Development of Antimicrobial Defined Daily Dose (DDD) for the Pediatric Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Data Analysis
2.4. DDD Selection Criteria
2.5. Ethics
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. 2014. Available online: https://www.who.int/publications/i/item/9789241564748 (accessed on 7 January 2021).
- Hulscher, M.E.; Grol, R.P.; van der Meer, J.W. Antibiotic prescribing in hospitals: A social and behavioural scientific approach. Lancet Infect. Dis. 2010, 10, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Goossens, H. Antibiotic consumption and link to resistance. Clin. Microbiol. Infect. 2009, 15, 12–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Probst, V.; Islamovic, F.; Mirza, A. Antimicrobial stewardship program in paediatric medicine. Pediatr. Investig. 2021, 5, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Gil-Navarro, M.V.; Gutiérrez-Urbón, J.M.; El Fahimi, N.; Cisneros-Herreros, J.M. Spanish adaptation of the Start Smart-Then Focus tool for optimizing the use of antimicrobials. Farm Hosp. 2021, 45, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Baño, J.; Pérez-Moreno, M.A.; Peñalva, G.; Garnacho-Montero, J.; Pinto, C.; Salcedo, I.; Fernández-Urrusuno, R.; Neth, O.; Gil-Navarro, M.V.; Pérez-Milena, A.; et al. Outcomes of the PIRASOA program, an antimicrobial stewardship program implemented in hospitals of the Public Health System of Andalusia, Spain: An ecologic study of time-trend analysis. Clin. Microbiol. Infect. 2020, 26, 358–365. [Google Scholar] [CrossRef]
- Peñalva, G.; Crespo-Rivas, J.C.; Guisado-Gil, A.B.; Rodríguez-Villodres, Á.; Pachón-Ibáñez, M.E.; Cachero-Alba, B.; Rivas-Romero, B.; Gil-Moreno, J.; Galvá-Borras, M.I.; García-Moreno, M.; et al. Clinical and ecological impact of an educational program to optimize antibiotic treatments in nursing homes (PROA-SENIOR): A cluster randomized controlled trial and interrupted time-series analysis. Clin. Infect. Dis. 2022, 21, ciac834. [Google Scholar] [CrossRef]
- Ibrahim, O.M.; Polk, R.E. Antimicrobial use metrics and benchmarking to improve stewardship outcomes: Methodology, opportunities, and challenges. Infect. Dis. Clin. North Am. 2014, 28, 195–214. [Google Scholar] [CrossRef]
- Grau, S.; Bou, G.; Fondevilla, E.; Nicolás, J.; Rodríguez-Maresca, M.; Martínez-Martínez, L. How to measure and monitor antimicrobial consumption and resistance. Enferm. Infecc. Microbiol. Clin. 2013, 31, 16–24. [Google Scholar] [CrossRef]
- Bielicki, J.; Lundin, R.; Patel, S.; Paulus, S. Antimicrobial stewardship for neonates and children: A global approach. Pediatr. Infect. Dis. J. 2015, 34, 311–313. [Google Scholar] [CrossRef] [Green Version]
- Raastad, R.; Tvete, I.F.; Abrahamsen, T.G.; Berild, D.; Leegaard, T.M.; Walberg, M.; Müller, F. A worrying trend in weight-adjusted paediatric antibiotic use in a Norwegian tertiary care hospital. Acta Paediatr. 2015, 104, 687–692. [Google Scholar] [CrossRef]
- Montecatine-Alonso, E.; Gil-Navarro, M.V.; Fernández-Llamazares, C.M.; Fernández-Polo, A.; Soler-Palacín, P.; Llorente-Gutiérrez, J.; Calvo, M.T.G.T.; Esquivel-Mora, M.D.; Pérez-Rodrigo, I.; Cisneros, J.M.; et al. Antimicrobial defined daily dose adjusted by weight: A proposal for antibiotic consumption measurement in children. Enferm. Infecc. Microbiol. Clin. (Engl. Ed.) 2019, 37, 301–306. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org/ (accessed on 1 September 2022).
- McMullan, B.; Bryant, P.A.; Duffy, E.; Bielicki, J.; De Cock, P.; Science, M.; Zembles, T.; Timberlake, K.; Monsees, E.; Hamdy, R.F.; et al. Multinational consensus antimicrobial stewardship recommendations for children managed in hospital settings. Lancet Infect. Dis. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Amadeo, B.; Zarb, P.; Muller, A.; Drapier, N.; Vankerckhoven, V.; Rogues, A.M.; Davey, P.; Goossens, H. European Surveillance of Antibiotic Consumption (ESAC) point prevalence survey 2008: Paediatric antimicrobial prescribing in 32 hospitals of 21 European countries. J. Antimicrob. Chemother. 2010, 65, 2247–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarb, P.; Amadeo, B.; Muller, A.; Drapier, N.; Vankerckhoven, V.; Davey, P.; Goossens, H. Identification of targets for quality improvement in antimicrobial prescribing: The web-based ESAC point prevalence survey 2009. J. Antimicrob. Chemother. 2011, 66, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Goycochea-Valdivia, W.A.; Moreno-Ramos, F.; Paño-Pardo, J.R.; Aracil-Santos, F.J.; Baquero-Artigao, F.; del Rosal-Rabes, T.; Mellado-Peña, M.J.; Escosa-Garcia, L. Identifying priorities to improve paediatric in-hospital antimicrobial use by cross-sectional evaluation of prevalence and appropriateness of prescription. Enferm. Infecc. Microbiol. Clin. 2017, 35, 556–562. [Google Scholar] [CrossRef]
- D’Amore, C.; Ciofi degli Atti, M.L.; Zotti, C.; Prato, R.; Guareschi, G.; Spiazzi, R.; Petitti, G.; Moro, M.L.; Raponi, M. Use of multiple metrics to assess antibiotic use in Italian children’s hospitals. Sci. Rep. 2021, 11, 3543. [Google Scholar] [CrossRef]
- Versporten, A.; Sharland, M.; Bielicki, J.; Drapier, N.; Vankerckhoven, V.; Goossens, H. The antibiotic resistance and prescribing in European Children project: A neonatal and paediatric antimicrobial web-based point prevalence survey in 73 hospitals worldwide. Pediatr. Infect. Dis. J. 2013, 32, e242–e253. [Google Scholar] [CrossRef]
- Nitsch-Osuch, A.; Kurpas, D.; Kuchar, E.; Zycińska, K.; Zielonka, T.; Wardyn, K. Antibiotic consumption pattern in the neonatal special care unit before and after implementation of the hospital’s antibiotic policy. Adv. Exp. Med. Biol. 2015, 835, 45–51. [Google Scholar] [CrossRef]
- Liem, T.B.; Heerdink, E.R.; Egberts, A.C.; Rademaker, C.M. Quantifying antibiotic use in paediatrics: A proposal for neonatal DDDs. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1301–1303. [Google Scholar] [CrossRef] [Green Version]
- Porta, A.; Hsia, Y.; Doerholt, K.; Spyridis, N.; Bielicki, J.; Menson, E.; Tsolia, M.; Esposito, S.; Wong, I.C.; Sharland, M. Comparing neonatal and paediatric antibiotic prescribing between hospitals: A new algorithm to help international benchmarking. J. Antimicrob. Chemother. 2012, 67, 1278–1286. [Google Scholar] [CrossRef]
- Ahmed, S.N.; Jhaj, R.; Patidar, R.; Dangi, M.; Malik, S.; Sadasivam, B.; Atal, S. A Novel Metric System to Quantify Antibiotic Consumption in Paediatric Population: A Hospital Based, Biphasic Pilot Study. Discoveries 2020, 8, e119. [Google Scholar] [CrossRef] [PubMed]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an antibiotic stewardship program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef] [PubMed]
Power | DDD Selection | |
---|---|---|
>80% | Phase I | Phase II |
There are no significant differences (p > 0.01) + Clinical difference magnitude (<10%) | Statistically significant differences (p < 0.01) + Clinical difference magnitude (>10%) | |
Statistically significant differences (p < 0.01) + Clinical difference magnitude (<10%) | ||
There are no significant differences (p > 0.01) + Clinical difference magnitude (>10%) + Degree of agreement (≥75%) | ||
≤80% | Degree of agreement (≥75%) | NA |
Demographic Characteristics | |
---|---|
Age, years | 6.64 (4.6) |
Weight, kg | 25.70 (16.78) |
Gender | |
Female | 1967 (41.1) |
Male | 2821 (58.9) |
Antibiotic Administered | |
Amikacin | 64 (1.3) |
Amoxicillin | 152 (3.2) |
Amoxicillin-clavulanic | 999 (20.9) |
Ampicillin | 143 (3.0) |
Amphotericin B liposomal | 49 (1.0) |
Azithromycin | 90 (1.9) |
Cefadroxil | 4 (0.1) |
Cefazolin | 401 (8.4) |
Cefepime | 187 (3.9) |
Cefixime | 28 (0.6) |
Cefotaxime | 255 (5.3) |
Ceftazidime | 66 (1.4) |
Ceftriaxone | 161 (3.4) |
Cefuroxime | 107 (2.2) |
Ciprofloxacin | 96 (2.0) |
Clarithromycin | 23 (0.5) |
Clindamycin | 54 (1.1) |
Cloxacillin | 70 (1.5) |
Daptomycin | 4 (0.1) |
Erythromycin | 50 (1.0) |
Fluconazole | 121 (2.5) |
Fosfomycin | 9 (0.2) |
Gentamicin | 454 (9.5) |
Imipenem-cilastatin | 86 (1.8) |
Levofloxacin | 50 (1.0) |
Linezolid | 18 (0.4) |
Meropenem | 132 (2.8) |
Metronidazole | 420 (8.8) |
Micafungin | 45 (0.9) |
Penicillin G | 8 (0.1) |
Piperacillin-tazobactam | 133 (2.8) |
Teicoplanin | 119 (2.5) |
Tobramycin | 22 (0.5) |
Vancomycin | 168 (3.5) |
Route of administration | |
Oral | 664 (13.5) |
Intravenous | 4144 (86.5) |
Number of patients = 4788 |
Antimicrobials | Phase I DDD | Phase II DDD | Difference with Phase I DDD | DDD Differences between Phases | Power Value (>80%) | Difference Value (<10%) | Wilcoxon Test (>0.01) | Degree of Agreement (≥75%) | Selected DDD | Final DDD (g/day) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Value (g/day) | Degree of Agreement | Median (g/day) | CI95% | Median | CI95% | Power (1-B) % | Wilcoxon Test | Median | CI95% | |||||||
GENTAMICIN | 454 | 0.09 | 60 | 0.14 | 0.13, 0.15 | −0.05 | −0.06, 0.04 | 100 | <0.001 | 56 | 44, 67 | Yes | No | No | No | Phase II | 0.14 |
CEFAZOLIN | 401 | 1.71 | 80 | 2 | 2.00, 2.25 | −0.29 | −0.54, −0.29 | 100 | <0.001 | 17 | 17, 32 | Yes | No | No | Yes | Phase II | 2 |
CEFTRIAXONE | 161 | 0.85 | 50 | 1.4 | 1.15, 1.60 | −0.55 | −0.75, −0.30 | 100 | <0.001 | 65 | 35, 88 | Yes | No | No | No | Phase II | 1.4 |
AMOXICILLIN-CLAVULANIC | 866 | 1.71 | 90 | 1.8 | 1.74, 2.00 | −0.09 | −0.29, −0.03 | 100 | <0.001 | 5 | 2, 17 | Yes | Yes | No | Yes | Phase I | 1.71 |
METRONIDAZOLE | 395 | 0.51 | 100 | 0.9 | 0.84, 0.93 | −0.39 | −0.42, −0.33 | 100 | <0.001 | 77 | 65, 82 | Yes | No | No | Yes | Phase II | 0.9 |
CEFEPIME | 187 | 2.56 | 77.8 | 3 | 2.61, 3.00 | −0.44 | −0.44, −0.05 | 99.9 | <0.001 | 17 | 2, 17 | Yes | No | No | Yes | Phase II | 3 |
CLOXACILLIN | 65 | 1.71 | 90 | 3.5 | 2.40, 4.00 | −1.79 | −2.29, −0.69 | 99.9 | <0.001 | 105 | 40, 134 | Yes | No | No | Yes | Phase II | 3.5 |
CLINDAMYCIN | 54 | 0.51 | 60 | 0.74 | 0.51, 1.00 | −0.225 | −0.49, 0.00 | 99.9 | <0.001 | 44 | 0, 96 | Yes | No | No | No | Phase II | 0.74 |
VANCOMYCIN | 168 | 0.68 | 90 | 0.76 | 0.60, 0.96 | −0.08 | −0.28, 0.08 | 99.8 | <0.001 | 12 | −12, 41 | Yes | No | No | Yes | Phase II | 0.76 |
CIPROFLOXACIN | 31 | 0.34 | 60 | 0.6 | 0.40, 0.80 | −0.26 | −0.46, 0.06 | 99.4 | <0.001 | 77 | 18, 135 | Yes | No | No | No | Phase II | 0.6 |
AMPHOTERICIN B LIPO | 49 | 0.05 | 66.7 | 0.08 | 0.05, 0.10 | −0.025 | −0.04, 0.00 | 99.3 | <0.001 | 50 | 0, 90 | Yes | No | No | No | Phase II | 0.08 |
MEROPENEM | 132 | 1.02 | 90 | 1.05 | 0.90, 1.26 | −0.03 | −0.24, 0.12 | 98.7 | 0.01 | 3 | −12, 24 | Yes | Yes | Yes | Yes | Phase I | 1.02 |
TOBRAMYCIN | 22 | 0.09 | 75 | 0.15 | 0.07, 0.36 | −0.06 | −0.27, 0.01 | 96 | 0.009 | 67 | −17, 300 | Yes | No | No | Yes | Phase II | 0.15 |
ERYTHROMYCIN | 26 | 0.68 | 100 | 1.1 | 0.52, 1.26 | −0.42 | −0.58, 0.16 | 88.7 | 0.006 | 62 | −24, 85 | Yes | No | No | Yes | Phase II | 1.1 |
AMPICILLIN | 143 | 1.71 | 90 | 1.6 | 1.34, 2.00 | 0.11 | −0.29, 0.37 | 84.6 | 0.217 | −6 | −22, 17 | Yes | Yes | Yes | Yes | Phase I | 1.71 |
FLUCONAZOLE | 38 | 0.1 | 100 | 0.1 | 0.06, 0.18 | 0 | −0.07, 0.04 | 81.6 | 0.058 | 0 | −40, 80 | Yes | Yes | Yes | Yes | Phase I | 0.1 |
AMIKACIN | 64 | 0.26 | 88.9 | 0.25 | 0.19, 0.32 | 0.01 | −0.06, 0.06 | 71.5 | 0.556 | −3,8 | −25, 23 | No | Yes | NA | Yes | Phase I | 0.26 |
AMOXICILLIN | 45 | 1.37 | 57.1 | 1.44 | 1.35, 1.50 | −0.07 | −0.13, 0.02 | 70.9 | 0.227 | 5 | −1, 9 | No | Yes | NA | No | - | - |
MICAFUNGIN | 45 | 0.03 | 87.5 | 0.03 | 0.02, 0.04 | −0.001 | −0.01, 0.01 | 64.5 | 0.057 | 3 | −20, 50 | No | Yes | NA | Yes | Phase I | 0.03 |
AZITHROMYCIN | 15 | 0.17 | 100 | 0.18 | 0.51, 1.00 | −0.005 | −0.33, 0.04 | 60.4 | 0.200 | 3 | −26, 194 | No | Yes | NA | Yes | Phase I | 0.17 |
TEICOPLANIN | 119 | 0.17 | 77.8 | 0.15 | 0.10, 0.17 | 0.02 | 0.00, 0.07 | 45.5 | 0.656 | −12 | −41, 3 | No | No | NA | Yes | Phase I | 0.17 |
CEFUROXIME | 66 | 1.71 | 60 | 1.5 | 0.90, 2.25 | 0.21 | −0.54, −0.81 | 34.3 | 0.668 | −12 | −47, 32 | No | No | NA | No | - | - |
LINEZOLID | 11 | 0.51 | 100 | 0.45 | 0.21, 1.20 | 0.06 | −0.69, 0.30 | 32.5 | 0.308 | −12 | −59, 135 | No | No | NA | Yes | Phase I | 0.51 |
IMIPENEM/ CILASTATIN | 86 | 1.71 | 66.7 | 1.6 | 1.20, 1.92 | 0.11 | −0.21, 0.51 | 31.2 | 0.917 | −6 | −30, 12 | No | Yes | NA | No | - | - |
PIPERACILLIN-TAZOBACTAM | 133 | 5.12 | 100 | 3.9 | 3.00, 5.00 | 1.22 | 0.12, 2.12 | 29.3 | 0.678 | −24 | −41, −2 | No | No | NA | Yes | Phase I | 5.12 |
CEFTAZIDIME | 66 | 2.56 | 80 | 2.55 | 1.86, 3.00 | 0.01 | −0.44, 0.70 | 28 | 0.548 | 0 | −27, 17 | No | Yes | NA | Yes | Phase I | 2.56 |
LEVOFLOXACIN | 35 | 0.34 | 75 | 0.4 | 0.30, 0.50 | −0.06 | −0.16, 0.04 | 20.8 | 0.744 | 18 | −12, 47 | No | No | NA | Yes | Phase I | 0.34 |
DAPTOMYCIN | 4 | 0.14 | 85.7 | 0.17 | NA | −0.025 | NA | 14.1 | 0.625 | 18 | NA | No | No | NA | Yes | Phase I | 0.14 |
CEFOTAXIME | 255 | 2.56 | 80 | 2 | 1.60, 2.40 | 0.56 | 0.16, 0.96 | 6.7 | 0.048 | −22 | −38, −6 | No | No | NA | Yes | Phase I | 2.56 |
Antimicrobials | Phase I DDD | Phase II DDD | Difference with Phase I DDD | DDD Differences between Phases | Power Value (>80%) | Difference Value (<10%) | Wilcoxon Test (>0.01) | Degree of Agreement (≥75%) | Selected DDD | Final DDD (g/day) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Value (g/day) | Degree of Agreement | Median (g/day) | CI95% | Median | CI95% | Power (1-B) % | Wilcoxon Test | Median | CI95% | |||||||
AMOXICILLIN-CLAVULANIC | 133 | 0.68 | 40 | 0.9 | 0.81, 1.05 | −0.22 | −0.37, −0.13 | 100 | <0.001 | 32.4 | 19, 54 | Yes | No | No | No | Phase II | 0.9 |
CIPROFLOXACIN | 65 | 0.34 | 100 | 0.5 | 0.50, 0.80 | −0.16 | −0.46, −0.16 | 99.9 | <0.001 | 47.1 | 47, 135 | Yes | No | No | Yes | Phase II | 0.5 |
CEFUROXIME | 41 | 0.26 | 10 | 0.5 | 0.28, 0.58 | −0.24 | −0.32, 0.02 | 99.8 | <0.001 | 92.3 | −8, 123 | Yes | No | No | No | Phase II | 0.5 |
LEVOFLOXACIN | 15 | 0.17 | 42.9 | 0.26 | 0.22, 0.50 | −0.09 | −0.33, −0.05 | 99.3 | 0.001 | 529 | 29, 194 | Yes | No | No | No | Phase II | 0.26 |
FLUCONAZOLE | 83 | 0.1 | 100 | 0.1 | 0.10, 0.10 | 0 | 0.00, 0.00 | 98.2 | 0.022 | 0 | 0, 0 | Yes | Yes | Yes | Yes | Phase I | 0.1 |
AMOXICILLIN | 107 | 0.85 | 50 | 0.9 | 0.83, 1.05 | −0.05 | −0.20, 0.02 | 95.1 | 0.007 | 5.9 | −3, 24 | Yes | Yes | No | No | Phase I | 0.85 |
CEFIXIME | 28 | 0.14 | 100 | 0.19 | 0.12, 0.40 | −0.045 | −0.26, 0.02 | 88.8 | 0.021 | 32.1 | −14, 186 | Yes | No | Yes | Yes | Phase I | 0.14 |
CLARITHROMYCIN | 23 | 0.26 | 100 | 0.36 | 0.30, 0.40 | −0.1 | −0.14, 0.04 | 83.1 | 0.004 | 38.5 | 15, 54 | Yes | No | No | Yes | Phase II | 0.36 |
AZITHROMYCIN | 75 | 0.17 | 100 | 0.14 | 0.12, 0.20 | 0.03 | −0.03, 0.04 | 59.1 | 0.594 | −17.6 | −26, 18 | No | No | NA | Yes | Phase I | 0.17 |
METRONIDAZOLE | 25 | 0.51 | 100 | 0.65 | 0.38, 1.00 | −0.14 | −0.49, 0.14 | 53.7 | 0.148 | 27.5 | −26, 96 | No | No | NA | Yes | Phase I | 0.51 |
LINEZOLID | 7 | 0.51 | 100 | 0.66 | 0.24, 1.20 | −0.15 | −0.69, 0.27 | 41.7 | 0.148 | 29.4 | −53, 135 | No | No | NA | Yes | Phase I | 0.51 |
CLOXACILLIN | 5 | 1.71 | 80 | 3 | NA | −1.29 | NA | 17.1 | 0.313 | 75.4 | NA | No | No | NA | Yes | Phase I | 1.71 |
ERYTHROMYCIN | 24 | 0.68 | 100 | 0.28 | 0.10, 0.80 | 0.4 | −0.12, 0.58 | 16.1 | 0.174 | −58.8 | −85, 18 | No | No | NA | Yes | Phase I | 0.68 |
CEFADROXIL | 4 | 0.51 | 66.7 | 0.16 | NA | 0.355 | NA | 13.1 | 0.875 | −69.6 | NA | No | No | NA | No | - | - |
Power | DDD Selection | |
---|---|---|
>80% | Phase I | Phase II |
No statistically significant differences + no clinical difference magnitude Intravenous: meropenem, ampicillin and fluconazole Oral: fluconazole | Statistically significant differences + clinical difference magnitude Intravenous: cefazolin, metronidazole, cefepime, cloxacillin, vancomycin, tobramycin and erythromycin, gentamicin, ceftriaxone, clindamycin, ciprofloxacin, amphotericin B. Oral: ciprofloxacin, clarithromycin, amoxicillin-clavulanic, cefuroxime, levofloxacin | |
Statistically significant differences + no clinical difference magnitude Intravenous: amoxicillin-clavulanic Oral: amoxicillin | ||
No statistically significant differences + clinical difference magnitude + degree of agreement Oral: cefixime | ||
≤80% | Degree of agreement (≥75%) Intravenous: amikacin, micafungin, azithromycin, teicoplanin, linezolid, piperacillin-tazobactam, ceftazidime, levofloxacin, daptomycin, cefotaxime Oral: azithromycin, metronidazole, linezolid, cloxacillin, erythromycin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montecatine-Alonso, E.; Mejías-Trueba, M.; Goycochea-Valdivia, W.A.; Chavarri-Gil, E.; Fernández-Llamazares, C.M.; Dolz, E.; Gutiérrez-Urbón, J.M.; Gallego-Fernández, C.; Llorente-Gutiérrez, J.; Gil-Navarro, M.V. Development of Antimicrobial Defined Daily Dose (DDD) for the Pediatric Population. Antibiotics 2023, 12, 276. https://doi.org/10.3390/antibiotics12020276
Montecatine-Alonso E, Mejías-Trueba M, Goycochea-Valdivia WA, Chavarri-Gil E, Fernández-Llamazares CM, Dolz E, Gutiérrez-Urbón JM, Gallego-Fernández C, Llorente-Gutiérrez J, Gil-Navarro MV. Development of Antimicrobial Defined Daily Dose (DDD) for the Pediatric Population. Antibiotics. 2023; 12(2):276. https://doi.org/10.3390/antibiotics12020276
Chicago/Turabian StyleMontecatine-Alonso, Elena, Marta Mejías-Trueba, Walter Alfredo Goycochea-Valdivia, Estibaliz Chavarri-Gil, Cecilia M. Fernández-Llamazares, Elisenda Dolz, José María Gutiérrez-Urbón, Carmen Gallego-Fernández, Jesús Llorente-Gutiérrez, and María Victoria Gil-Navarro. 2023. "Development of Antimicrobial Defined Daily Dose (DDD) for the Pediatric Population" Antibiotics 12, no. 2: 276. https://doi.org/10.3390/antibiotics12020276
APA StyleMontecatine-Alonso, E., Mejías-Trueba, M., Goycochea-Valdivia, W. A., Chavarri-Gil, E., Fernández-Llamazares, C. M., Dolz, E., Gutiérrez-Urbón, J. M., Gallego-Fernández, C., Llorente-Gutiérrez, J., & Gil-Navarro, M. V. (2023). Development of Antimicrobial Defined Daily Dose (DDD) for the Pediatric Population. Antibiotics, 12(2), 276. https://doi.org/10.3390/antibiotics12020276