Characterization of Riemerella anatipestifer Strains Isolated from Various Poultry Species in Poland
Abstract
:1. Introduction
2. Results
2.1. Identification of R. anatipestifer Isolates
2.2. Phylogenetic Relationship of the R. anatipestifer Isolates
2.3. Biochemical Profiles of R. anatipestifer Isolates
2.4. Antibiotic Resistance Profiles of R. anatipestifer Isolates
2.5. Resistance Genes on R. anatipestifer Isolates
3. Discussion
4. Materials and Methods
4.1. Isolation of Strains
4.2. Species Identification by MALDI-TOF MS
4.3. Identification of Bacteria by PCR
4.4. Phylogenetic Analysis Based on Sequencing of rpoB Gene
4.5. Assessment of Antibiotic Profiles by the MIC Method
4.6. Detection of Resistance Genes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hess, C.; Enichlmayr, H.; Jandreski-Cvetkovic, D.; Liebhart, D.; Bilic, I.; Hess, M. Riemerella anatipestifer outbreaks in commercial goose flocks and identification of isolates by MALDI-TOF mass spectrometry. Avian Pathol. 2013, 42, 151–156. [Google Scholar] [CrossRef]
- Sandhu, T.S.; Ruiz, J.A. Riemerella anatipestifer infection. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Nolan, L.K., Suarez, D.L., Nair, V., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2016; pp. 823–828. [Google Scholar]
- Hinz, K.H.; Ryll, M.; Kohler, B.; Glunder, G. Phenotypic characteristics of Riemerella anatipestifer and similar micro-organisms from various hosts. Avian Pathol. 1998, 27, 33–42. [Google Scholar] [CrossRef]
- Segers, P.; Mannheim, W.; Vancanneyt, M.; De Brandt, K.; Hinz, K.H.; Kersters, K.; Vandamme, P. Riemerella anatipestifer gen. nov., comb. nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. Int. J. Syst. Bacteriol. 1993, 43, 768–776. [Google Scholar] [CrossRef]
- García-López, M.; Meier-Kolthoff, J.P.; Tindall, B.J.; Gronow, S.; Woyke, T.; Kyrpides, N.C.; Hahnke, R.L.; Göker, M. Analysis of 1000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes. Front. Microbiol. 2019, 10, 2083. [Google Scholar] [CrossRef]
- Taxon Abstract for the genus Riemerella Segers et al. 1993 emend. Rubbenstroth et al. 2013. NamesforLife, LLC. Retrieved August 18, 2022. Available online: https://www.namesforlife.com/10.1601/tx.8187 (accessed on 20 August 2023). [CrossRef]
- Chang, F.F.; Chen, C.C.; Wang, S.H.; Chen, C.L. Epidemiology and Antibiogram of Riemerella anatipestifer Isolated from Waterfowl Slaughterhouses in Taiwan. J. Vet. Res. 2019, 63, 79–86. [Google Scholar] [CrossRef]
- Shousha, A.; Awad, A.; Younis, G. Molecular Characterization, Virulence and Antimicrobial Susceptibility Testing of Riemerella anatipestifer Isolated from Ducklings. Biocontrol Sci. 2021, 26, 181–186. [Google Scholar] [CrossRef]
- Surya, P.S.; Priya, P.M.; Mini, M. Biotyping and antibiogram of Riemerella anatipestifer from ducks in Kerala. Biosci. Biotechnol. Res. Commun. 2016, 9, 457–462. [Google Scholar]
- Rubbenstroth, D.; Ryll, M.; Behr, K.P.; Rautenschlein, S. Pathogenesis of Riemerella anatipestifer in turkeys after experimental mono-infection via respiratory routes or dual infection together with the avian metapneumovirus. Avian Pathol. 2009, 38, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, P.; Hafez, H.M.; Hinz, K.H. Capnophilic Bird Pathogens in the Family Flavobacteriaceae: Riemerella, Ornithobactrrium and Coenonia. In The Prokaryotes A Handbook on the Biology of Bacteria, 3rd ed.; Volume 5: Proteobacteria: Alpha and Beta, Subclasses; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer Science+Business Media, LLC.: New York, NY, USA, 2006; pp. 695–708. [Google Scholar]
- Chang, C.F.; Lin, W.H.; Yeh, T.M.; Chiang, T.S.; Chang, Y.F. Antimicrobial susceptibility of Riemerella anatipestifer isolated from ducks and the efficacy of ceftiofur treatment. J. Vet. Diagn. Investig. 2003, 15, 26–29. [Google Scholar] [CrossRef]
- Tzora, A.; Skoufos, S.; Bonos, E.; Fotou, K.; Karamoutsios, A.; Nelli, A.; Giannenas, I.; Tsinas, A.; Skoufos, I. Identification by MALDI-TOF MS and Antibiotic Resistance of Riemerella anatipestifer, Isolated from a Clinical Case in Commercial Broiler Chickens. Vet. Sci. 2021, 8, 29. [Google Scholar] [CrossRef]
- Gyuris, É.; Wehmann, E.; Czeibert, K.; Magyar, T. Antimicrobial susceptibility of Riemerella anatipestifer strains isolated from geese and ducks in Hungary. Acta Vet. Hung. 2017, 65, 153–165. [Google Scholar] [CrossRef]
- Lozica, L.; Mazić, M.; Gottstein, Ž. A case study of a Riemerella anatipestifer infection on a commercial turkey farm in Croatia. Eur. Poult. Sci. 2021, 85, 1–7. [Google Scholar] [CrossRef]
- Sawicka-Durkalec, A.; Tomczyk, G.; Gerilovych, I.; Kursa, O. Molecular Detection and Phylogenetic Analysis of Riemerella anatipestifer in Poultry and Wild Geese in Poland. Pathogens 2023, 12, 256. [Google Scholar] [CrossRef]
- Kubala, S.; Stanuch, M. An assessment of the self-sufficiency level of selected countries in central and eastern Europe in poultry meat production. Ann. PAAAE 2021, 23, 96–107. [Google Scholar] [CrossRef]
- Dudzic, A.; Urban-Chmiel, R.; Stępień-Pyśniak, D.; Dec, M.; Puchalski, A.; Wernicki, A. Isolation, identification and antibiotic resistance of Campylobacter strains isolated from domestic and free-living pigeons. Br. Poult. Sci. 2016, 57, 172–178. [Google Scholar] [CrossRef]
- Stępień-Pyśniak, D.; Hauschild, T.; Dec, M.; Marek, A.; Urban-Chmiel, R. Clonal Structure and Antibiotic Resistance of Enterococcus spp. from Wild Birds in Poland. Microb. Drug Resist. 2019, 25, 1227–1237. [Google Scholar] [CrossRef]
- Dec, M.; Urban-Chmiel, R.; Gnat, S.; Puchalski, A.; Wernicki, A. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis. Res. Microbiol. 2014, 165, 190–201. [Google Scholar] [CrossRef]
- Pérez-Sancho, M.; Vela, A.I.; Kostrzewa, M.; Zamora, L.; Casamayor, A.; Domínguez, L.; Fernández-Garayzábal, J.F. First analysis by MALDI-TOF MS technique of Chryseobacterium species relevant to aquaculture. J. Fish Dis. 2018, 41, 389–393. [Google Scholar] [CrossRef]
- Eriksen, H.B.; Gumpert, H.; Faurholt, C.H.; Westh, H. Determination of Elizabethkingia Diversity by MALDI-TOF Mass Spectrometry and Whole-Genome Sequencing. Emerg. Infect. Dis. 2017, 23, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Rubbenstroth, D.; Ryll, M.; Hotzel, H.; Christensen, H.; Knobloch, J.K.; Rautenschlein, S.; Bisgaard, M. Description of Riemerella columbipharyngis sp. nov., isolated from the pharynx of healthy domestic pigeons (Columba livia f. domestica), and emended descriptions of the genus Riemerella, Riemerella anatipestifer and Riemerella columbina. Int. J. Syst. Evol. Microbiol. 2013, 63, 280–287. [Google Scholar] [CrossRef]
- Rubbenstroth, D.; Ryll, M.; Knobloch, J.K.; Köhler, B.; Rautenschlein, S. Evaluation of different diagnostic tools for the detection and identification of Riemerella anatipestifer. Avian Pathol. 2013, 42, 17–26. [Google Scholar] [CrossRef]
- Priya, P.M.; Pillai, D.S.; Balusamy, C.; Rameshkumar, P.; Senthamilselvan, P. Studies on outbreak of “new duck disease” in Kerala, India. Int. J. Poult. Sci. 2008, 7, 189–190. [Google Scholar] [CrossRef]
- Ryll, M.; Christensen, H.; Bisgaard, M.; Christensen, J.P.; Hinz, K.H.; Kohler, B. Studies on the prevalence of Riemerella anatipestifer in the upper respiratory tract of clinically healthy ducklings and characterization of untypable strains. J. Vet. Med. B Infect. Dis. Vet. Public Health 2001, 48, 537–546. [Google Scholar] [CrossRef]
- Rubbenstroth, D.; Hotzel, H.; Knobloch, J.; Teske, L.; Rautenschlein, S.; Ryll, M. Isolation and characterization of atypical Riemerella columbina strains from pigeons and their differentiation from Riemerella anatipestifer. Vet. Microbiol. 2011, 147, 103–112. [Google Scholar] [CrossRef]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI), USA. M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, NJ, USA, 2018. [Google Scholar]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Sun, N.; Liu, J.H.; Yang, F.; Lin, D.C.; Li, G.H.; Chen, Z.L.; Zeng, Z.L. Molecular characterization of the antimicrobial resistance of Riemerella anatipestifer isolated from ducks. Vet. Microbiol. 2012, 158, 376–383. [Google Scholar] [CrossRef]
- Chen, Q.; Gong, X.; Zheng, F.; Ji, G.; Li, S.; Stipkovits, L.; Szathmary, S.; Liu, Y. Interplay between the Phenotype and Genotype, and Efflux Pumps in Drug-Resistant Strains of Riemerella anatipestifer. Front. Microbiol. 2018, 9, 2136. [Google Scholar] [CrossRef]
- Yang, F.F.; Sun, Y.N.; Li, J.X.; Wang, H.; Zhao, M.J.; Su, J.; Zhang, Z.J.; Liu, H.J.; Jiang, S.J. Detection of aminoglycoside resistance genes in Riemerella anatipestifer isolated from ducks. Vet. Microbiol. 2012, 158, 451–452. [Google Scholar] [CrossRef]
- Xing, L.; Yu, H.; Qi, J.; Jiang, P.; Sun, B.; Cui, J.; Ou, C.; Chang, W.; Hu, Q. ErmF and ereD are responsible for erythromycin resistance in Riemerella anatipestifer. PLoS ONE 2015, 10, e0131078. [Google Scholar] [CrossRef]
- Pathanasophon, P.; Tanticharoenyos, T.; Sawada, T. Physiological characteristics, antimicrobial susceptibility and serotypes of Pasteurella anatipestifer isolated from ducks in Thailand. Vet. Microbiol. 1994, 39, 179–185. [Google Scholar] [CrossRef]
- Rimler, R.B.; Nordholm, G.E. DNA fingerprinting of Riemerella anatipestifer. Avian Dis. 1998, 42, 101–105. [Google Scholar] [CrossRef]
- Zhu, D.K.; Luo, H.Y.; Liu, M.F.; Zhao, X.X.; Jia, R.Y.; Chen, S.; Sun, K.F.; Yang, Q.; Wu, Y.; Chen, X.Y.; et al. Various Profiles of tet Genes Addition to tet(X) in Riemerella anatipestifer Isolates from Ducks in China. Front. Microbiol. 2018, 9, 585. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Ding, H.; Mei, X.; Liu, W.; Zeng, J.; Zeng, Z. In vitro susceptibility of four antimicrobials against Riemerella anatipestifer isolates: A comparison of minimum inhibitory concentrations and mutant prevention concentrations for ceftiofur, cefquinome, florfenicol, and tilmicosin. BMC Vet. Res. 2016, 12, 250. [Google Scholar] [CrossRef]
- Huovinen, P. Resistance to trimethoprim-sulfamethoxazole. Clin. Infect. Dis. 2001, 32, 1608–1614. [Google Scholar]
- Han, J.E.; Kim, J.H.; Choresca, C., Jr.; Shin, S.P.; Jun, J.W.; Park, S.C. Sequence-based genotyping methods to assess the genetic diversity of Riemerella anatipestifer isolates from ducklings with tremor. New Microbiol. 2013, 36, 395–404. [Google Scholar]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI), USA. CLSI suplement M100 dokument. In Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; Clinical and Laboratory Standards Institute: Wayne, NJ, USA, 2021. [Google Scholar]
- Yang, Z.; Zhu, D.; Wang, M.; Cheng, A. GenBank Database. Available online: https://www.ncbi.nlm.nih.gov/nuccore/CP121209.1/ (accessed on 17 July 2023).
- Wellcome Trust Sanger Institute, UK. GenBank Database. Available online: https://www.ncbi.nlm.nih.gov/nuccore/LT906475.1/ (accessed on 17 July 2023).
- Wang, X.; Zhu, D.; Wang, M.; Cheng, A.; Jia, R.; Zhou, Y.; Chen, Z.; Luo, Q.; Liu, F.; Wang, Y.; et al. Complete genome sequence of Riemerella anatipestifer reference strain. J. Bacteriol. 2012, 194, 3270–3271. [Google Scholar] [CrossRef]
- Zheng, F.; Chen, Q.; Gong, X. GenBank Database. Available online: https://www.ncbi.nlm.nih.gov/nuccore/CP045564.1/ (accessed on 17 July 2023).
- Li, P.; Yang, Z.; Lei, T.; Dai, Y.; Zhou, Y.; Zhu, D.; Luo, H. Identification of a novel carbapenem-hydrolysing class D β-lactamase RAD-1 in Riemerella anatipestifer. J. Antimicrob. Chemother. 2023, 78, 1117–1124. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, M.; Cheng, A.; Zhu, D. GenBank Database. Available online: https://www.ncbi.nlm.nih.gov/nuccore/CP073239.1/ (accessed on 17 July 2023).
- Jonassen, K.; Ormaasen, I. GenBank Database. Available online: https://www.ncbi.nlm.nih.gov/nuccore/OU015319.1 (accessed on 17 July 2023).
- Won, M.; Kim, S.-J.; Kwon, S.-W. GenBank Database. Available online: https://www.ncbi.nlm.nih.gov/nuccore/CP094529.1 (accessed on 17 July 2023).
- Nicholson, A.C. GenBank Database. Available online: https://www.ncbi.nlm.nih.gov/nuccore/CP016378.1 (accessed on 17 July 2023).
- Park, C.H.; Robicsek, A.; Jacoby, G.A.; Sahm, D.; Hooper, D.C. Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 2006, 50, 3953–3955. [Google Scholar] [CrossRef]
- Kozak, G.K.; Boerlin, P.; Janecko, N.; Reid-Smith, R.J.; Jardine, C. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl. Environ. Microbiol. 2009, 75, 559–566. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, S.; White, D.G.; Schroeder, C.M.; Lu, R.; Yang, H.; McDermott, P.F.; Ayers, S.; Meng, J. Characterization of multiple-antimicrobial-resistant salmonella serovars isolated from retail meats. Appl. Environ. Microbiol. 2004, 70, 1–7. [Google Scholar] [CrossRef]
- Boerlin, P.; Travis, R.; Gyles, C.L.; Reid-Smith, R.; Janecko, N.; Lim, H.; Nicholson, V.; McEwen, S.A.; Friendship, R.; Archambault, M. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl. Environ. Microbiol. 2005, 71, 6753–6761. [Google Scholar] [CrossRef]
- Ghosh, S.; Sadowsky, M.J.; Roberts, M.C.; Gralnick, J.A.; LaPara, T.M. Sphingobacterium sp. strain PM2-P1-29 harbours a functional tet(X) gene encoding for the degradation of tetracycline. J. Appl. Microbiol. 2009, 106, 1336–1342. [Google Scholar] [CrossRef]
- Fang, H.; Ataker, F.; Hedin, G.; Dornbusch, K. Molecular epidemiology of extended-spectrum beta-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities from 2001 to 2006. J. Clin. Microbiol. 2008, 46, 707–712. [Google Scholar] [CrossRef]
- Maynard, C.; Fairbrother, J.M.; Bekal, S.; Sanschagrin, F.; Levesque, R.C.; Brousseau, R.; Masson, L.; Larivière, S.; Harel, J. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149:K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother. 2003, 47, 3214–3221. [Google Scholar] [CrossRef] [PubMed]
Antibiotic a | Test Range (μg/mL) | Number of Isolates with MIC (μg/mL) of | MIC50 c | MIC90 d | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.031 | 0.063 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | ≥128 | ||||
AMX | 0.125–128 | 24 | 19 | 3 | 6 | 2 | 1 | 2 | 0.5 | 2 | ||||||
TE | 0.125–128 | 10 | 7 | 12 | 15 | 8 | 5 | 1 | 4 | |||||||
CN | 0.125–128 | 2 | 3 | 3 | 1 | 4 | 6 | 8 | 30 | 128 | 128 | |||||
AMK | 0.125–128 | 1 | 1 | 2 | 5 | 4 | 3 | 4 | 37 | 128 | 128 | |||||
CS | 0.125–128 | 1 | 1 | 3 | 4 | 5 | 3 | 40 | 128 | 128 | ||||||
CL | 0.125–128 | 6 | 5 | 27 | 7 | 7 | 4 | 1 | 2 | 8 | ||||||
ENR | 0.125–128 | 11 | 10 | 14 | 2 | 2 | 7 | 3 | 5 | 1 | 2 | 0.5 | 16 | |||
CIP | 0.125–128 | 11 | 6 | 8 | 11 | 4 | 6 | 8 | 1 | 2 | 1 | 8 | ||||
ERY | 0.125–128 | 4 | 13 | 16 | 4 | 3 | 3 | 4 | 1 | 5 | 4 | 0.5 | 32 | |||
CXM | 0.031–16 | 19 | 16 | 20 | 1 | 1 | 0.063 | 0.125 | ||||||||
CFP | 0.031–16 | 17 | 4 | 12 | 19 | 5 | 0.125 | 0.25 | ||||||||
PIP | 0.031–16 | 2 | 8 | 21 | 8 | 13 | 3 | 2 | 0.125 | 0.5 | ||||||
Antibiotic | Test range (μg/mL) | Number of Isolates with MIC (μg/mL) of | ||||||||||||||
≤0.06/1.19 | 0.125/2.38 | 0.25/4.75 | 0.5/9.5 | 1/19 | 2/38 | 4/76 | 8/152 | 16/228 | ≥32/304 | |||||||
TR/S | 0.06/1.19–32/304 b | 23 | 9 | 8 | 6 | 7 | 4 | 0.125/2.38 | 1/19 |
Strain ID | Resistance Genes | Strain ID | Resistance Genes |
---|---|---|---|
1/23 | tet(X) | 37/23 | - |
2/23 | tet(X) | 39/23 | tet(X) |
3/23 | ermF | 40/23 | tet(X) |
4/23 | tet(X) | 41/23 | tet(X) |
5/23 | tet(X), tet(B) | 42/23 | - |
6/23 | tet(X) | 43/23 | - |
7/23 | - | 44/23 | tet(X), sulI |
8/23 | tet(X), ermF | 45/23 | tet(X) |
9/23 | - | 46/23 | tet(X) |
10/23 | tet(X) | 47/23 | tet(X) |
11/23 | tet(X), ermF | 48/23 | - |
12/23 | tet(X) | 49/23 | tet(X) |
13/23 | tet(X) | 50/23 | tet(X) |
14/23 | - | 51/23 | aph(3′)-VII |
15/23 | tet(X) | 52/23 | - |
16/23 | tet(X) | 53/23 | tet(X), tet(A),ermF, cmlA, aph(3′)-VII, aac(3′)-IV |
17/23 | tet(X) | 54/23 | tet(X), tet(A),ermF, aph(3′)-VII |
20/23 | - | 55/23 | tet(X), tet(A),ermF, aph(3′)-VII |
22/23 | - | 56/23 | tet(X), ermF, aph(3′)-VII |
23/23 | tet(X), tet(B) | 58/23 | tet(X), ermF |
25/23 | tet(X) | 59/23 | tet(X), ermF |
26/23 | - | 61/23 | tet(X), ermF |
27/23 | - | 62/23 | tet(X), tet(A),ermF, cmlA, blaTEM, aadA, strA/strB |
28/23 | tet(X) | 63/23 | tet(X), tet(A),ermF, aph(3′)-VII, aac(3′)-IV, blaTEM, aadA, strA/strB |
29/23 | tet(X) | 64/23 | tet(X), tet(A), cmlA, |
31/23 | tet(X), tet(B), cmlA | 65/23 | aph(3′)-VII |
33/23 | - | 69/23 | tet(X), ermF |
34/23 | - | 70/23 | tet(X), ermF |
35/23 | tet(X) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowaczek, A.; Dec, M.; Stępień-Pyśniak, D.; Wilczyński, J.; Urban-Chmiel, R. Characterization of Riemerella anatipestifer Strains Isolated from Various Poultry Species in Poland. Antibiotics 2023, 12, 1648. https://doi.org/10.3390/antibiotics12121648
Nowaczek A, Dec M, Stępień-Pyśniak D, Wilczyński J, Urban-Chmiel R. Characterization of Riemerella anatipestifer Strains Isolated from Various Poultry Species in Poland. Antibiotics. 2023; 12(12):1648. https://doi.org/10.3390/antibiotics12121648
Chicago/Turabian StyleNowaczek, Anna, Marta Dec, Dagmara Stępień-Pyśniak, Jarosław Wilczyński, and Renata Urban-Chmiel. 2023. "Characterization of Riemerella anatipestifer Strains Isolated from Various Poultry Species in Poland" Antibiotics 12, no. 12: 1648. https://doi.org/10.3390/antibiotics12121648
APA StyleNowaczek, A., Dec, M., Stępień-Pyśniak, D., Wilczyński, J., & Urban-Chmiel, R. (2023). Characterization of Riemerella anatipestifer Strains Isolated from Various Poultry Species in Poland. Antibiotics, 12(12), 1648. https://doi.org/10.3390/antibiotics12121648