I&DT, Instituto Politécnico de Portalegre, Portalegre, Portugal, 6–7 December 2012; p. 13. [Google Scholar]
- Rodrigues, J.S.C. Estudo Etnobotânico das Plantas Aromáticas e Medicinais; Potencialidades e Aplicações das Plantas Aromáticas e Medicinais, Faculdade de Ciências da Universidade de Lisboa—Centro de Biotecnologia Vegetal: Lisboa, Portugal, 2007; pp. 168–174. [Google Scholar]
- Juglans regia L. Available online: https://www.gbif.org/species/3054368 (accessed on 25 October 2021).
- Wang, Y.N.; Shi, G.L.; Zhao, L.L.; Liu, S.Q.; Yu, T.Q.; Clarke, S.R.; Sun, J.H. Acaricidal Activity of Juglans regia Leaf Extracts on Tetranychus viennensis and Tetranychus cinnabarinus (Acari: Tetranychidae). J. Econ. Entomol. 2007, 100, 1298–1303. [Google Scholar] [CrossRef]
- Nazim, K.; Godara, R.; Katoch, R.; Yadav, A. Acaricidal activity of Juglans regia hull extracts against unfed larvae of Rhipicephalus microplus ticks. J. Entomol. Zool. Stud. 2021, 9, 651–654. [Google Scholar]
- Al-Snafi, A.E. Chemical constituents, nutritional, pharmcological and therapeutic importance of Juglans regia- A review. IOSR J. Pharm. 2018, 8, 01–21. [Google Scholar]
- Delaviz, H.; Mohammadi, J.; Ghalamfarsa, G.; Mohammadi, B.; Farhadi, N. A review study on phytochemistry and pharmacology applications of Juglans Regia plant. Pharmacogn. Rev. 2017, 11, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Mentha pulegium L. Available online: https://www.gbif.org/species/2927189 (accessed on 29 October 2021).
- Rocha, D.K.; Matos, O.C.D.; Moiteiro, C.; Cabral, M.D.; Novo, M.T. Plantas Medicinais Tropicais e Mediterrânicas Com Propriedades Biocidas no Controlo de Insetos Vetores; Instituto de Higiene e Medicina Tropical: Lisboa, Portugal, 2013; pp. 60–65. [Google Scholar]
- Rim, I.-S.; Jee, C.-H. Acaricidal effects of herb essential oils against Dermatophagoides farinae and D. pteronyssinus (Acari: Pyroglyphidae) and qualitative analysis of a herb Mentha pulegium (pennyroyal). Korean J. Parasitol. 2006, 44, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother. Res. 2008, 22, 274–278. [Google Scholar] [CrossRef]
- Olea Europaea. Available online: https://www.gbif.org/species/5415040 (accessed on 29 October 2021).
- Karunamoorthi, K.; Mulelam, A.; Wassie, F. Laboratory evaluation of traditional insect/mosquito repellent plants against Anopheles arabiensis, the predominant malaria vector in Ethiopia. Parasitol. Res. 2008, 103, 529–534. [Google Scholar] [CrossRef]
- Melo Machado, B. Otimização dos Métodos de Extração dos Metabolitos Presentes na Folha da Oliveira (Olea europaea L.); Universidade de Aveiro: Aveiro, Portugal, 2020. [Google Scholar]
- Daphne Gnidium. Available online: https://www.gbif.org/species/7311306 (accessed on 29 October 2021).
- Suárez, N.O. Plantas de Interés en Etnoveterinarina como Antiparasitarios e Insecticidas en el Área de la Dehesa Española; Máster en Zootecnia Y Gestión Sostenible, Ganadería Ecológica e Integrada, Universidad de Córdoba: Córdoba, Spain, 2010. [Google Scholar]
- Khouchlaa, A.; El Menyiy, N.; Guaouguaou, F.-E.; El Baaboua, A.; Charfi, S.; Lakhdar, F.; El Omari, N.; Taha, D.; Shariati, M.A.; Rebezov, M.; et al. Ethnomedicinal use, phytochemistry, pharmacology, and toxicology of Daphne gnidium: A review. J. Ethnopharmacol. 2021, 275, 114124. [Google Scholar] [CrossRef]
- Nicotiana Tabacum. Available online: https://www.worldplants.de/world-plants-complete-list/complete-plant-list/?name=Nicotiana-tabacum#g- (accessed on 29 October 2021).
- Nicotiana Tabacum. Available online: https://www.gbif.org/species/2928774 (accessed on 29 October 2021).
- Schorderet Weber, S.; Kaminski, K.P.; Perret, J.-L.; Leroy, P.; Mazurov, A.; Peitsch, M.C.; Ivanov, N.V.; Hoeng, J. Antiparasitic properties of leaf extracts derived from selected Nicotiana species and Nicotiana tabacum varieties. Food Chem. Toxicol. 2019, 132, 110660. [Google Scholar] [CrossRef]
- Oyagbemi, T.O.; Ashafa, A.; Adejinmi, J.O.; Oguntibeju, O.O. Preliminary investigation of acaricidal activity of leaf extract of Nicotiana tabacum on dog tick Rhipicephalus sanguineus. Vet. World 2019, 12, 1624–1629. [Google Scholar] [CrossRef]
- Anshu, S.; Pratibha, J.; Sw, K. Efficacy of Nicotiana tabacum as a biocontrol agent against cattle ticks. J. Entomol. Zool. Stud. 2020, 8, 220–222. [Google Scholar]
- Degu, S.; Berihun, A.; Muluye, R.; Gemeda, H.; Debebe, E.; Amano, A.; Abebe, A.; Woldkidan, S.; Tadele, A. Medicinal plants that used as repellent, insecticide and larvicide in Ethiopia. Pharm. Pharmacol. Int. J. 2020, 8, 274–283. [Google Scholar] [CrossRef]
- Cistus Iadanifer. Available online: https://www.gbif.org/species/6437976 (accessed on 29 October 2021).
- Rivera, D.; Verde, A.; Fajardo Rodríguez, J.; Ríos, S.; Alcaraz, F.; Cárceles, C.; Ortíz, J.; Valdés, A.; Ruíz-Gallardo, J.R.; García-Flores, A.; et al. Ethnoveterinary Medicine and Ethnopharmacology in the Main Transhumance Areas of Castilla-La Mancha (Spain). Front. Vet. Sci. 2022, 9, 866132. [Google Scholar] [CrossRef] [PubMed]
- Plantago Lanceolata. Available online: https://www.gbif.org/species/8208358 (accessed on 30 October 2021).
- Ruta Graveolens. Available online: https://www.gbif.org/species/3190382 (accessed on 29 October 2021).
- Carvalho, A.V.D.; Lübeck, I.; Rocha, M.B.D.; Güez, C.M.; Machado, M.M.; Oliveira, L.F.S. de Evaluation of the tickcide, genotoxic, and mutagenic effects of the Ruta graveolens L. (Rutaceae). Acta Sci. 2015, 37, 491–497. [Google Scholar] [CrossRef]
- Rosado-Aguilar, J.A.; Arjona-Cambranes, K.; Torres-Acosta, J.F.J.; Rodríguez-Vivas, R.I.; Bolio-González, M.E.; Ortega-Pacheco, A.; Alzina-López, A.; Gutiérrez-Ruiz, E.J.; Gutiérrez-Blanco, E.; Aguilar-Caballero, A.J. Plant products and secondary metabolites with acaricide activity against ticks. Vet. Parasitol. 2017, 238, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.S.; Leite, G.L.D.; Martins, E.R.; Guanabens, R.E.M.; Silva, F.W.S. Métodos de extração e concentrações no efeito inseticida de Ruta graveolens L., Artemisia verlotorum Lamotte e Petiveria alliacea L. a Diabrotica speciosa Germar. Rev. Bras. Plantas Med. 2009, 11, 221–229. [Google Scholar] [CrossRef]
- Pulido Suárez, N.J.; Cruz Carrillo, A. Eficacia de los extractos hidroalcohólicos de dos plantas sobre garrapatas adultas Rhipicephalus (Boophilus) microplus. Cienc. Tecnol. Agropecu. 2013, 14, 91–97. [Google Scholar] [CrossRef]
- Cistus populifolius. Available online: https://www.gbif.org/species/7331314 (accessed on 30 October 2021).
- Ali, N.; Chapuis, E.; Tavoillot, J.; Mateille, T. Plant-parasitic nematodes associated with olive tree (Olea europaea L.) with a focus on the Mediterranean Basin: A review. Comptes R. Biol. 2014, 337, 423–442. [Google Scholar] [CrossRef] [PubMed]
- Daphne Gnidium. Available online: https://www.worldplants.de/world-plants-complete-list/complete-plant-list/?name=Daphne-gnidium#g- (accessed on 30 October 2021).
- González, J.A.; García-Barriuso, M.; Gordaliza, M.; Amich, F. Traditional plant-based remedies to control insect vectors of disease in the Arribes del Duero (western Spain): An ethnobotanical study. J. Ethnopharmacol. 2011, 138, 595–601. [Google Scholar] [CrossRef]
- Hladik, M.L.; Main, A.R.; Goulson, D. Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar] [CrossRef]
- Ruta Graveolens. Available online: https://www.worldplants.de/world-plants-complete-list/complete-plant-list/?name=Ruta-graveolens#g- (accessed on 30 October 2021).
- Sanhokwe, M.; Mupangwa, J.; Masika, P.J.; Maphosa, V.; Muchenje, V. Medicinal plants used to control internal and external parasites in goats. Onderstepoort J. Vet. Res. 2016, 83, 1–7. [Google Scholar] [CrossRef] [Green Version]
Arthropod | Vector | Type of Pathogen | Pathogens Transmitted | Associated Disease/Infection | References |
---|---|---|---|---|---|
Ticks | Dermacentor variabilis, D. andersoni, A. cajennense, Rhipicephalus sanguineus, others | Bacteria | Rickettsia rickettsii | Rocky Mountain spotted fever | [14,15,19,20] |
Amblyomma maculatum group | Rickettsia parkeri rickettsiosis | Rickettsia parkeri | |||
Amblyomma americanum | Ehrlichia chaffeensis | Human ehrlichiosis | |||
Amblyomma americanum | Ehrlichia ewingii | Human ehrlichiosis | |||
Ixodes scapularis and Amblyomma americanum | Ehrlichia muris eauclairensis | Ehrlichiosis | |||
Ixodes ricinus, I. trianguliceps | Anaplasma phagocytophilum | Anaplasmosis (granulocytic ehrlichiosis) | |||
Ixodes persulcatus | Anaplasma capra | Human anaplasmosis | |||
Rhipicephalus spp., Dermacentor spp. | Anaplasma ovis | Human anaplasmosis | |||
Ixodes ricinus, I. persucatus | Neoehrlichia mikurensis | Neoehrlichiosis | |||
Ixodes spp. | Coxiella burnetii | Coxiellosis (Q fever) | |||
Ixodes scapularis, I. ricinus, I. pacificus, I. persulcatus, others | Borrelia burgdorferi, B. afzelii, B. garinii, B. bissettii | Lyme disease | |||
Ornithodoros spp. | Borrelia spp. | Tick-borne relapsing fever | |||
Ixodes ricinus, I. scapularis, I. pacificus, I. persulcatus | Anaplasma phagocytophilum | Tick-borne fever | |||
Haemaphysalis leporispalustris, others | Francisella tularensis | Tularemia | |||
Amblyomma spp. | Rickettsia africae | African tick bite fever | |||
Ticks | Ixodes ricinus, I. trianguliceps, I. persulcatus | Virus | TBE virus | Tickborne encephalitis | [10,21] |
Hyalomma spp. | CCHF virus, Bunyaviridae, Nairovirus | Crimean—Congo hemorrhagic fever | |||
Fleas | Ctenocephalides felis | Bacteria | Bartonella henselae | Bartonellosis (Cat scratch disease) | [1,15,22,23] |
Several fleas | Coxiella burnetii | Q fever | |||
Several fleas | Francisella tularensis | Tularemia | |||
Xenopsylla cheopis, Ctenocephalides | Rickettsia typhi | Murine typhus | |||
Ctenocephalides felis | Rickettsia felis | Rickettsiosis | |||
Mainly Xenopsylla | Yersinia pestis | Plague | |||
Mites | Liponyssoides sanguineus | Bacteria | Rickettsia akari | Rickettsialpox | [10,24,25,26] |
Ornithonyssus bacoti | Coxiella bumetti | Q fever | |||
Chigger mite—Trombicula akamushi | Orientia tsutsugamushi | Scrub typhus | |||
Mosquitoes | Mosquitoes—Aedes spp. | Virus | Rift Valley virus, Bunyaviridae, Phlebovirus | Rift Valley fever | [7,10,17,27,28,29,30] |
Culex spp. and other mosquitoes | West Nile virus (WNV) | West Nile virus infection | |||
Culex spp., Aedes spp. and Anopheles spp. | Bacteria | Francisella tularensis | Tularaemia | [17,29,30] |
Species | Family | Animal Species | Number of Mentions |
---|---|---|---|
Juglans regia L. | Juglandaceae | Canidae, bovinae, caprinae—capra, caprinae—ovis, equidae, suidae | 6 |
Mentha pulegium L. | Lamiaceae | Bovinae, caprinae—ovis, suidae | 3 |
Olea europaea L. | Oleaceae | Bovinae, caprinae—ovis, suidae | 3 |
Daphne gnidium L. | Thymelaceae | Bovinae, equidae | 2 |
Nicotiana tabacum L. | Solanaceae | Canidae | 2 |
Cistus ladanifer L. | Cistaceae | Canidae | 1 |
Plantago lanceolata L. | Plantaginaceae | Canidae | 1 |
Ruta graveolens L. | Rutaceae | Canidae | 1 |
Cistus populifolius L. | Cistaceae | Canidae | 1 |
Plant Species | Common Name | Geographic Distribution | Targeted Vector | Extracted Compounds | Activity |
---|---|---|---|---|---|
Juglans regia | Walnut tree [41] | Worldwide [41] | Mite (T. cinnabarinus and T. viennensisin), Mosquito and Rhipicephalus microplus [42,43,44] | Terpenes, hydrocarbons, esters, and strong antioxidant components such as flavonoids and phenolic compounds [42,44,45] | Acaricide and repellent [42,43,44] |
Mentha pulegium (with Olea europaea) 1 | Pennyroyal [46] | Native to almost all of Europe. Appears in other parts of the world [46] | Mosquito larvae, house fly, and mite [47,48,49] | Pulegone, piperitone, menthol, menthone and piperitone oxide [47] | Larvicide, adulticide, acaricide and repellent [47,48,49] |
Olea europaea (with Mentha pulegium) 1 | Olive tree [50] | Worldwide. More predominant in regions with a Mediterranean climate [50] | Mosquito [51] | Phenolic compounds, fatty acids, terpenoids, alcohols and sterols, hydrocarbons, and carbohydrates [42,52] | Repellent [51] |
Daphne gnidium | Flax-leaved daphne [53] | South Europe, North Africa and Canary Islands [53] | Louse, flea, tick, and insect [54] | Terpenoids, coumarins, flavonoids, fatty acids, and alkanes [55] | Acaricide, adulticide and repellent [54] |
Nicotiana tabacum | Tabak, Tabaco, Tobacco [56] | Worldwide [57] | Tick larvae (Rhipicephalus sanguineus and Rhipicephalus sp.), tick adult (Rhipicephalus sp.), fly larvae (Musca domestica), and flea [45,58,59,60] | Alkaloids—nicotine, saponins, tannins, flavonoids, terpenoids, anthraquinones and steroids [53,61,62] | Acaricide, larvicide, adulticide and repellent [45,58,59,60] |
Cistus ladanifer | Rockrose [61] | Occidental Mediterranean region [61] | Fly [62] | No relevant data was found to prove its use | No relevant data was found to demonstrate its use |
Plantago lanceolata | Narrow-leaf plantain, Ribwort plantain [63] | Worldwide [63] | No relevant data was found to prove its use | No relevant data was found to prove its use | No relevant data was found to demonstrate its use |
Ruta graveolens | Common rue [64] | Worldwide [64] | Tick adult, flea, adult and larvae mosquito [65,66,67,68,69] | Alkaloids, coumarins and saponins [68] | Acaricide, adulticide and larvicide [65,68] |
Cistus populifolius | Poplar-leaved rock rose, Rockrose [70] | Iberian Peninsula, South France and North Marroco [70] | No relevant data was found to prove its use | No relevant data was found to demonstrate its use | No relevant data was found to demonstrate its use |
Plant Specie | Ectoparasite |
---|---|
Juglans regia | Adult and larvae Ticks Mites Mosquitoes/Flies 1 |
Daphne gnidium | Ticks 1 Fleas 1 Mosquitoes/Flies 1 |
Ruta graveolens | Adult Ticks Fleas Adult Mosquitoes/Flies 1 Larvae Mosquitoes/Flies 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho da Silva, R.; Meisel, L.; Farinha, N.; Póvoa, O.; De Mello-Sampayo, C. Parasiticides: Weapons for Controlling Microbial Vector-Borne Diseases in Veterinary Medicine; The Potential of Ethnobotanic/Phytoparasiticides: An Asset to One Health. Antibiotics 2023, 12, 341. https://doi.org/10.3390/antibiotics12020341
Carvalho da Silva R, Meisel L, Farinha N, Póvoa O, De Mello-Sampayo C. Parasiticides: Weapons for Controlling Microbial Vector-Borne Diseases in Veterinary Medicine; The Potential of Ethnobotanic/Phytoparasiticides: An Asset to One Health. Antibiotics. 2023; 12(2):341. https://doi.org/10.3390/antibiotics12020341
Chicago/Turabian StyleCarvalho da Silva, Rita, Leonor Meisel, Nóemia Farinha, Orlanda Póvoa, and Cristina De Mello-Sampayo. 2023. "Parasiticides: Weapons for Controlling Microbial Vector-Borne Diseases in Veterinary Medicine; The Potential of Ethnobotanic/Phytoparasiticides: An Asset to One Health" Antibiotics 12, no. 2: 341. https://doi.org/10.3390/antibiotics12020341
APA StyleCarvalho da Silva, R., Meisel, L., Farinha, N., Póvoa, O., & De Mello-Sampayo, C. (2023). Parasiticides: Weapons for Controlling Microbial Vector-Borne Diseases in Veterinary Medicine; The Potential of Ethnobotanic/Phytoparasiticides: An Asset to One Health. Antibiotics, 12(2), 341. https://doi.org/10.3390/antibiotics12020341