High Incidence of Multiple-Drug-Resistant Pheromone-Responsive Plasmids and Transmissions of VanA-Type Vancomycin-Resistant Enterococcus faecalis between Livestock and Humans in Taiwan
Abstract
:1. Introduction
2. Results and Discussion
2.1. VRE Isolates and the Drug Resistances
2.2. VanS Gene Polymorphism
2.3. PFGE and MLST Analyses of the VRE Isolates
2.4. Conjugative Transfer of Vancomycin Resistance and Analysis of the Conjugative Plasmids
2.5. Pheromone Response of the Conjugative Plasmids
2.6. Conjugative Transfer of Drug Resistances along with Conjugative Transfer of Vancomycin
2.7. DNA Sequence Analysis of Pheromone-Responsive Conjugative Plasmid pTW9
2.8. Partial Nucleotide Sequence Analysis of Plasmid pTW24
3. Materials and Methods
3.1. Bacterial Strains, Plasmids, and Media
3.2. Antimicrobial Susceptibility Testing
3.3. Plasmid and DNA Methodology
3.4. DNA Sequence Analysis
3.5. DNA Sequence Analysis of the vanS Gene of the vanA Determinants
3.6. Conjugation Experiments
3.7. Pheromone Response (Clumping) Assay
3.8. Pulsed-Field Gel Electrophoresis (PFGE)
3.9. Multi-Locus Sequence Typing (MLST) Analyses
3.10. Nucleotide Sequence Accession Number
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agudelo Higuita, N.I.; Huycke, M.M. Enterococcal Disease, Epidemiology, and Implications for Treatment. In Enterococci; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190429/ (accessed on 5 December 2022).
- Guzman Prieto, A.M.; van Schaik, W.; Rogers, M.R.; Coque, T.M.; Baquero, F.; Corander, J.; Willems, R.J. Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones? Front. Microbiol. 2016, 7, 788. [Google Scholar] [CrossRef]
- Miller, W.R.; Murray, B.E.; Rice, L.B.; Arias, C.A. Resistance in Vancomycin-Resistant Enterococci. Infect. Dis. Clin. North Am. 2020, 34, 751–771. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.M.; Keis, S.; Smith, J.M.B.; Cook, G.M. A clonal lineage of vanA-type Enterococcus faecalis predominates in vancomycin-resistant enterococci isolated in New Zealand. Antimicrob. Agents Chemother. 2003, 47, 3743–3748. [Google Scholar] [CrossRef] [PubMed]
- Courvalin, P. Vancomycin-resistance in Gram-positive cocci. Clin. Infect. Dis. 2006, 42, S25–S34. [Google Scholar] [CrossRef] [PubMed]
- Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal Infection—Treatment and Antibiotic Resistance. In Enterococci; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190420/ (accessed on 19 September 2023).
- Arthur, M.; Molinas, C.; Depardieu, F.; Courvalin, P. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 1993, 175, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Sletvold, H.; Johnsen, P.J.; Wikmark, O.G.; Simonsen, G.S.; Sundsfjord, A.; Nielsen, K.M. Tn1546 is part of a larger plasmid-encoded genetic unit horizontally disseminated among clonal Enterococcus faecium lineages. J. Antimicrob. Chemother. 2010, 65, 1894–1906. [Google Scholar] [CrossRef] [PubMed]
- Willems, R.J.; Top, J.; van den Braak, N.; van Belkum, A.; Mevius, D.J.; Hendriks, G.; van Santen-Verheuvel, M.; van Embden, J.D. Molecular diversity and evolutionary relationships of Tn1546-like elements in enterococci from humans and animals. Antimicrob. Agents Chemother. 1999, 43, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Clewell, D.B.; Weaver, K.E.; Dunny, G.M.; Coque, T.M.; Francia, M.V.; Hayes, F. Extrachromosomal and Mobile Elements in Enterococci: Transmission, Maintenance, and Epidemiology. In Enterococci; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190430/ (accessed on 16 August 2023).
- Ike, Y.; Tanimoto, K.; Tomita, H.; Takeuchi, K.; Fujimoto, S. Efficient transfer of the pheromone-independent Enterococcus faecium plasmid pMG1 (Gmr) (65.1 kilobases) to Entrococcus strains during broth mating. J. Bacteriol. 1998, 180, 4886–4892. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Taniguchi, M.; Uesaka, K.; Nomura, T.; Hirakawa, H.; Tanimoto, K.; Tamai, K.; Ruan, G.; Zheng, B.; Tomita, H. Novel Multidrug-Resistant Enterococcal Mobile Linear Plasmid pELF1 Encoding vanA and vanM Gene Clusters from a Japanese Vancomycin-Resistant Enterococci Isolate. Front. Microbiol. 2019, 10, 2568. [Google Scholar] [CrossRef]
- Tanimoto, K.; Ike, Y. Analysis of the conjugal transfer system of the pheromone-independent highly transferable Enterococcus plasmid pMG1: Identification of tra gene (traA) up-regulated during conjugation. J. Bacteriol. 2002, 184, 5800–5804. [Google Scholar] [CrossRef]
- Tanimoto, K.; Ike, Y. Complete nucleotide sequencing and analysis of the 65-kb highly conjugative Enterococcus faecium plasmid pMG1: Identification of the transfer-related region and the minimum region required for replication. FEMS Microbiol. Lett. 2008, 288, 186–195. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Kita, I.; Suzuki, M.; Hirakawa, H.; Ohtaki, H.; Tomita, H. First Report of the Local Spread of Vancomycin-Resistant Enterococci Ascribed to the Interspecies Transmission of a vanA Gene Cluster-Carrying Linear Plasmid. mSphere 2020, 5, e00102-20. [Google Scholar] [CrossRef]
- Takeuchi, K.; Tomita, H.; Fujimoto, S.; Kudo, M.; Kuwano, H.; Ike, Y. Drug resistance of Enterococcus faecium clinical isolates and the conjugative transfer of gentamicin and erythromycin resistance traits. FEMS Microbiol. Lett. 2005, 243, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Tomita, H.; Tanimoto, K. Analysis of highly conjugative pMG1-like plasmids. In Proceedings of the 4th International ASM Conf. on Enterococci, Cartagena, Colombia, 5–7 March 2014; pp. 6–27. [Google Scholar]
- Tomita, H.; Pierson, C.; Lim, S.K.; Clewell, D.B.; Ike, Y. Possible connection between a widely disseminated conjugative gentamycin resistance (pMG1-like) plasmid and the emergence of vancomycin resistance in Enterococcus faecium. J. Clin. Microbiol. 2002, 40, 3326–3333. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Suzuki, M.; Kobayashi, S.; Hirahara, Y.; Kurushima, J.; Hirakawa, H.; Nomura, T.; Tanimoto, K.; Tomita, H. Enterococcal Linear Plasmids Adapt to Enterococcus faecium and Spread within Multidrug-Resistant Clades. Antimicrob. Agents Chemother. 2023, 67, e0161922. [Google Scholar] [CrossRef] [PubMed]
- Tomita, H.; Tanimoto, K.; Hayakawa, S.; Morinaga, K.; Ezaki, K.; Oshima, H.; Ike, Y. Highly conjugative pMG1-like plasmids carrying Tn1546-like transposons that encode vancomycin resistance in Enterococcus faecium. J. Bacteriol. 2003, 185, 7024–7028. [Google Scholar] [CrossRef] [PubMed]
- Tomita, H.; Ike, Y. Genetic analysis of transfer-related regions of the vancomycin resistance Enterococcus conjugative pHTβ: Identification of oriT and a putative relaxase gene. J. Bacteriol. 2005, 187, 7727–7737. [Google Scholar] [CrossRef]
- Tomita, H.; Ike, Y. Genetic analysis of the Enterococcus vancomycin resistance conjugative plasmid pHTβ: Identification of the region involved in cell aggregation and traB, a key regulator gene for plasmid transfer and cell aggregation. J. Bacteriol. 2008, 190, 7739–7753. [Google Scholar] [CrossRef]
- Clewell, D.B. Sex pheromones and the plasmid-encoded mating response in Enterococcus faecalis. In Bacterial conjugation; Clewell, D.B., Ed.; Plenum Press: New York, NY, USA, 1993; pp. 349–367. [Google Scholar]
- Dunny, G.M.; Brown, B.L.; Clewell, D.B. Induced cell aggregation and mating in Streptococcus faecalis: Evidence for a bacterial sex pheromone. Proc. Natl. Acad. Sci. USA 1978, 75, 3479–3483. [Google Scholar] [CrossRef]
- Clewell, D.B. Properties of Enpterococcus faecalis plasmid pAD1, a member of a widely disseminated family of pheromone-responding, conjugative, virulence elements encoding cytolysin. Plasmid 2007, 58, 205–227. [Google Scholar] [CrossRef]
- Fujimoto, S.; Tomita, H.; Wakamatsu, E.; Tanimoto, K.; Ike, Y. Physical mapping of the conjugative bacteriocin plasmid pPD1 of Enterococcus faecalis and identification of the determinant related to the pheromone response. J. Bacteriol. 1995, 177, 5574–5581. [Google Scholar] [CrossRef]
- Hirt, H.; Manial, D.A.; Bryan, E.M.; Klein, J.R.; Marklund, J.K.; Staddon, J.H.; Paustian, M.L.; Kapur, V.; Dunny, G.M. Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10: Complete sequence and comparative analysis of the transcriptional and phenotypic responses of pCF10-containing cells to pheromone induction. J. Bacteriol. 2005, 187, 1044–1854. [Google Scholar] [CrossRef] [PubMed]
- Ike, Y.; Clewell, D.B.; Segarra, R.A.; Gilmore, M.S. Genetic analysis of the pAD1 hemolysin/bacteriocin determinant in Enterococcus faecalis: Tn917 insertional mutagenesis and cloning. J. Bacteriol. 1990, 172, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Tanimoto, K.; Tomita, H.; Ike, Y. Pheromone-responsive conjugative vancomycin resistance plasmids in Enterococcus faecalis isolates from human and chicken feces. Appl. Environ. Microbiol. 2006, 72, 6544–6553. [Google Scholar] [CrossRef] [PubMed]
- Tomita, H.; Fujimoto, S.; Tanimoto, K.; Ike, Y. Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. J. Bacteriol. 1996, 178, 3585–3593. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Tomita, H.; Inoue, T.; Ike, Y. Isolation of vanB-type Enterococcus faecalis strains from nosocomial infections: First report of the isolation and identification of the pheromone-responsive plasmids pMG2200, encoding vanB-type vancomycin resistance and a Bac41-type bacteriocin, and pMG2201, encoding erythromycin resistance and cytolysin (Hly/Bac). Antimicrob. Agants Chemother. 2009, 53, 735–747. [Google Scholar]
- Ike, Y.; Tanimoto, K.; Ozawa, Y.; Nomura, T.; Fujimoto, S.; Tomita, H. Vancomycin-resistant enterococci in imported chickens in Japan. Lancet 1999, 353, 1854. [Google Scholar] [CrossRef] [PubMed]
- Witte, W. Medical consequences of antibiotic use in agriculture. Science 1998, 279, 996–997. [Google Scholar] [CrossRef] [PubMed]
- Aarenstrup, F.M.; Butaye, P.; Witte, W. Nonhuman reservoirs of enterococci. In The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance; Gilmore, M.S., Ed.; American Society for Microbiology: Washington, DC, USA, 2002; pp. 55–99. [Google Scholar]
- Bates, J.; Jordens, J.Z.; Griffiths, D.T. Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man. J. Antimicrob. Chemother. 1994, 34, 507–514. [Google Scholar] [CrossRef]
- van den Bogaard, A.E.; Jensen, L.B.; Stobberingh, E.E. Vancomycin-resistant enterococci in turkeys and farmers. N. Engl. J. Med. 1997, 337, 1558–1559. [Google Scholar] [CrossRef]
- Ozawa, Y.; Tanimoto, K.; Nomura, T.; Yoshinaga, M.; Arakawa, Y.; Ike, Y. Vancomycin-resistant enterococci in humans and imported chickens in Japan. Appl. Environ. Microbiol. 2002, 68, 6457–6461. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Tanimoto, K.; Ozawa, Y.; Murata, T.; Ike, Y. Amino acid substitutions in the VanS sensor of the VanA-type vancomycin-resistant enterococcus strains result in high-level vancomycin resistant and low-level teicoplanin resistance. FEMS Microbiol. Lett. 2000, 185, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Novais, C.; Coque, T.M.; Costa, M.J.; Sousa, J.C.; Baquero, F.; Peixe, L.V. High occurrence and persistence of antibiotic-resistant enterococci in poultry food samples in Portugal. J. Antibicrob. Chemother. 2005, 56, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
- Lauderdale, T.L.; Shiau, Y.R.; Wang, H.Y.; Lai, J.F.; Huang, I.W.; Chen, P.C.; Chen, H.Y.; Lai, S.S.; Liu, Y.F.; Ho, M. Effect of banning vancomycin analogue avoparcin on vancomycin-resistant enterococci in chicken farms in Taiwan. Environ. Microbiol. 2007, 9, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Lauderdale, T.L.; McDonald, L.C.; Shiau, Y.R.; Chen, P.C.; Wang, H.Y.; Lai, J.F.; Ho, M. Vancomycin-resistant enterococci from humans and retail chickens in Taiwan with unique VanB phenotype-vanA genotype incongruence. Antimicrob. Agents Chemother. 2002, 46, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Rushton-Green, R.; Darnell, R.L.; Taiaroa, G.; Carter, G.P.; Cook, G.M.; Morgan, X.C. Agricultural Origins of a Highly Persistent Lineage of Vancomycin-Resistant Enterococcus faecalis in New Zealand. Appl. Environ. Microbiol. 2019, 85, e00137-19. [Google Scholar] [CrossRef]
- Chen, M.Y.; Lira, F.; Liang, H.Q.; Wu, R.T.; Duan, J.H.; Liao, X.P.; Martínez, J.L.; Liu, Y.H.; Sun, J. Multilevel selection of bcrABDR-mediated bacitracin resistance in Enterococcus faecalis from chicken farms. Sci. Rep. 2016, 6, 34895. [Google Scholar] [CrossRef]
- McBride, S.M.; Fischetti, V.A.; Leblanc, D.J.; Moellering, R.C., Jr.; Gilmore, M.S. Genetic diversity among Enterococcus faecalis. PLoS ONE 2007, 2, e582. [Google Scholar] [CrossRef]
- Ruiz-Garbajosa, P.; Bonten, M.J.; Robinson, D.A.; Top, J.; Nallapareddy, S.R.; Torres, C.; Coque, T.M.; Canton, R.; Baquero, F.; Murray, B.E.; et al. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in background of high rates of recombination. J. Clin. Microbiol. 2006, 44, 2220–2228. [Google Scholar] [CrossRef]
- Freitas, A.R.; Novais, C.; Ruiz-Garbajosa, P.; Coque, T.M.; Peixe, L. Clonal expansion within clonal complex 2 and spread of vancomycin-resistant plasmids among different genetic lineages of Enterococcus faecalis from Portugal. J. Antimicrob. Chemother. 2009, 63, 1104–1111. [Google Scholar] [CrossRef]
- Solheim, M.; Brekke, M.C.; Snipen, L.G.; Willems, R.J.L.; Nes, I.F.; Brede, D.A. Comparative genomics analysis reveals significant enrichment of mobile elements and genes encoding surface structure-proteins in hospital-associated clonal complex 2 Enterococcus faecalis. BMC Microbiol. 2011, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Leavis, H.L.; Bonten, M.J.M.; Willems, R.J.L. Identification of high-risk enterococcal clonal complexes: Global dispersion and antibiotic resistance. Curr. Opin. Microbiol. 2006, 9, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Clewell, D.B.; Tomich, P.K.; Gawron-Burke, M.C.; Franke, A.E.; Yagi, Y.; An, F.Y. Mapping of Streptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn917. J. Bacteriol. 1982, 152, 1220–1230. [Google Scholar] [CrossRef]
- Manson, J.M.; Keis, S.; Smith, J.M.B.; Cook, G.M. Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR. Antimicrob. Agents Chemother. 2004, 47, 204–210. [Google Scholar] [CrossRef]
- Francia, M.V.; Haas, W.; Wirth, R.; Smberger, E.; Muscholl-Silberhorn, A.; Gilmore, M.S.; Ike, Y.; Weaver, K.E.; An, F.Y.; Clewell, D.B. Completion of the nucleotide sequence of the Enterococcus faecalis conjugative virulence plasmid pAD1 and identification of a second transfer origin. Plasmid 2001, 46, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.M.; Keis, S.; Smith, J.M.B.; Cook, G.M. Characterization of a vancomycin-resistant Enterococcus faecalis (VREF) isolate from a dog with mastitis: Further evidence of a clonal lineage of VREF in New Zealand. J. Clin. Microbiol. 2003, 41, 3331–3333. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.C. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol. Lett. 2008, 282, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Tomich, P.K.; An, F.Y.; Clewell, D.B. Properties of erythromycin-inducible transposon Tn917 in Streptococcus faecalis. J. Bacteriol. 1980, 141, 1366–1374. [Google Scholar] [CrossRef]
- Garcia-Migura, L.; Hasman, H.; Svendsen, C.; Jensen, L.B. R34 elevance of hot spots in the evolution and transmission of Tn1546 in glycopeptide-resistant Enterococcus faecium (GREF) from broiler origin. J. Antimicrob. Chemother. 2008, 62, 681–687. [Google Scholar] [CrossRef]
- Linton, K.J.; Cooper, H.N.; Hunter, I.S.; Leadlay, P.F. An ABC-transporter from Streptomyces longisporoflavus confers resistance to the polyether-ionophore antibiotic tetronasin. Mol. Microbiol. 1994, 11, 777–785. [Google Scholar] [CrossRef]
- Schwarz, F.V.; Perreten, V.; Teuber, M. Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid 2001, 46, 170–187. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, D.J.; Lee, L.N. Physical and genetic analysis of streptococcal plasmid pAMβ1 and cloning of its replication region. J. Bacteriol. 1984, 157, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.J.; Lee, S.Y.; Chung, H.Y. Molecular epidemiology of vanA vancomycin-resistant enterococci isolated from humans and animals in Taiwan. In Proceedings of the 6th International Meeting on Microbial Epidemiologycal Markers, Les Diablerets, Switzerland, 27–30 August 2003. [Google Scholar]
- Lu, J.J.; Perng, C.L.; Chiueh, T.S.; Lin, C.Y.; Chen, C.H.; Chang, F.Y.; Wang, C.C.; Chi, W.M. Detection and typing of vancomycin-resistance genes of enterococci from clinical and nosocomial surveillance specimens by multiplex PCR. Epidemiol. Infect. 2001, 126, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow AEROBICALLY, Document M07, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Ausubel, F.M.; Brent, R.; Kingston, R.W.; Moore, D.D.; Seidman, J.G.; Smith, J.A.; Struhl, K. Current Protocols in Molecular Biology; John Wiley & Sons, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 2001. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Ike, Y.; Clewell, D.B. Genetic analysis of the pAD1 pheromone response in Streptococcus faecalis, using transposon Tn917 as an insertional mutagen. J. Bacteriol. 1984, 158, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Ike, Y.; Craig, R.C.; White, B.A.; Yagi, Y.; Clewell, D.B. Modification of Streptococcus faecalis sex pheromones after acquisition of plasmid DNA. Proc. Natl. Acad. Sci. USA 1983, 8, 5369–5373. [Google Scholar] [CrossRef]
- Tenover, F.C.; Arbeit, R.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef]
Drug | No. of Drug-Resistant Isolates (%) a | |
---|---|---|
From Human | From Livestock | |
n = 22 b | n = 30 b | |
AMP | 0 (0) | 0 (0) |
BAC | 21 (95.5) | 29 (96.7) |
CHL | 18 (81.8) | 25 (83.3) |
CIP | 6 (27.3) | 5 (16.7) |
ERY | 22 (100) | 30 (100) |
GEM | 8 (36.4) | 8 (26.7) |
KAN | 21 (95.5) | 25 (83.3) |
SPT | 14 (63.6) | 13 (43.3) |
STR | 14 (63.6) | 22 (73.3) |
TEC | 1 (4.5) | 3 (10) |
TET | 22 (100) | 30 (100) |
VAN | 22 (100) | 30 (100) |
Strain | van Gene (Phenotype a) | Hospital (Location) | Specimen | MLST b (Closely-Related ST) c | Plasmid Content d | Response to Pheromone e | Drug Resistance Level (MIC, mg/L) f | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VAN | TEC | AMP | CIP | ERY | GEN | KAN | STR | CHL | TET | SPC | BAC | |||||||
TVH209 | vanA (VanB) | G (southern) | blood (human) | ST263 (ST33, 59) | pTW9 | cAD1 | 512 | 8 | <1 | 32 | >1024 | <16 | >1024 | >1024 | 128 | >128 | 64 | >256 |
TVA126 | vanA (VanB) | chicken feather | ST263 (ST33, 59) | pTW9-like | cAD1 | 512 | 8 | <1 | 64 | >1024 | <16 | >1024 | >1024 | 64 | 128 | 64 | >256 | |
TVH208 | vanA (VanB) | G (southern) | wound (human) | ST264 (ST86) | unknown type | unknown type | 256 | 8 | <1 | <4 | >1024 | >1024 | >1024 | 512 | 64 | 128 | 1024 | 64 |
TVH217 | vanA (VanB) | D (northern) | abscess (human) | ST264 (ST86) | unknown type | cAD1 | 512 | 8 | <1 | <4 | >1024 | >1024 | >1024 | 512 | 8 | 128 | 1024 | >256 |
TVA122 | vanA (VanB) | chicken feather | ST264 (ST86) | pTW24-like | cAD1 | 512 | >16 | <1 | <4 | >1024 | <16 | >1024 | 1024 | 8 | 128 | >1024 | >256 | |
TVH222 | vanA (VanB) | D (northern) | wound (human) | ST265 (ST16) | unknown type | unknown type | 256 | 2 | <1 | <4 | >1024 | 32 | >1024 | 512 | 8 | 128 | >1024 | >256 |
TVA117 | vanA (VanB) | pig waste | ST265 (ST16) | non-conjugative | 512 | 16 | <1 | <4 | >1024 | 128 | >1024 | 512 | 8 | 128 | >1024 | >256 | ||
TVA113 | vanA (VanB) | chicken meat | ST266 (ST93) | pTW24-like | cAD1 | 512 | 8 | <1 | <4 | >1024 | <16 | 32 | 32 | 64 | 128 | 64 | >256 | |
TVA118 | vanA (VanB) | pig waste | ST266 (ST93) | pTW24-like | cAD1 | 512 | 8 | <1 | <4 | >1024 | <16 | >1024 | >1024 | 64 | 128 | 64 | >256 | |
FA2-2 | <1 | <1 | <1 | <4 | <1 | <16/(8) | 64 | 64 | 8 | <4 | 64 | 16 |
Relevant Features and Origins (Specimens) | Reference | |
---|---|---|
Strains: | ||
VanA-type VRE | ||
TVH201 to TVH240 | forty isolates from individual patients of seven hospitals (hospital A, B, C, D, E, F and G) in Taiwan | This study, [59,60] |
(TVH201 to TVH209; hospital G, TVH210 and TVH211; hospital A, TVH212 to TVH225; hospital D, | ||
TVH226; hospital B, TVH227; hospital C, TVH228, hospital F, TVH229 to TVH236; hospital A, | ||
TVH237 and TVH239; hospital E, TVH238 and TVH240; hospital B) | ||
TVA101 to TVA130 | thirty isolates from separate livestock in Taiwan | This study, [59,60] |
(TVA101 to TVA113; chicken meat [CM], TVA114 to TVA120; pig waste [PW], | ||
TVA121 to TVA130; chicken feather [CF]) | ||
FA2-2 | rif, fus, derivative of JH2 | [49] |
JH2SS | spc, str, derivative of JH2 | [54] |
BM4105RF | rif, fus, derivative of plasmid-free E. faecium BM4105 | [11] |
BM4105SS | spc, str,derivative of plasmid-free E. faecium BM4105 | [11] |
ATCC9790 | penicillin susceptible, PBP5 low producer | |
DH5a | endA1 recA1 gyrA96 thi-1 hsdR17 supE44 relA1 ∆(argE-lacZYA) U169 | Bethesda Research Laboratories |
pUC18 | E. coli cloning vector, Ampr | Nippon gene |
pTW9 | pheromone (cAD1) responsive plasmid isolated from TVH209, 85.1 kbp, VANr, ERYr, BACr | This study |
predicted derivative of pTW24-like plasmid by integration of a 7.3 kbp ERYr plasmid | ||
designated as type A plasmid in this study | ||
pTW24 | pheromone (cAD1) responsive plasmid isolated from TVH224, 77.8 kbp, VANr, ERYr, BACr | This study |
designated as type B plasmid in this study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomita, H.; Lu, J.-J.; Ike, Y. High Incidence of Multiple-Drug-Resistant Pheromone-Responsive Plasmids and Transmissions of VanA-Type Vancomycin-Resistant Enterococcus faecalis between Livestock and Humans in Taiwan. Antibiotics 2023, 12, 1668. https://doi.org/10.3390/antibiotics12121668
Tomita H, Lu J-J, Ike Y. High Incidence of Multiple-Drug-Resistant Pheromone-Responsive Plasmids and Transmissions of VanA-Type Vancomycin-Resistant Enterococcus faecalis between Livestock and Humans in Taiwan. Antibiotics. 2023; 12(12):1668. https://doi.org/10.3390/antibiotics12121668
Chicago/Turabian StyleTomita, Haruyoshi, Jang-Jih Lu, and Yasuyoshi Ike. 2023. "High Incidence of Multiple-Drug-Resistant Pheromone-Responsive Plasmids and Transmissions of VanA-Type Vancomycin-Resistant Enterococcus faecalis between Livestock and Humans in Taiwan" Antibiotics 12, no. 12: 1668. https://doi.org/10.3390/antibiotics12121668
APA StyleTomita, H., Lu, J.-J., & Ike, Y. (2023). High Incidence of Multiple-Drug-Resistant Pheromone-Responsive Plasmids and Transmissions of VanA-Type Vancomycin-Resistant Enterococcus faecalis between Livestock and Humans in Taiwan. Antibiotics, 12(12), 1668. https://doi.org/10.3390/antibiotics12121668