Role of a Real-Time TDM-Based Expert Clinical Pharmacological Advice Program in Optimizing the Early Pharmacokinetic/Pharmacodynamic Target Attainment of Continuous Infusion Beta-Lactams among Orthotopic Liver Transplant Recipients with Documented or Suspected Gram-Negative Infections
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Data Collection
4.3. Beta-Lactam Dosing Regimens, Sampling Procedure, and Procedure for Optimizing PK/PD Target Attainment
4.4. Definition of Optimal, Quasi-Optimal, and Suboptimal PK/PD Target Attainments of Beta-Lactams
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shafiekhani, M.; Mirjalili, M.; Vazin, A. Prevalence, Risk Factors and Treatment of the Most Common Gram-Negative Bacterial Infections in Liver Transplant Recipients: A Review. Infect. Drug Resist. 2019, 12, 3485–3495. [Google Scholar] [CrossRef] [PubMed]
- Croome, K.P.; Taner, C.B. The Changing Landscapes in DCD Liver Transplantation. Curr. Transplant. Rep. 2020, 7, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-L.; Xu, J.; Zhang, W.; Liu, X.-Y.; Zhang, M.; Wang, W.-L.; Zheng, S.-S. Microbial Epidemiology and Risk Factors of Infections in Recipients after DCD Liver Transplantation. Int. J. Clin. Pract. 2016, 70 (Suppl. S185), 17–21. [Google Scholar] [CrossRef] [PubMed]
- Laici, C.; Gamberini, L.; Bardi, T.; Siniscalchi, A.; Reggiani, M.L.B.; Faenza, S. Early Infections in the Intensive Care Unit after Liver Transplantation-Etiology and Risk Factors: A Single-Center Experience. Transpl. Infect. Dis. 2018, 20, e12834. [Google Scholar] [CrossRef]
- Wu, X.; Long, G.; Peng, W.; Wan, Q. Drug Resistance and Risk Factors for Acquisition of Gram-Negative Bacteria and Carbapenem-Resistant Organisms Among Liver Transplant Recipients. Infect. Dis. Ther. 2022, 11, 1461–1477. [Google Scholar] [CrossRef]
- Karapanagiotou, A.; Kydona, C.; Papadopoulos, S.; Giasnetsova, T.; Sgourou, K.; Pasakiotou, M.; Fouzas, I.; Papanikolaou, V.; Gritsi-Gerogianni, N. Infections after Orthotopic Liver Transplantation in the Intensive Care Unit. Transplant. Proc. 2012, 44, 2748–2750. [Google Scholar] [CrossRef]
- Massa, E.; Michailidou, E.; Agapakis, D.; Papadopoulos, S.; Tholioti, T.; Aleuroudis, I.; Bargiota, T.; Passakiotou, M.; Daoudaki, M.; Antoniadis, N.; et al. Colonization and Infection with Extensively Drug Resistant Gram-Negative Bacteria in Liver Transplant Recipients. Transplant. Proc. 2019, 51, 454–456. [Google Scholar] [CrossRef]
- Antunes, M.; Teixeira, A.; Fortuna, P.; Moya, B.; Martins, A.; Bagulho, L.; Pereira, J.P.; Bento, L.; Perdigoto, R.; Barroso, E.; et al. Infections after Liver Transplantation: A Retrospective, Single-Center Study. Transplant. Proc. 2015, 47, 1019–1024. [Google Scholar] [CrossRef]
- Chueiri Neto, F.; Emídio, L.A.; Perales, S.R.; Stucchi, R.S.B.; Dragosavac, D.; Falcao, A.L.E.; Osni Leão Perin, P.; Boin, I.d.F.S.F.; de Ataide, E.C. Bloodstream Infections in Early Postsurgery Liver Transplant: An Analysis of 401 Patients Over 10 Years. Transplant. Proc. 2019, 51, 1972–1977. [Google Scholar] [CrossRef]
- Weiss, E.; Dahmani, S.; Bert, F.; Janny, S.; Sommacale, D.; Dondero, F.; Francoz, C.; Belghiti, J.; Mantz, J.; Paugam-Burtz, C. Early-Onset Pneumonia after Liver Transplantation: Microbiological Findings and Therapeutic Consequences. Liver Transpl. 2010, 16, 1178–1185. [Google Scholar] [CrossRef]
- Ikegami, T.; Shirabe, K.; Matono, R.; Yoshizumi, T.; Soejima, Y.; Uchiyama, H.; Kayashima, H.; Morita, K.; Maehara, Y. Etiologies, Risk Factors, and Outcomes of Bacterial Pneumonia after Living Donor Liver Transplantation. Liver Transpl. 2012, 18, 1060–1068. [Google Scholar] [CrossRef]
- Aguado, J.M.; Silva, J.T.; Fernández-Ruiz, M.; Cordero, E.; Fortún, J.; Gudiol, C.; Martínez-Martínez, L.; Vidal, E.; Almenar, L.; Almirante, B.; et al. Management of Multidrug Resistant Gram-Negative Bacilli Infections in Solid Organ Transplant Recipients: SET/GESITRA-SEIMC/REIPI Recommendations. Transplant. Rev. 2018, 32, 36–57. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.A.M.B.; Hasimoto, C.N.; Kim, A.; Hasimoto, E.N.; El Dib, R. Antibiotic Prophylaxis for Surgical Site Infection in People Undergoing Liver Transplantation. Cochrane Database Syst. Rev. 2015, 2015, CD010164. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised Antibiotic Dosing for Patients Who Are Critically Ill: Challenges and Potential Solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Cojutti, P.G.; Bartoletti, M.; Tonetti, T.; Bianchini, A.; Ramirez, S.; Pizzilli, G.; Ambretti, S.; Giannella, M.; Mancini, R.; et al. Expert Clinical Pharmacological Advice May Make an Antimicrobial TDM Program for Emerging Candidates More Clinically Useful in Tailoring Therapy of Critically Ill Patients. Crit. Care 2022, 26, 178. [Google Scholar] [CrossRef] [PubMed]
- Sumi, C.D.; Heffernan, A.J.; Lipman, J.; Roberts, J.A.; Sime, F.B. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin. Pharmacokinet. 2019, 58, 1407–1443. [Google Scholar] [CrossRef]
- Gatti, M.; Cojutti, P.G.; Pascale, R.; Tonetti, T.; Laici, C.; Dell’Olio, A.; Siniscalchi, A.; Giannella, M.; Viale, P.; Pea, F. Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections. Antibiotics 2021, 10, 1311. [Google Scholar] [CrossRef]
- Alshaer, M.H.; Maranchick, N.; Alexander, K.M.; Manigaba, K.; Shoulders, B.R.; Felton, T.W.; Mathew, S.K.; Peloquin, C.A. Beta-Lactam Target Attainment and Associated Outcomes in Patients with Bloodstream Infections. Int. J. Antimicrob. Agents 2023, 61, 106727. [Google Scholar] [CrossRef]
- Taccone, F.S.; Bogossian, E.G.; Tironi, R.M.; Antonucci, E.; Hites, M.; Knoop, C.; Etienne, I.; Jacobs, F.; Creteur, J. Early β-Lactam Concentrations and Infectious Complications after Lung Transplantation. Am. J. Transplant. 2021, 21, 2489–2497. [Google Scholar] [CrossRef]
- Taddei, R.; Riccardi, N.; Tiseo, G.; Galfo, V.; Biancofiore, G. Early Intra-Abdominal Bacterial Infections after Orthotopic Liver Transplantation: A Narrative Review for Clinicians. Antibiotics 2023, 12, 1316. [Google Scholar] [CrossRef]
- Angarita, S.A.K.; Russell, T.A.; Kaldas, F.M. Pneumonia after Liver Transplantation. Curr. Opin. Organ. Transplant. 2017, 22, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Karumai, T.; Yamamoto, R.; Kobayashi, E.; Ogawa, K.; Tounai, M.; Lipman, J.; Hayashi, Y. Pharmacokinetic and Pharmacodynamic Considerations in Antimicrobial Therapy for Sepsis. Expert. Opin. Drug Metab. Toxicol. 2020, 16, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, A.J.; Sime, F.B.; Lipman, J.; Roberts, J.A. Individualising Therapy to Minimize Bacterial Multidrug Resistance. Drugs 2018, 78, 621–641. [Google Scholar] [CrossRef] [PubMed]
- Jager, N.G.L.; van Hest, R.M.; Lipman, J.; Taccone, F.S.; Roberts, J.A. Therapeutic Drug Monitoring of Anti-Infective Agents in Critically Ill Patients. Expert. Rev. Clin. Pharmacol. 2016, 9, 961–979. [Google Scholar] [CrossRef]
- Jamal, J.-A.; Mueller, B.A.; Choi, G.Y.S.; Lipman, J.; Roberts, J.A. How Can We Ensure Effective Antibiotic Dosing in Critically Ill Patients Receiving Different Types of Renal Replacement Therapy? Diagn. Microbiol. Infect. Dis. 2015, 82, 92–103. [Google Scholar] [CrossRef]
- Roberts, J.A.; Joynt, G.M.; Choi, G.Y.S.; Gomersall, C.D.; Lipman, J. How to Optimise Antimicrobial Prescriptions in the Intensive Care Unit: Principles of Individualised Dosing Using Pharmacokinetics and Pharmacodynamics. Int. J. Antimicrob. Agents 2012, 39, 187–192. [Google Scholar] [CrossRef]
- Cojutti, P.G.; Gatti, M.; Bonifazi, F.; Caramelli, F.; Castelli, A.; Cavo, M.; Cescon, M.; Corvaglia, L.T.; Lanari, M.; Marinelli, S.; et al. Impact of a Newly Established Expert Clinical Pharmacological Advice Program Based on TDM Results in Tailoring Antimicrobial Therapies Hospital-Wide in a Tertiary University Hospital: Findings after the First-Year of Implementation. Int. J. Antimicrob. Agents 2023, 62, 106884. [Google Scholar] [CrossRef]
- Gatti, M.; Pea, F. Continuous versus Intermittent Infusion of Antibiotics in Gram-Negative Multidrug-Resistant Infections. Curr. Opin. Infect. Dis. 2021, 34, 737–747. [Google Scholar] [CrossRef]
- Roberts, J.A.; Croom, K.; Adomakoh, N. Continuous Infusion of Beta-Lactam Antibiotics: Narrative Review of Systematic Reviews, and Implications for Outpatient Parenteral Antibiotic Therapy. Expert. Rev. Anti Infect. Ther. 2023, 21, 375–385. [Google Scholar] [CrossRef]
- Pai Mangalore, R.; Ashok, A.; Lee, S.J.; Romero, L.; Peel, T.N.; Udy, A.A.; Peleg, A.Y. Beta-Lactam Antibiotic Therapeutic Drug Monitoring in Critically Ill Patients: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2022, 75, 1848–1860. [Google Scholar] [CrossRef]
- Sanz-Codina, M.; Bozkir, H.Ö.; Jorda, A.; Zeitlinger, M. Individualized Antimicrobial Dose Optimization: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Microbiol. Infect. 2023, 29, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Carrié, C.; Petit, L.; d’Houdain, N.; Sauvage, N.; Cottenceau, V.; Lafitte, M.; Foumenteze, C.; Hisz, Q.; Menu, D.; Legeron, R.; et al. Association between Augmented Renal Clearance, Antibiotic Exposure and Clinical Outcome in Critically Ill Septic Patients Receiving High Doses of β-Lactams Administered by Continuous Infusion: A Prospective Observational Study. Int. J. Antimicrob. Agents 2018, 51, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Carrié, C.; Chadefaux, G.; Sauvage, N.; de Courson, H.; Petit, L.; Nouette-Gaulain, K.; Pereira, B.; Biais, M. Increased β-Lactams Dosing Regimens Improve Clinical Outcome in Critically Ill Patients with Augmented Renal Clearance Treated for a First Episode of Hospital or Ventilator-Acquired Pneumonia: A before and after Study. Crit. Care 2019, 23, 379. [Google Scholar] [CrossRef]
- Carrié, C.; Legeron, R.; Petit, L.; Ollivier, J.; Cottenceau, V.; d’Houdain, N.; Boyer, P.; Lafitte, M.; Xuereb, F.; Sztark, F.; et al. Higher than Standard Dosing Regimen Are Needed to Achieve Optimal Antibiotic Exposure in Critically Ill Patients with Augmented Renal Clearance Receiving Piperacillin-Tazobactam Administered by Continuous Infusion. J. Crit. Care 2018, 48, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Udy, A.A.; Roberts, J.A.; Boots, R.J.; Paterson, D.L.; Lipman, J. Augmented Renal Clearance: Implications for Antibacterial Dosing in the Critically Ill. Clin. Pharmacokinet. 2010, 49, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Udy, A.A.; De Waele, J.J.; Lipman, J. Augmented Renal Clearance and Therapeutic Monitoring of β-Lactams. Int. J. Antimicrob. Agents 2015, 45, 331–333. [Google Scholar] [CrossRef]
- Udy, A.A.; Dulhunty, J.M.; Roberts, J.A.; Davis, J.S.; Webb, S.A.R.; Bellomo, R.; Gomersall, C.; Shirwadkar, C.; Eastwood, G.M.; Myburgh, J.; et al. Association between Augmented Renal Clearance and Clinical Outcomes in Patients Receiving β-Lactam Antibiotic Therapy by Continuous or Intermittent Infusion: A Nested Cohort Study of the BLING-II Randomised, Placebo-Controlled, Clinical Trial. Int. J. Antimicrob. Agents 2017, 49, 624–630. [Google Scholar] [CrossRef]
- Udy, A.A.; Varghese, J.M.; Altukroni, M.; Briscoe, S.; McWhinney, B.C.; Ungerer, J.P.; Lipman, J.; Roberts, J.A. Subtherapeutic Initial β-Lactam Concentrations in Select Critically Ill Patients: Association between Augmented Renal Clearance and Low Trough Drug Concentrations. Chest 2012, 142, 30–39. [Google Scholar] [CrossRef]
- Abdulla, A.; Dijkstra, A.; Hunfeld, N.G.M.; Endeman, H.; Bahmany, S.; Ewoldt, T.M.J.; Muller, A.E.; van Gelder, T.; Gommers, D.; Koch, B.C.P. Failure of Target Attainment of Beta-Lactam Antibiotics in Critically Ill Patients and Associated Risk Factors: A Two-Center Prospective Study (EXPAT). Crit. Care 2020, 24, 558. [Google Scholar] [CrossRef] [PubMed]
- Huttner, A.; Von Dach, E.; Renzoni, A.; Huttner, B.D.; Affaticati, M.; Pagani, L.; Daali, Y.; Pugin, J.; Karmime, A.; Fathi, M.; et al. Augmented Renal Clearance, Low β-Lactam Concentrations and Clinical Outcomes in the Critically Ill: An Observational Prospective Cohort Study. Int. J. Antimicrob. Agents 2015, 45, 385–392. [Google Scholar] [CrossRef]
- Sime, F.B.; Udy, A.A.; Roberts, J.A. Augmented Renal Clearance in Critically Ill Patients: Etiology, Definition and Implications for Beta-Lactam Dose Optimization. Curr. Opin. Pharmacol. 2015, 24, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Campoli, C.; Latrofa, M.E.; Ramirez, S.; Sasso, T.; Mancini, R.; Caramelli, F.; Viale, P.; Pea, F. Relationship Between Real-Time TDM-Guided Pharmacodynamic Target Attainment of Continuous Infusion Beta-Lactam Monotherapy and Microbiologic Outcome in the Treatment of Critically Ill Children with Severe Documented Gram-Negative Infections. Pediatr. Infect. Dis. J. 2023, 42, 975–982. [Google Scholar] [CrossRef]
- Roberts, J.A.; Taccone, F.S.; Lipman, J. Understanding PK/PD. Intensive Care Med. 2016, 42, 1797–1800. [Google Scholar] [CrossRef] [PubMed]
- Roger, C.; Louart, B. Beta-Lactams Toxicity in the Intensive Care Unit: An Underestimated Collateral Damage? Microorganisms 2021, 9, 1505. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Kalimeris, G.D.; Triarides, N.A.; Falagas, M.E. An Update on Adverse Drug Reactions Related to β-Lactam Antibiotics. Expert. Opin. Drug Saf. 2018, 17, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Fagiuoli, S.; Colli, A.; Bruno, R.; Craxì, A.; Gaeta, G.B.; Grossi, P.; Mondelli, M.U.; Puoti, M.; Sagnelli, E.; Stefani, S.; et al. Management of Infections Pre- and Post-Liver Transplantation: Report of an AISF Consensus Conference. J. Hepatol. 2014, 60, 1075–1089. [Google Scholar] [CrossRef]
- EUCAST—European Committee on Antimicrobial Susceptibility Testing European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 12.0, Valid from 2022-01-01. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 15 October 2023).
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN Surveillance Definition of Health Care-Associated Infection and Criteria for Specific Types of Infections in the Acute Care Setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef]
- Chastre, J.; Fagon, J.-Y. Ventilator-Associated Pneumonia. Am. J. Respir. Crit. Care Med. 2002, 165, 867–903. [Google Scholar] [CrossRef]
- Miller, J.M.; Binnicker, M.J.; Campbell, S.; Carroll, K.C.; Chapin, K.C.; Gilligan, P.H.; Gonzalez, M.D.; Jerris, R.C.; Kehl, S.C.; Patel, R.; et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin. Infect. Dis. 2018, 67, e1–e94. [Google Scholar] [CrossRef]
- Silva-Nunes, J.; Cardoso, T. Intra-Abdominal Infections: The Role of Different Classifications on the Selection of the Best Antibiotic Treatment. BMC Infect. Dis. 2019, 19, 980. [Google Scholar] [CrossRef]
- Loeuille, G.; D’Huart, E.; Vigneron, J.; Nisse, Y.-E.; Beiler, B.; Polo, C.; Ayari, G.; Sacrez, M.; Demoré, B.; Charmillon, A. Stability Studies of 16 Antibiotics for Continuous Infusion in Intensive Care Units and for Performing Outpatient Parenteral Antimicrobial Therapy. Antibiotics 2022, 11, 458. [Google Scholar] [CrossRef]
- Fawaz, S.; Barton, S.; Whitney, L.; Swinden, J.; Nabhani-Gebara, S. Stability of Meropenem after Reconstitution for Administration by Prolonged Infusion. Hosp. Pharm. 2019, 54, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Carlier, M.; Stove, V.; Verstraete, A.G.; De Waele, J.J. Stability of Generic Brands of Meropenem Reconstituted in Isotonic Saline. Minerva Anestesiol. 2015, 81, 283–287. [Google Scholar] [PubMed]
- Sillén, H.; Mitchell, R.; Sleigh, R.; Mainwaring, G.; Catton, K.; Houghton, R.; Glendining, K. Determination of Avibactam and Ceftazidime in Human Plasma Samples by LC-MS. Bioanalysis 2015, 7, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Barone, R.; Conti, M.; Giorgi, B.; Gatti, M.; Cojutti, P.G.; Viale, P.; Pea, F. Fast and Sensitive Method for Simultaneous Quantification of Meropenem and Vaborbactam in Human Plasma Microsamples by Liquid Chromatography-Tandem Mass Spectrometry for Therapeutic Drug Monitoring. Antibiotics 2023, 12, 719. [Google Scholar] [CrossRef]
- Tam, V.H.; Chang, K.-T.; Zhou, J.; Ledesma, K.R.; Phe, K.; Gao, S.; Van Bambeke, F.; Sánchez-Díaz, A.M.; Zamorano, L.; Oliver, A.; et al. Determining β-Lactam Exposure Threshold to Suppress Resistance Development in Gram-Negative Bacteria. J. Antimicrob. Chemother. 2017, 72, 1421–1428. [Google Scholar] [CrossRef]
- Sanz Codina, M.; Gatti, M.; Troisi, C.; Fornaro, G.; Pasquini, Z.; Trapani, F.; Zanoni, A.; Caramelli, F.; Viale, P.; Pea, F. Relationship between Pharmacokinetic/Pharmacodynamic Target Attainment and Microbiological Outcome in Critically Ill COVID-19 Patients with Documented Gram-Negative Superinfections Treated with TDM-Guided Continuous-Infusion Meropenem. Pharmaceutics 2022, 14, 1585. [Google Scholar] [CrossRef]
- Berrino, P.M.; Gatti, M.; Rinaldi, M.; Brunocilla, E.; Viale, P.; Pea, F. Pharmacokinetic/Pharmacodynamic Target Attainment of Continuous Infusion Piperacillin–Tazobactam or Meropenem and Microbiological Outcome among Urologic Patients with Documented Gram-Negative Infections. Antibiotics 2023, 12, 1388. [Google Scholar] [CrossRef]
- Gatti, M.; Pascale, R.; Cojutti, P.G.; Rinaldi, M.; Ambretti, S.; Conti, M.; Tedeschi, S.; Giannella, M.; Viale, P.; Pea, F. A Descriptive Pharmacokinetic/Pharmacodynamic Analysis of Continuous Infusion Ceftazidime-Avibactam in a Case Series of Critically Ill Renal Patients Treated for Documented Carbapenem-Resistant Gram-Negative Bloodstream Infections and/or Ventilator-Associated Pneumonia. Int. J. Antimicrob. Agents 2023, 61, 106699. [Google Scholar] [CrossRef]
- Gatti, M.; Rinaldi, M.; Gaibani, P.; Siniscalchi, A.; Tonetti, T.; Viale, P.; Pea, F. A Descriptive Pharmacokinetic/Pharmacodynamic Analysis of Continuous Infusion Meropenem/Vaborbactam in the Treatment of a Case Series of Critically Ill Patients with Documented KPC-Producing Klebsiella Pneumoniae Ventilator-Associated Pneumonia. Int. J. Antimicrob. Agents 2023, 76, 106992. [Google Scholar] [CrossRef]
- Craig, W.A. The Pharmacology of Meropenem, a New Carbapenem Antibiotic. Clin. Infect. Dis. 1997, 24 (Suppl. S2), S266–S275. [Google Scholar] [CrossRef] [PubMed]
- Sörgel, F.; Kinzig, M. The Chemistry, Pharmacokinetics and Tissue Distribution of Piperacillin/Tazobactam. J. Antimicrob. Chemother. 1993, 31 (Suppl. A), 39–60. [Google Scholar] [CrossRef] [PubMed]
- Sy, S.K.B.; Zhuang, L.; Sy, S.; Derendorf, H. Clinical Pharmacokinetics and Pharmacodynamics of Ceftazidime-Avibactam Combination: A Model-Informed Strategy for Its Clinical Development. Clin. Pharmacokinet. 2019, 58, 545–564. [Google Scholar] [CrossRef]
- Griffith, D.C.; Sabet, M.; Tarazi, Z.; Lomovskaya, O.; Dudley, M.N. Pharmacokinetics/Pharmacodynamics of Vaborbactam, a Novel Beta-Lactamase Inhibitor, in Combination with Meropenem. Antimicrob. Agents Chemother. 2019, 63, e01659-18. [Google Scholar] [CrossRef] [PubMed]
Demographics and Clinical Variables | OLT Recipients (n = 77) |
---|---|
Patient demographics | |
Age (years) [median (IQR)] | 57 (51–63) |
Gender (male/female) [n (%)] | 49/28 (63.6/36.4) |
Body weight (Kg) [median (IQR)] | 71 (60–81) |
Body mass index (Kg/m2) [median (IQR)] | 25.7 (22.5–27.8) |
Underlying liver diseases [n (%)] | |
Primary sclerosing cholangitis | 12 (15.5) |
Alcoholic + dysmetabolic cirrhosis | 9 (11.7) |
Alcoholic cirrhosis | 7 (9.1) |
HCV + hepatocarcinoma | 7 (9.1) |
Polycystic disease | 6 (7.8) |
Cholangiocarcinoma | 5 (6.5) |
Cryptogenic cirrhosis | 5 (6.5) |
Primary non-function | 4 (5.2) |
Congenital atresia biliary tract | 3 (3.9) |
HBV + alcoholic + dysmetabolic cirrhosis | 3 (3.9) |
HBV + HDV | 3 (3.9) |
HCV + alcoholic cirrhosis + hepatocarcinoma | 3 (3.9) |
Autoimmune hepatitis | 2 (2.6) |
Alcoholic cirrhosis + hepatocarcinoma | 1 (1.3) |
HBV | 1 (1.3) |
HBV + dysmetabolic cirrhosis | 1 (1.3) |
HBV + hepatocarcinoma | 1 (1.3) |
HCV | 1 (1.3) |
HCV + dysmetabolic | 1 (1.3) |
HCV + alcoholic cirrhosis | 1 (1.3) |
Chronic rejection | 1 (1.3) |
OLT features | |
MELD score at transplantation [median (IQR)] | 17 (11–29) |
Donation after circulatory death [n (%)] | 7 (9.1) |
Re-OLT | 5 (6.5) |
Severity of clinical conditions | |
SOFA score at ICU admission [median (IQR)] | 6.5 (3.75–9.25) |
Mechanical ventilation > 48 h [n (%)] | 36 (46.8) |
Vasopressors [n (%)] | 50 (64.9) |
Baseline CLCR (mL/min/1.73 m2) [median (IQR)] | 61 (32–109) |
Continuous renal replacement therapy [n (%)] | 28 (36.4) |
Augmented renal clearance [n (%)] | 15 (19.5) |
Outcome | |
ICU mortality | 7 (9.1) |
Variables | Beta-Lactam Treatment Course (n = 100) |
---|---|
Antimicrobial treatment [n (%)] | |
Empirical | 57 (57.0) |
Targeted | 43 (43.0) |
Beta-lactam antimicrobials [n (%)] | |
Meropenem | 45 (45.0) |
Piperacillin-Tazobactam | 44 (44.0) |
Meropenem-Vaborbactam | 7 (7.0) |
Ceftazidime-Avibactam | 4 (4.0) |
Site of infection a [n (%)] | |
VAP | 17 (39.5) |
cIAI | 11 (25.6) |
BSI | 9 (20.9) |
cIAI + BSI | 4 (9.3) |
VAP + BSI | 2 (4.7) |
Gram-negative clinical isolates b [n (%)] | |
Klebsiella pneumoniae | 16 (31.3) |
Enterobacter cloacae | 8 (15.7) |
Escherichia coli | 7 (13.7) |
Pseudomonas aeruginosa | 7 (13.7) |
Serratia marcescens | 3 (5.9) |
Acinetobacter baumannii | 3 (5.9) |
Klebsiella aerogenes | 2 (3.9) |
Hafnia alvei | 2 (3.9) |
Proteus mirabilis | 1 (2.0) |
Klebsiella oxytoca | 1 (2.0) |
Klebsiella ornithinolytica | 1 (2.0) |
TDM-based ECPA | |
Overall TDM-based ECPAs | 245 |
N of TDM-based ECPA per treatment course [median (IQR)] | 2 (1–3) |
N of dosage confirmations at first TDM assessment [n (%)] | 24 (24.0) |
N of dosage increases at first TDM assessment [n (%)] | 7 (7.0) |
N of dosage decreases at first TDM assessment [n (%)] | 69 (69.0) |
Overall n of dosage confirmations [n (%)] | 111 (45.3) |
Overall n of dosage increases [n (%)] | 15 (6.1) |
Overall n of dosage decreases [n (%)] | 119 (48.6) |
Beta-Lactam | Treatment Course |
---|---|
Meropenem | 45 |
Daily dose (mg) [median (IQR)] | 500 mg q6 h (500 mg q6 h–1000 mg q6 h) |
fCss (mg/L) [median (IQR)] | 13.7 (8.6–25.9) |
fCss/MIC ratio [median (IQR)] | 58.8 (11.8–92.3) |
Overall ECPAs | 141 |
Overall fCss/MIC ratio > 4 [optimal; n (%)] | 126 (89.4) |
Overall fCss/MIC ratio 1–4 [quasi-optimal; n (%)] | 12 (8.5) |
Overall fCss/MIC ratio < 1 [suboptimal; n (%)] | 3 (2.1) |
fCss/MIC ratio > 4 at first TDM assessment [optimal; n (%)] | 40 (88.9) |
fCss/MIC ratio 1–4 at first TDM assessment [quasi-optimal; n (%)] | 5 (11.1) |
fCss/MIC ratio < 1 at first TDM assessment [suboptimal; n (%)] | 0 (0.0) |
Piperacillin-tazobactam | 44 |
Daily dose (mg) [median (IQR)] | 13,500 mg (9000 mg–18,000 mg) |
Piperacillin fCss (mg/L) [median (IQR)] | 86.4 (53.9–123.6) |
Tazobactam fCss (mg/L) [median (IQR)] | 10.5 (6.2–16.2) |
Piperacillin fCss/MIC ratio [median (IQR)] | 10.9 (7.1–16.0) |
Tazobactam fCss/CT ratio [median (IQR)] | 2.6 (1.6–4.0) |
Overall ECPAs | 79 |
Overall optimal joint PK/PD target [n (%)] | 69 (87.3) |
Overall quasi-optimal joint PK/PD target [n (%)] | 4 (5.1) |
Overall suboptimal joint PK/PD target [n (%)] | 6 (7.6) |
Optimal joint PK/PD target at first TDM assessment [n (%)] | 40 (90.9) |
Quasi-optimal joint PK/PD target at first TDM assessment [n (%)] | 1 (2.3) |
Suboptimal joint PK/PD target at first TDM assessment [n (%)] | 3 (6.8) |
Meropenem-vaborbactam | 7 |
Daily dose (mg) [median (IQR)] | 2000 mg/2000 mg q8 h (1000 mg/1000 mg q8 h–2000 mg/2000 mg q8 h) |
Meropenem fCss (mg/L) [median (IQR)] | 30.0 (17.4–43.4) |
Vaborbactam fCss (mg/L) [median (IQR)] | 43.7 (29.7–51.9) |
Meropenem fCss/MIC ratio [median (IQR)] | 4.4 (2.2–6.4) |
Vaborbactam fAUC/CT ratio [median (IQR)] | 131.0 (60.8–143.9) |
Overall ECPAs | 11 |
Overall optimal joint PK/PD target [n (%)] | 6 (54.5) |
Overall quasi-optimal joint PK/PD target [n (%)] | 5 (45.5) |
Overall suboptimal joint PK/PD target [n (%)] | 0 (0.0) |
Optimal joint PK/PD target at first TDM assessment [n (%)] | 5 (71.4) |
Quasi-optimal joint PK/PD target at first TDM assessment [n (%)] | 2 (28.6) |
Suboptimal joint PK/PD target at first TDM assessment [n (%)] | 0 (0.0) |
Ceftazidime-avibactam | 4 |
Daily dose (mg) [median (IQR)] | 1250 mg q8 h (1250 mg q8 h–2500 mg q8 h) |
Ceftazidime fCss (mg/L) [median (IQR)] | 56.6 (28.8–75.0) |
Avibactam fCss (mg/L) [median (IQR)] | 12.8 (5.0–20.5) |
Ceftazidime fCss/MIC ratio [median (IQR)] | 28.3 (14.4–37.5) |
Avibactam fCss/CT ratio [median (IQR)] | 3.2 (1.3–5.1) |
Overall ECPAs | 14 |
Overall optimal joint PK/PD target [n (%)] | 13 (92.9) |
Overall quasi-optimal joint PK/PD target [n (%)] | 0 (0.0) |
Overall suboptimal joint PK/PD target [n (%)] | 1 (7.1) |
Optimal joint PK/PD target at first TDM assessment [n (%)] | 3 (75.0) |
Quasi-optimal joint PK/PD target at first TDM assessment [n (%)] | 0 (0.0) |
Suboptimal joint PK/PD target at first TDM assessment [n (%)] | 1 (25.0) |
Variables | Early Optimal PK/PD Target Attainment (n = 88) | Early Quasi-Optimal/ Suboptimal PK/PD Target Attainment (n = 12) | Univariate Analysis p Value | Multivariate Analysis (OR; 95%CI) | Multivariate Analysis p Value |
---|---|---|---|---|---|
Age (years) [median (IQR)] | 58 (53–64) | 48.5 (33.5–60) | 0.06 | 0.94 (0.88–1.01) | 0.07 |
Gender (male/female) [n (%)] | 53/35 (60.2/39.8) | 12/0 (100.0/0.0) | 0.007 | − | − |
Body weight (Kg) [median (IQR)] | 72 (59–82.5) | 72 (61.5–76.3) | 0.95 | ||
Body mass index (Kg/m2) [median (IQR)] | 26.2 (23.1–28.4) | 24.3 (21.8–27.0) | 0.49 | ||
MELD score at transplantation [median (IQR)] | 21 (11.75–29) | 14 (12.5–24) | 0.54 | ||
Donation after circulatory death [n (%)] | 14 (15.9) | 1 (8.3) | 0.69 | ||
SOFA score at ICU admission [median (IQR)] | 8 (4–11) | 4 (3–7) | 0.35 | ||
Mechanical ventilation > 48 h [n (%)] | 48 (54.5) | 6 (50.0) | 0.77 | ||
Vasopressors [n (%)] | 61 (69.3) | 8 (66.7) | 0.99 | ||
Continuous renal replacement therapy [n (%)] | 43 (48.9) | 4 (33.3) | 0.37 | ||
Augmented renal clearance [n (%)] | 6 (6.8) | 4 (33.3) | 0.02 | 7.64 (1.32–44.13) | 0.023 |
Empirical treatment [n (%)] | 62 (70.5) | 7 (58.3) | 0.51 | ||
Targeted treatment [n (%)] | 26 (29.5) | 5 (41.7) | 0.51 | ||
MIC value > EUCAST clinical breakpoint [n (%)] | 1 (1.1) | 4 (33.3) | <0.001 | 91.55 (7.12–1177.12) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, M.; Rinaldi, M.; Laici, C.; Siniscalchi, A.; Viale, P.; Pea, F. Role of a Real-Time TDM-Based Expert Clinical Pharmacological Advice Program in Optimizing the Early Pharmacokinetic/Pharmacodynamic Target Attainment of Continuous Infusion Beta-Lactams among Orthotopic Liver Transplant Recipients with Documented or Suspected Gram-Negative Infections. Antibiotics 2023, 12, 1599. https://doi.org/10.3390/antibiotics12111599
Gatti M, Rinaldi M, Laici C, Siniscalchi A, Viale P, Pea F. Role of a Real-Time TDM-Based Expert Clinical Pharmacological Advice Program in Optimizing the Early Pharmacokinetic/Pharmacodynamic Target Attainment of Continuous Infusion Beta-Lactams among Orthotopic Liver Transplant Recipients with Documented or Suspected Gram-Negative Infections. Antibiotics. 2023; 12(11):1599. https://doi.org/10.3390/antibiotics12111599
Chicago/Turabian StyleGatti, Milo, Matteo Rinaldi, Cristiana Laici, Antonio Siniscalchi, Pierluigi Viale, and Federico Pea. 2023. "Role of a Real-Time TDM-Based Expert Clinical Pharmacological Advice Program in Optimizing the Early Pharmacokinetic/Pharmacodynamic Target Attainment of Continuous Infusion Beta-Lactams among Orthotopic Liver Transplant Recipients with Documented or Suspected Gram-Negative Infections" Antibiotics 12, no. 11: 1599. https://doi.org/10.3390/antibiotics12111599
APA StyleGatti, M., Rinaldi, M., Laici, C., Siniscalchi, A., Viale, P., & Pea, F. (2023). Role of a Real-Time TDM-Based Expert Clinical Pharmacological Advice Program in Optimizing the Early Pharmacokinetic/Pharmacodynamic Target Attainment of Continuous Infusion Beta-Lactams among Orthotopic Liver Transplant Recipients with Documented or Suspected Gram-Negative Infections. Antibiotics, 12(11), 1599. https://doi.org/10.3390/antibiotics12111599