Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus among Patients Diagnosed with Surgical Site Infection at Four Hospitals in Ethiopia
Abstract
:1. Introduction
2. Results
2.1. MALDI-TOF MS Identification of Methicillin-Resistant Staphylococcus Isolates
2.2. PCR amplification of mecA, femA, van A, and vanB
3. Discussion
4. Materials and Methods
4.1. Study Area and Design
4.2. Variables
4.3. Study Population and Sampling
4.4. Sample Size and Sampling Technique
4.5. Specimen Collection, Isolation, and Identification of S. aureus
4.6. Identification Confirmation of the Species of Bacteria Strain Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)
4.7. Antimicrobial Susceptibility Testing
4.8. Identification of Methicillin-Resistant S. aureus Strains
4.8.1. DNA Extraction
4.8.2. Standardization of Multiplex PCR for the Detection of Staphylococci mecA, femA, vanA, and vanB
Target Gene | Primer Name | Primer Sequence (5′-3′) | Size bp | References |
---|---|---|---|---|
mecA | MF | GTAGAAATGACTGAACGTCCGATAA | 310 | [58] |
MR | CCAATTCCACATTGTTTCGGTCTAA | |||
vanA | VF | GGGAAAACGACAATTGC | 732 | [59] |
VR | GTACAATGCGGCCGTTA | |||
vanB | VF | ACCTACCCTGTCTTTGTGAA | 300 | |
VR | AATGTCTGCTGGAACGATA | |||
femA | FF | AAAAAAGCACATAACAAGCG | 132 | [60] |
FR | GATAAAGAAGAAACCAGCAG |
4.9. Quality Assurance
4.10. Data Entry and Analysis
4.11. Ethical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Martínez-Meléndez, A.; Morfín-Otero, R.; Villarreal-Treviño, L.; González-González, G.; Llaca-Díaz, J.; Rodríguez-Noriega, E.; Camacho-Ortíz, A.; Garza-González, E. Staphylococcal cassette chromosome mec (SCCmec) in coagulase negative staphylococci. Med. Univ. 2015, 17, 229–233. [Google Scholar] [CrossRef]
- Beims, H.; Overmann, A.; Fulde, M.; Steinert, M.; Bergmann, S. Isolation of Staphylococcus sciuri from horse skin infection. Open Vet. J. 2016, 6, 242–246. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Ghssein, G.; Ezzeddine, Z. The Key Element Role of Metallophores in the Pathogenicity and Virulence of Staphylococcus aureus: A Review. Biology 2022, 11, 1525. [Google Scholar] [CrossRef] [PubMed]
- David, M.Z.; Daum, R.S. Treatment of Staphylococcus aureus Infections. Curr. Top. Microbiol. Immunol. 2017, 409, 325–383. [Google Scholar]
- Hiramatsu, K.; Katayama, Y.; Matsuo, M.; Sasaki, T.; Morimoto, Y.; Sekiguchi, A.; Baba, T. Multi-drug-resistant Staphylococcus aureus and future chemotherapy. J. Infect. Chemother. 2014, 20, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Mahjabeen, F.; Saha, U.; Mostafa, M.N.; Siddique, F.; Ahsan, E.; Fathma, S.; Tasnim, A.; Rahman, T.; Faruq, R.; Sakibuzzaman, M.; et al. An Update on Treatment Options for Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteremia: A Systematic Review. Cureus 2022, 14, e31486. [Google Scholar] [CrossRef]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic Resistance and the MRSA Problem. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Li, X.; Xiong, Y.; Fan, X.; Feng, P.; Tang, H.; Zhou, T. The role of femA regulating gene on methicillin-resistant Staphylococcus aureus clinical isolates. Med. Mal. Infect. 2012, 42, 218–225. [Google Scholar] [CrossRef]
- Cong, Y.; Yang, S.; Rao, X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J. Adv. Res. 2020, 21, 169–176. [Google Scholar] [CrossRef]
- Stogios, P.J.; Savchenko, A. Molecular mechanisms of vancomycin resistance. Protein Sci. 2020, 29, 654–669. [Google Scholar] [CrossRef]
- Li, G.; Walker, M.J.; De Oliveira, D.M.P. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022, 11, 24. [Google Scholar] [CrossRef]
- Arredondo-Alonso, S.; Top, J.; Corander, J.; Willems, R.J.L.; Schürch, A.C. Mode and dynamics of vanA-type vancomycin resistance dissemination in Dutch hospitals. Genome Med. 2021, 13, 9. [Google Scholar]
- Micek, S.T. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin. Infect. Dis. 2007, 45 (Suppl. S3), S184–S190. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Sabokroo, N.; Wang, Y.; Hashemian, M.; Karamollahi, S.; Kouhsari, E. Systematic review and meta-analysis of the epidemiology of vancomycin-resistance Staphylococcus aureus isolates. Antimicrob. Resist. Infect. Control 2021, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Eshetie, S.; Tarekegn, F.; Moges, F.; Amsalu, A.; Birhan, W.; Huruy, K. Methicillin resistant Staphylococcus aureus in Ethiopia: A meta-analysis. BMC Infect. Dis. 2016, 16, 689. [Google Scholar] [CrossRef]
- Anagaw, B.; Shiferaw, Y.; Anagaw, B.; Biadglegne, F.; Moges, F.; Kassu, A.; Unakal, C.; Mulu, A. Frequency of methicillin-resistant Staphylococcus aureus isolates from clinical specimens in Gondar University Hospital, Northwest Ethiopia. Asian J. Med. Sci. 2013, 5, 59–64. [Google Scholar] [CrossRef]
- Pal, S.; Sayana, A.; Joshi, A.; Juyal, D. Staphylococcus aureus: A predominant cause of surgical site infections in a rural healthcare setup of Uttarakhand. J. Fam. Med. Prim. Care 2019, 8, 3600–3606. [Google Scholar]
- Haaber, J.; Penadés, J.R.; Ingmer, H. Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol. 2017, 25, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Godebo, G.; Kibru, G.; Tassew, H. Multidrug-resistant bacterial isolates in infected wounds at Jimma University Specialized Hospital, Ethiopia. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 17. [Google Scholar] [CrossRef]
- Almeida, G.C.; dos Santos, M.M.; Lima, N.G.; Cidral, T.A.; Melo, M.C.; Lima, K.C. Prevalence and factors associated with wound colonization by Staphylococcus spp. and Staphylococcus aureus in hospitalized patients in inland northeastern Brazil: A cross-sectional study. BMC Infect. Dis. 2014, 14, 328. [Google Scholar] [CrossRef]
- Tsige, Y.; Tadesse, S.; G/Eyesus, T.; Tefera, M.M.; Amsalu, A.; Menberu, M.A.; Gelaw, B. Prevalence of Methicillin-Resistant Staphylococcus aureus and Associated Risk Factors among Patients with Wound Infection at Referral Hospital, Northeast Ethiopia. J. Pathog. 2020, 2020, 3168325. [Google Scholar] [CrossRef] [PubMed]
- Kahsay, A.; Mihret, A.; Abebe, T.; Andualem, T. Isolation and antimicrobial susceptibility pattern of Staphylococcus aureus in patients with surgical site infection at Debre Markos Referral Hospital, Amhara Region, Ethiopia. Arch. Public Health 2014, 72, 16. [Google Scholar] [CrossRef] [PubMed]
- Congdon, S.T.; Guaglione, J.A.; Ricketts, O.M.A.; Murphy, K.V.; Anderson, M.G.; Trowbridge, D.A.; Abduladheem, Y.A.; Phillips, A.M.; Beausoleil, A.M.; Stanley, A.J.; et al. Prevalence and antibiotic resistance of Staphylococcus aureus associated with a college-aged cohort: Life-style factors that contribute to nasal carriage. Front. Cell. Infect. Microbiol. 2023, 13, 1195758. [Google Scholar] [CrossRef] [PubMed]
- Kownhar, H.; Shankar, E.M.; Vignesh, R.; Sekar, R.; Velu, V.; Rao, U.A. High isolation rate of Staphylococcus aureus from surgical site infections in an Indian hospital. J. Antimicrob. Chemother. 2008, 61, 758–760. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, S.; Alemayehu, H.; Tenna, A.; Tadesse, G.; Tessema, T.S.; Shibeshi, W.; Eguale, T. Antimicrobial resistance profile of Staphylococcus aureus isolated from patients with infection at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia. BMC Pharmacol. Toxicol. 2018, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Mama, M.; Aklilu, A.; Misgna, K.; Tadesse, M.; Alemayehu, E. Methicillin-and inducible clindamycin-resistant Staphylococcus aureus among patients with wound infection attending Arba Minch Hospital, South Ethiopia. Int. J. Microbiol. 2019, 2019, 2965490. [Google Scholar] [CrossRef] [PubMed]
- Ibadin, E.E.; Enabulele, I.O.; Muinah, F. Prevalence of mecA gene among staphylococci from clinical samples of a tertiary hospital in Benin City, Nigeria. Afr. Health Sci. 2017, 17, 1000–1010. [Google Scholar] [CrossRef]
- Kavanagh, K.T. Control of MSSA and MRSA in the United States: Protocols, policies, risk adjustment and excuses. Antimicrob. Resist. Infect. Control 2019, 8, 103. [Google Scholar] [CrossRef]
- Al-Orphaly, M.; Hadi, H.A.; Eltayeb, F.K.; Al-Hail, H.; Samuel, B.G.; Sultan, A.A.; Skariah, S. Epidemiology of multidrug-resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. mSphere 2021, 6, e00202–e00221. [Google Scholar] [CrossRef]
- Pournajaf, A.; Ardebili, A.; Goudarzi, L.; Khodabandeh, M.; Narimani, T.; Abbaszadeh, H. PCR-based identification of methicillin–resistant Staphylococcus aureus strains and their antibiotic resistance profiles. Asian Pac. J. Trop. Biomed. 2014, 4, S293–S297. [Google Scholar] [CrossRef] [PubMed]
- Tefera, S.; Awoke, T.; Mekonnen, D. Methicillin and vancomycin resistant Staphylococcus aureus and associated factors from surgical ward inpatients at Debre Markos Referral Hospital, Northwest Ethiopia. Infect. Drug Resist. 2021, 14, 3053–3062. [Google Scholar] [CrossRef] [PubMed]
- Alani, H.A.; Hassawi, D.S.; Flayih, M.T. Patterns of antibiotic resistance in Staphylococcus aureus isolates and detection the heteroresistance to vancomycin by population analysis method. JUAPS 2017, 11, 26–33. [Google Scholar] [CrossRef]
- Moges, F.; Tamiru, T.; Amare, A.; Mengistu, G.; Eshetie, S.; Dagnew, M.; Feleke, T.; Gizachew, M.; Abebe, W. Prevalence of Methicillin-Resistant Staphylococcus aureus and Multidrug-Resistant Strains from Patients Attending the Referral Hospitals of Amhara Regional State, Ethiopia. Int. J. Microbiol. 2023, 2023, 3848073. [Google Scholar] [CrossRef]
- Zahan, N.A.; Hossain, M.A.; Musa, A.K.; Shamsuzzaman, A.K.; Mahamud, M.C.; Mamun, A.A.; Paul, S.K.; Ahmed, S.; Sumona, A.A.; Begum, Z.; et al. PCR for mecA gene of methicillin resistant Staphylococcus aureus. Mymensingh Med. J. 2009, 18, 21–26. [Google Scholar] [PubMed]
- Kobayashi, N.; Wu, H.; Kojima, K.; Taniguchi, K.; Urasawa, S.; Uehara, N.; Omizu, Y.; Kishi, Y.; Yagihashi, A.; Kurokawa, I. Detection of mecA, femA, and femB genes in clinical strains of using polymerase chain reaction. Epidemiol. Infect. 1994, 113, 259–266. [Google Scholar] [CrossRef]
- Garza-Gonzalez, E.; Morfin-Otero, R.; Llaca-Diaz, J.M.; Rodriguez-Noriega, E. Staphylococcal cassette chromosome mec (SCCmec) in methicillin-resistant coagulase-negative staphylococci. Epidemiol. Infect. 2010, 138, 645–654. [Google Scholar] [CrossRef]
- Zong, Z.; Peng, C.; Lü, X. Diversity of SCC mec elements in methicillin-resistant coagulase-negative staphylococci clinical isolates. PLoS ONE 2011, 6, e20191. [Google Scholar] [CrossRef]
- Berglund, C.; Söderquist, B. The origin of a methicillin-resistant Staphylococcus aureus isolate at a neonatal ward in Sweden—Possible horizontal transfer of a staphylococcal cassette chromosome mec between methicillin-resistant Staphylococcus haemolyticus and Staphylococcus aureus. Clin. Microbiol. Infect. 2008, 14, 1048–1056. [Google Scholar] [CrossRef]
- Wu, S.W.; de Lencastre, H.; Tomasz, A. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J. Bacteriol. 2001, 183, 2417–2424. [Google Scholar] [CrossRef]
- Bloemendaal, A.L.A.; Brouwer, E.C.; Fluit, A.C. Methicillin resistance transfer from Staphylocccus epidermidis to methicillin-susceptible Staphylococcus aureus in a patient during antibiotic therapy. PLoS ONE 2010, 5, e11841. [Google Scholar] [CrossRef] [PubMed]
- Miragaia, M. Factors Contributing to the Evolution of mecA-Mediated β-lactam Resistance in Staphylococci: Update and New Insights From Whole Genome Sequencing (WGS). Front. Microbiol. 2018, 9, 2723. [Google Scholar] [CrossRef]
- Sun, J.; Deng, Z.; Yan, A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. 2014, 453, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Zong, Z. Characterization of a complex context containing mecA but lacking genes encoding cassette chromosome recombinases in Staphylococcus haemolyticus. BMC Microbiol. 2013, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Elhassan, M.M.; Ozbak, H.A.; Hemeg, H.A.; Elmekki, M.A.; Ahmed, L.M. Absence of the mecA gene in methicillin resistant Staphylococcus aureus isolated from different clinical specimens in Shendi city, Sudan. BioMed. Res. Int. 2015, 2015, 895860. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. [Google Scholar]
- Ezzeddine, Z.; Ghssein, G. Towards new antibiotics classes targeting bacterial metallophores. Microb. Pathog. 2023, 182, 106221. [Google Scholar] [CrossRef]
- Coates, A.R.; Hu, Y. Novel approaches to developing new antibiotics for bacterial infections. Br. J. Pharmacol. 2007, 152, 1147–1154. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, J.; Wang, Y.; Wu, J.; Wang, X.; Wang, Y.; Zhang, Y.; Li, H. Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus in Hospitalized Patients in Eastern Heilongjiang Province, China. Infect. Drug Resist. 2021, 14, 1635–1643. [Google Scholar] [CrossRef]
- Mengesha, R.E.; Kasa, B.G.; Saravanan, M.; Berhe, D.F.; Wasihun, A.G. Aerobic bacteria in post surgical wound infections and pattern of their antimicrobial susceptibility in Ayder Teaching and Referral Hospital, Mekelle, Ethiopia. BMC Res. Notes 2014, 7, 575. [Google Scholar] [CrossRef]
- Bendary, M.M.; Solyman, S.M.; Azab, M.M.; Mahmoud, N.F.; Hanora, A.M. Genetic diversity of multidrug resistant Staphylococcus aureus isolated from clinical and non clinical samples in Egypt. Cell. Mol. Biol. 2016, 62, 55–61. [Google Scholar] [PubMed]
- Torres-Sangiao, E.; Leal Rodriguez, C.; García-Riestra, C. Application and Perspectives of MALDI–TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 2021, 9, 1539. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.-Y.; Chiang-Ni, C.; Teng, S.-H. Current status of MALDI-TOF mass spectrometry in clinical microbiology. J. Food Drug Anal. 2019, 27, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Clinical Laboratory Standard Institute. Performans Standards for Antimicrobial Susceptablity Testing, CLSI Supplement M100, 30th ed.; Clinical and Laboratory Standared Institiute: Wayne, PA, USA, 2021. [Google Scholar]
- Centers for Disease Control and Prevention. Laboratory Detection of Vancomycin-Intermediate/Resistant Staphylococcus aureus (VISA/VRSA); Centers for Disease Control and Prevention: Atlanta, GA, USA, 2006.
- Yamagishi, J.; Sato, Y.; Shinozaki, N.; Ye, B.; Tsuboi, A.; Nagasaki, M.; Yamashita, R. Comparison of boiling and robotics automation method in DNA extraction for metagenomic sequencing of human oral microbes. PLoS ONE 2016, 11, e0154389. [Google Scholar] [CrossRef]
- Perez-Roth, E.; Claverie-Martın, F.; Villar, J.; Mendez-Alvarez, S. Multiplex PCR for simultaneous identification of Staphylococcus aureus and detection of methicillin and mupirocin resistance. J. Clin. Microbiol. 2001, 39, 4037–4041. [Google Scholar] [CrossRef]
- Emamie, A.; Zolfaghari, P.; Zarei, A.; Ghorbani, M. Prevalence and antibiotic resistance of ESKAPE pathogens isolated from patients with bacteremia in Tehran, Iran. Indian J. Med. Spec. 2023, 14, 97. [Google Scholar]
- Al-Marzoqi, A.; Azize, H.; Al Dulaimi, T.; Ahmed, N. Phenotypic detection of resistance in Staphylococcus aureus isolates: Detection of (mec A and fem A) gene in methicillin resistant Staphylococcus aureus (MRSA) by Polymerase Chain Reaction. J. Nat. Sci. Res. 2014, 4, 112–118. [Google Scholar]
Antibiotics | Methods | N (%), % = N/752 | N (%), % = N/163 | AST Results | Strain |
---|---|---|---|---|---|
Cefoxitin | I-Z ≥ 22 mm | 123 (16.4) | 123 (75.5) | S | MSSA |
≤21 mm | 40 (5.3) | 40 (24.5) | R | MRSA |
Variables/Characteristics | Frequency of S. aureus (%) | |
---|---|---|
Gender | Male | 95 (58.3) |
Female | 68 (41.7) | |
Age in (years) | ≤18 | 25 (20.9) |
19–40 | 77 (54) | |
41–60 | 19 (13.5) | |
≥61 | 42 (11.7) | |
Surgical site infection | Superficial | 79 (48.5) |
Deep | 84 (51.5) | |
Preoperative hospital stays | <7 | 77 (47.2) |
≥7 | 86 (52.8) | |
Previous use of antibiotics | Yes | 79 (48.5) |
No | 84 (51.5) | |
Smoking | Yes | 16 (9.8) |
No | 147 (90.1) | |
Alcoholic | Yes | 48 (29.4) |
No | 115 (70.6) | |
Nature of surgery | Emergency Elective | 55 (68.1) 108 (31.9) |
Type of surgery | Clean/Clean contaminated surgery | 148 (90.8) |
Contaminated surgery | 15 (9.2) | |
Timing of surgical antimicrobial prophylaxis | Before the operation | 59 (36.2) |
During the operation | 104 (63.8) | |
Duration of operation | <1 h | 100 (52.8) |
≥1 h | 63 (47.2) |
Characteristics | Bacterial Growth | p-Value | Crude-OR (95%CI) | Adjusted-OR (95%CI) | p-Value | ||
---|---|---|---|---|---|---|---|
MRSA | MSSA | ||||||
Gender | Male | 29 (17.8) | 66 (40.5) | 0.039 | 2.276 (1.0444–4.9633) | 1.638 (0.597–4.489) | 0.337 |
Female | 11 (6.7) | 57 (35) | 1 | ||||
Age in (years) | ≤18 | 2 (1.2) | 23 (14.1) | 0.000 | 2.788 (1.8716–4.154) | 0.556 (0.1014–3.046) | 0.499 |
19–40 | 11 (6.7) | 66 (40.5) | 1 | ||||
41–60 | 2 (1.2) | 17 (10.4) | 1.556 (0.259–9.328) | 0.628 | |||
≥61 | 25 (15.3) | 17 (10.4) | 3.729 (1.179–11.791) | 0.025 | |||
Preoperative hospital stays | ≤7 | 13 (8) | 64 (39.3) | 0.034 | 2.253 (1.064–4.771) | 1 | |
>7 | 27 (16.7) | 59 (36.2) | 1.856 (0.688–5.311) | 0.000 | |||
Previous use of antibiotics | Yes | 26 (16) | 53 (32.5) | 3.692 (1.059–2.800) | 0.025 | ||
No | 14 (8.9) | 70 (42.9) | 0.001 | 3.256 (1.724–7.634) | 1 | ||
History of alcohol intake | Yes | 18 (11) | 30 (18.4) | 1.075 (0.1331–8.6925) | 0.945 | ||
No | 22 (13.5) | 93 (57.1) | 0.015 | 2.536 (1.202–5.351) | 1 | ||
Nature of surgery | Elective | 16 (9.8) | 92 (56.4) | 1 | |||
Emergency | 24 (14.7) | 31 (19) | 0.000 | 4.452 (2.098–9.445) | 1.962 (0.0619–6.224) | 0.000 | |
Timing of surgical antimicrobial prophylaxis | Before the operation | 7 (4.3) | 57 (35) | 1 | |||
After the operation | 33 (20.2) | 71(43.6) | 0.006 | 3.453 (2.098–9.445) | 3.066 (1.001–9.392) | 0.05 | |
Duration of operation | ≤1 h | 19 (11.7) | 81 (49.7) | 1 | |||
>1 h | 21 (12.9) | 42 (25.8) | 0.004 | 2.132 (1.034–4.396) | 1.890 (0.6321–5.652) | 0.235 |
Lane (mecApos) | MALDI-TOF MS | Study Site | Cefoxitin | Vancomycin | femA | mecA | vanA and vanB |
---|---|---|---|---|---|---|---|
1 | S. aureus | DTCSH | R | S | Pos | Pos | Neg |
5 | S. aureus | JUTSH | R | S | Pos | Pos | Neg |
7 | M. sciuri | DTCSH | R | S | Pos | Pos | Neg |
11 | S. haemolyticus | DTCSH | R | R | Pos | Pos | Neg |
12 | S. warneri | DTCSH | R | S | Pos | Pos | Neg |
18 | S. aureus | TASH | R | S | Pos | Pos | Neg |
19 | S. aureus | HUCSH | R | S | Pos | Pos | Neg |
23 | M. sciuri | DTCSH | R | S | Pos | Pos | Neg |
24 | M. sciuri | DTCSH | R | S | Pos | Pos | Neg |
29 | M. sciuri | DTCSH | R | S | Pos | Pos | Neg |
31 | M. sciuri | DTCSH | R | S | Neg | Pos | Neg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Worku, S.; Abebe, T.; Seyoum, B.; Alemu, A.; Shimelash, Y.; Yimer, M.; Abdissa, A.; Beyene, G.T.; Swedberg, G.; Mihret, A. Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus among Patients Diagnosed with Surgical Site Infection at Four Hospitals in Ethiopia. Antibiotics 2023, 12, 1681. https://doi.org/10.3390/antibiotics12121681
Worku S, Abebe T, Seyoum B, Alemu A, Shimelash Y, Yimer M, Abdissa A, Beyene GT, Swedberg G, Mihret A. Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus among Patients Diagnosed with Surgical Site Infection at Four Hospitals in Ethiopia. Antibiotics. 2023; 12(12):1681. https://doi.org/10.3390/antibiotics12121681
Chicago/Turabian StyleWorku, Seble, Tamrat Abebe, Berhanu Seyoum, Ashenafi Alemu, Yidenek Shimelash, Marechign Yimer, Alemseged Abdissa, Getachew Tesfaye Beyene, Göte Swedberg, and Adane Mihret. 2023. "Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus among Patients Diagnosed with Surgical Site Infection at Four Hospitals in Ethiopia" Antibiotics 12, no. 12: 1681. https://doi.org/10.3390/antibiotics12121681
APA StyleWorku, S., Abebe, T., Seyoum, B., Alemu, A., Shimelash, Y., Yimer, M., Abdissa, A., Beyene, G. T., Swedberg, G., & Mihret, A. (2023). Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus among Patients Diagnosed with Surgical Site Infection at Four Hospitals in Ethiopia. Antibiotics, 12(12), 1681. https://doi.org/10.3390/antibiotics12121681