Inoculum-Based Dosing: A Novel Concept for Combining Time with Concentration-Dependent Antibiotics to Optimize Clinical and Microbiological Outcomes in Severe Gram Negative Sepsis
Abstract
:1. Introduction
2. Methods: Search Strategy and Selection Criteria
3. Concentration-Dependent Antibiotics
4. Aminoglycosides
5. Aminoglycosides and the Post-Antimicrobial Effect (PAE)
6. Aminoglycosides and the Inoculum Size
7. Clinical Studies with Aminoglycosides
8. Once Daily versus Multiple Daily Dosings of Aminoglycosides
9. Aminoglycoside-Induced Renal Toxicity
10. Aminoglycoside-Induced Ototoxicity
11. Combination Therapy: Aminoglycosides and Beta-Lactams
12. PK-PD Studies with Relatively High-Dose Aminoglycosides
13. Fluoroquinolones
14. PK-PD Studies with Fluoroquinolones
15. Combination Therapy: Fluoroquinolones and Beta-Lactams
16. Rationale for Combining Time and Concentration-Dependent Antibiotics in High Inoculum Infections
17. Combination Therapy: Beta-Lactam and Aminoglycosides
18. Combination Therapy of a Beta-Lactam Combined with a Fluoroquinolone
19. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef]
- Taccone, F.S.; Laterre, P.-F.; Dugernier, T.; Spapen, H.; Delattre, I.; Witebolle, X.; De Backer, D.; Layeux, B.; Wallemacq, P.; Vincent, J.-L.; et al. Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit. Care 2010, 14, R126. [Google Scholar] [CrossRef]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.-M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining Antibiotic Levels in Intensive care unit patients: Are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef]
- Roberts, J.A.; Abdul-Aziz, M.-H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef]
- Tsai, D.; Lipman, J.; Roberts, J.A. Pharmacokinetic/pharmacodynamic considerations for the optimization of antimicrobial delivery in the critically ill. Curr. Opin. Crit. Care 2015, 21, 412–420. [Google Scholar] [CrossRef]
- Marik, P.E. Aminoglycoside Volume of Distribution and Illness Severity in Critically Ill Septic Patients. Anaesth. Intensive Care 1993, 21, 172–173. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Xie, J.; Liu, L.; Liu, S.; Guo, F.; Qiu, H.; Yang, Y. Association Between Pathophysiology and Volume of Distribution Among Patients With Sepsis or Septic Shock Treated With Imipenem: A Prospective Cohort Study. J. Infect. Dis. 2020, 221 (Suppl. S2), S272–S278. [Google Scholar] [CrossRef]
- Pea, F.; Viale, P. Bench-to-bedside review: Appropriate antibiotic therapy in severe sepsis and septic shock—Does the dose matter? Crit. Care 2009, 13, 214. [Google Scholar] [CrossRef]
- Drusano, G.L. Antimicrobial pharmacodynamics: Critical interactions of “bug and drug”. Nat. Rev. Microbiol. 2004, 2, 289–300. [Google Scholar] [CrossRef]
- Martinez, M.; Papich, M.; Drusano, G. Dosing Regimen Matters: The Importance of Early Intervention and Rapid Attainment of the Pharmacokinetic/Pharmacodynamic Target. Antimicrob. Agents Chemother. 2012, 56, 2795–2805. [Google Scholar] [CrossRef]
- Drusano, G.L.; Corrado, M.L.; Girardi, G.; Ellis-Grosse, E.J.; Wunderink, R.G.; Donnelly, H.; Leeper, K.V.; Brown, M.; Malek, T.; Hite, R.D.; et al. Dilution Factor of Quantitative Bacterial Cultures Obtained by Bronchoalveolar Lavage in Patients with Ventilator-Associated Bacterial Pneumonia. Antimicrob. Agents Chemother. 2018, 62, e01323-17. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.A. Pharmacokinetic/Pharmacodynamic Parameters: Rationale for Antibacterial Dosing of Mice and Men. Clin. Infect. Dis. 1998, 26, 1–10. [Google Scholar] [CrossRef]
- Drusano, G.L. Pharmacokinetics and Pharmacodynamics of Antimicrobials. Clin. Infect. Dis. 2007, 45 (Suppl. S1), S89–S95. [Google Scholar] [CrossRef] [PubMed]
- Saravolatz, L.D.; Stein, G.E. Plazomicin: A New Aminoglycoside. Clin. Infect. Dis. 2020, 70, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.; Chen, C.; Buising, K. Aminoglycosides: How should we use them in the 21st century? Curr. Opin. Infect. Dis. 2013, 26, 516–525. [Google Scholar] [CrossRef]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Craig, W.A. Pharmacokinetic Contributions to Postantibiotic Effects: Focus on Aminoglycosides. Clin. Pharmacokinet. 1994, 27, 377–392. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Hoban, D.J.; Harding, G.K. The postantibiotic effect: A review of in vitro and in vivo data. DCIP 1991, 25, 11. [Google Scholar] [CrossRef]
- Isaksson, B.; Nilsson, L.; Maller, R.; Sören, L. Postantibiotic effect of aminoglycosides on Gram-negative bacteria evaluated by a new method. J. Antimicrob. Chemother. 1988, 22, 23–33. [Google Scholar] [CrossRef]
- Isaksson, B.; Hanberger, H.; Maller, R.; Nillson, M. Synergic post-antibiotic effect of amikacin in combination with beta-lactam antibiotics on gram-negative bacteria. J. Antimicrob. Chemother. 1991, 28, 25–34. [Google Scholar] [CrossRef]
- Craig, W.A.; Redington, J.; Ebert, S.C. Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J. Antimicrob. Chemother. 1991, 27 (Suppl. C), 29–40. [Google Scholar] [CrossRef] [PubMed]
- Fantin, B.; Ebert, S.; Leggett, J.; Vogelman, B.; Craig, W.A. Factors affecting duration of in-vivo postantibiotic effect for aminoglycosides against Gram-negative bacilli. J. Antimicrob. Chemother. 1991, 27, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.K.W.; Washington, J.A. Comparative In Vitro Activity of Three Aminoglycosidic Antibiotics: BB-K8, Kanamycin, and Gentamicin. Antimicrob. Agents Chemother. 1973, 4, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.T.; Matsen, J.M. In Vitro Activity, Synergism, and Testing Parameters of Amikacin, with Comparisons to Other Aminoglycoside Antibiotics. Antimicrob. Agents Chemother. 1976, 9, 440–447. [Google Scholar] [CrossRef]
- Szabo, D.R.; Rozgonyi, F. In Vitro and In Vivo Activities of Amikacin, Cefepime, Amikacin plus Cefepime, and Imipenem against an SHV-5 Extended-Spectrum beta-Lactamase-Producing Klebsiella pneumoniae Strain. Antimicrob. Agents Chemother. 2001, 45, 1287–1291. [Google Scholar] [CrossRef]
- Moore, R.D.; Lietman, P.S.; Smith, C.R. Clinical Response to Aminoglycoside Therapy: Importance of the Ratio of Peak Concentration to Minimal Inhibitory Concentration. J. Infect. Dis. 1987, 155, 93–99. [Google Scholar] [CrossRef]
- Kashuba, A.D.M.; Nafziger, A.N.; Drusano, G.L.; Bertino, J.S. Optimizing Aminoglycoside Therapy for Nosocomial Pneumonia Caused by Gram-Negative Bacteria. Antimicrob. Agents Chemother. 1999, 43, 623–629. [Google Scholar] [CrossRef]
- Ruiz, J.; Ramirez, P.; Company, M.J.; Gordon, M.; Villarreal, E.; Concha, P.; Aroca, M.; Frasquet, J.; Remedios-Marqués, M.; Castellanos-Ortega, Á. Impact of amikacin pharmacokinetic/pharmacodynamic index on treatment response in critically ill patients. J. Glob. Antimicrob. Resist. 2018, 12, 90–95. [Google Scholar] [CrossRef]
- Blaser, J.; Stone, B.B.; Groner, M.C.; Zinner, S.H. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob. Agents Chemother. 1987, 31, 1054–1060. [Google Scholar] [CrossRef]
- Rea, R.S.; Capitano, B.; Bies, R.; Bigos, K.L.; Smith, R.; Lee, H. Suboptimal Aminoglycoside Dosing in Critically Ill Patients. Ther. Drug Monit. 2008, 30, 674–681. [Google Scholar] [CrossRef]
- Blackburn, L.M.; Tverdek, F.P.; Hernandez, M.; Bruno, J.J. First-dose pharmacokinetics of aminoglycosides in critically ill haematological malignancy patients. Int. J. Antimicrob. Agents 2015, 45, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Roger, C.; Nucci, B.; Molinari, N.; Bastide, S.; Saissi, G.; Pradel, G.; Barbar, S.; Aubert, C.; Lloret, S.; Elotmani, L.; et al. Standard dosing of amikacin and gentamicin in critically ill patients results in variable and subtherapeutic concentrations. Int. J. Antimicrob. Agents 2015, 46, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Drusano, G.L.; Louie, A. Optimization of Aminoglycoside Therapy. Antimicrob. Agents Chemother. 2011, 55, 2528–2531. [Google Scholar] [CrossRef] [PubMed]
- Nicolau, D.P.; Freeman, C.D.; Belliveau, P.P.; Nightingale, C.H.; Ross, J.W.; Quintiliani, R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob. Agents Chemother. 1995, 39, 650–655. [Google Scholar] [CrossRef]
- Hatala, R.; Dinh, T.; Cook, D.J. Once-Daily Aminoglycoside Dosing in Immunocompetent Adults: A Meta-Analysis. Ann. Intern. Med. 1996, 124, 717–725. [Google Scholar] [CrossRef]
- Rybak, M.J.; Abate, B.J.; Kang, S.L.; Ruffing, M.J.; Lerner, S.A.; Drusano, G.L. Prospective Evaluation of the Effect of an Aminoglycoside Dosing Regimen on Rates of Observed Nephrotoxicity and Ototoxicity. Antimicrob. Agents Chemother. 1999, 43, 1549–1555. [Google Scholar] [CrossRef]
- Hatala, R.; Dinh, T.T.; Cook, D.J. Single Daily Dosing of Aminoglycosides in Immunocompromised Adults: A Systematic Review. Clin. Infect. Dis. 1997, 24, 810–815. [Google Scholar] [CrossRef]
- Mavros, M.N.; Polyzos, K.A.; Rafailidis, P.I.; Falagas, M.E. Once versus multiple daily dosing of aminoglycosides for patients with febrile neutropenia: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2011, 66, 251–259. [Google Scholar] [CrossRef]
- Paterson, D.L.; Robson, J.M.B.; Wagener, M.M. Risk factors for toxicity in elderly patients given aminoglycosides once daily. J. Gen. Intern. Med. 1998, 13, 735–739. [Google Scholar] [CrossRef]
- Wargo, K.A.; Edwards, J.D. Aminoglycoside-Induced Nephrotoxicity. J. Pharm. Pract. 2014, 27, 573–577. [Google Scholar] [CrossRef]
- Nagai, J.; Takano, M. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways. Biochem. Pharmacol. 2014, 90, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Novoa, J.M.; Quiros, Y.; Vicente, L.; Morales, A.I.; Lopez-Hernandez, F.J. New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney Int. 2011, 79, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Selby, N.M.; Shaw, S.; Woodier, N.; Fluck, R.J.; Kolhe, N.V. Gentamicin-associated acute kidney injury. QJM 2009, 102, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Paquette, F.; Bernier-Jean, A.; Brunette, V.; Ammann, H.; Lavergne, V.; Pichette, V.; Troyanov, S.; Bouchard, J. Acute Kidney Injury and Renal Recovery with the Use of Aminoglycosides: A Large Retrospective Study. Nephron 2015, 131, 153–160. [Google Scholar] [CrossRef]
- Selimoglu, E. Aminoglycoside-Induced Ototoxicity. Curr. Pharm. Des. 2007, 13, 119–126. [Google Scholar] [CrossRef]
- Beaubien, A.R.; Desjardins, S.; Ormsby, E.; Bayne, A.; Carrier, K.; Cauchy, M.J.; Henri, R.; Hodgen, M.; Salley, J.; St Pierre, A. Incidence of amikacin ototoxicity: A sigmoid function of total drug exposure independent of plasma levels. Am. J. Otolaryngol. 1989, 10, 234–243. [Google Scholar] [CrossRef]
- Beaubien, A.R.; Ormsby, E.; Bayne, A.; Carrier, K.; Crossfield, G.; Downes, M.; Henri, R.; Hodgen, M. Evidence that amikacin ototoxicity is related to total perilymph area under the concentration-time curve regardless of concentration. Antimicrob. Agents Chemother. 1991, 35, 1070–1074. [Google Scholar] [CrossRef]
- Modongo, C.; Pasipanodya, J.G.; Zetola, N.M.; Williams, S.M.; Sirugo, G.; Gumbo, T. Amikacin Concentrations Predictive of Ototoxicity in Multidrug-Resistant Tuberculosis Patients. Antimicrob. Agents Chemother. 2015, 59, 6337–6343. [Google Scholar] [CrossRef]
- Davis, B.D. Bactericidal synergism between beta-lactams and aminoglycosides: Mechanism and possible therapeutic implications. Rev. Infect. Dis. 1982, 4, 237–245. [Google Scholar] [CrossRef]
- Giamarellou, H. Aminoglycosides plus beta-lactams against gram-negative organisms. Evaluation of in vitro synergy and chemical interactions. Am. J. Med. 1986, 80, 126–137. [Google Scholar] [CrossRef]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination Therapy for Treatment of Infections with Gram-Negative Bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Lador, A.; Grozinsky-Glasberg, S.; Leibovici, L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst. Rev. 2014, 2014, CD003344. [Google Scholar] [CrossRef] [PubMed]
- Le, J.; Mckee, B.; Srisupha-Olarn, W.; Burgess, D.S. In Vitro Activity of Carbapenems Alone and in Combination With Amikacin Against KPC-Producing Klebsiella pneumoniae. J. Clin. Med. Res. 2011, 3, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Taccone, F.S.; Laterre, P.-F.; Spapen, H.; Dugernier, T.; Delattre, I.; Layeux, B.; Backer, D.D.; Wittebole, X.; Wallemacq, P.; Vincent, J.-L.; et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit. Care 2010, 14, R53. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, R.; Luengo, C.; Cornejo, R.; Kosche, J.; Romero, C.; Tobar, E.; Illanes, V.; Llanos, O.; Castro, J. Higher than recommended amikacin loading doses achieve pharmacokinetic targets without associated toxicity. Int. J. Antimicrob. Agents 2011, 38, 146–151. [Google Scholar] [CrossRef]
- Mahmoudi, L.; Mohammadpour, A.H.; Ahmadi, A.; Niknam, R.; Mojtahedzadeh, M. Influence of sepsis on higher daily dose of amikacin pharmacokinetics in critically ill patients. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 285–291. [Google Scholar]
- Roger, C.; Nucci, B.; Louart, B.; Friggeri, A.; Knani, H.; Evrard, A.; Lavigne, J.-P.; Allaouchiche, B.; Lefrant, J.-Y.; Roberts, J.A.; et al. Impact of 30 mg/kg amikacin and 8 mg/kg gentamicin on serum concentrations in critically ill patients with severe sepsis. J. Antimicrob. Chemother. 2016, 71, 208–212. [Google Scholar] [CrossRef]
- Allou, N.; Bouteau, A.; Allyn, J.; Snauwaert, A.; Valance, D.; Jabot, J.; Bouchet, B.; Galliot, R.; Corradi, L.; Montravers, P.; et al. Impact of a high loading dose of amikacin in patients with severe sepsis or septic shock. Ann. Intensive Care 2016, 6, 106. [Google Scholar] [CrossRef]
- De Winter, S.; Wauters, J.; Meersseman, W.; Verhaegen, J.; Van Wijngaerden, E.; Peetermans, W.; Annaert, P.; Verelst, S.; Spriet, I. Higher versus standard amikacin single dose in emergency department patients with severe sepsis and septic shock: A randomised controlled trial. Int. J. Antimicrob. Agents 2018, 51, 562–570. [Google Scholar] [CrossRef]
- Logre, E.; Enser, M.; Tanaka, S.; Dubert, M.; Claudinon, A.; Grall, N.; Mentec, H.; Montravers, P.; Pajot, O. Amikacin pharmacokinetic/pharmacodynamic in intensive care unit: A prospective database. Ann. Intensive Care 2020, 10, 75. [Google Scholar] [CrossRef]
- Hooper, D.C.; Jacoby, G.A. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025320. [Google Scholar] [CrossRef] [PubMed]
- Correia, S.; Poeta, P.; Hébraud, M.; Capelo, J.L.; Igrejas, G. Mechanisms of quinolone action and resistance: Where do we stand? J. Med. Microbiol. 2017, 66, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of Quinolone Action and Resistance. Biochemistry 2014, 53, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Lewin, C.S.; Morrissey, I.; Smith, J.T. The mode of action of quinolones: The paradox in activity of low and high concentrations and activity in the anaerobic environment. Eur. J. Clin. Microbiol. Infect. Dis. 1991, 10, 240–248. [Google Scholar] [CrossRef]
- Bush, N.G.; Diez-Santos, I.; Abbott, L.R.; Maxwell, A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules 2020, 25, 5662. [Google Scholar] [CrossRef]
- Neu, H.C.; Kumada, T.; Chin, N.X.; Mandell, W. The post-antimicrobial suppressive effect of quinolone agents. Drugs Exp. Clin. Res. 1987, 13, 63–67. [Google Scholar]
- Chin, N.X.; Neu, H.C. Post-antibiotic suppressive effect of ciprofloxacin against gram-positive and gram-negative bacteria. Am. J. Med. 1987, 82, 58–62. [Google Scholar]
- Gombert, M.E.; Aulicino, T.M. Comparison of agar dilution, microtitre broth dilution and tube macrodilution susceptibility testing of ciprofloxacin against several pathogens at two different inocula. J. Antimicrob. Chemother. 1986, 16, 709–712. [Google Scholar] [CrossRef]
- Davey, P.G.; Barza, M. The inoculum effect with Gram-negative bacteria in vitro and in vivo. J. Antimicrob. Chemother. 1987, 20, 639–644. [Google Scholar] [CrossRef]
- Assar, S.; Nosratabadi, R.; Khorramdel Azad, H.; Masoumi, J.; Mohamadi, M.; Hassanshahi, G. A Review of Immunomodulatory Effects of Fluoroquinolones. Immunol. Investig. 2021, 50, 1007–1026. [Google Scholar] [CrossRef]
- Forrest, A.; Nix, D.E.; Ballow, C.H.; Goss, T.F.; Birmingham, M.C.; Schentag, J.J. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob. Agents Chemother. 1993, 37, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, P.G.; Grasela, D.M.; Grasela, T.H.; Passarell, J.; Mayer, H.B.; Pierce, P.F. Pharmacodynamics of Fluoroquinolones against Streptococcus pneumoniae in Patients with Community-Acquired Respiratory Tract Infections. Antimicrob. Agents Chemother. 2001, 45, 2793–2797. [Google Scholar] [CrossRef] [PubMed]
- Drusano, G.L.; Preston, S.L.; Fowler, C.; Corrado, M.; Weisinger, B.; Kahn, J. Relationship between Fluoroquinolone Area under the Curve:Minimum Inhibitory Concentration Ratio and the Probability of Eradication of the Infecting Pathogen, in Patients with Nosocomial Pneumonia. J. Infect. Dis. 2004, 189, 1590–1597. [Google Scholar] [CrossRef] [PubMed]
- Van Zanten, A.R.H.; Polderman, K.H.; Van Geijlswijk, I.M.; Van Der Meer, G.Y.G.; Schouten, M.A.; Girbes, A.R.J. Ciprofloxacin pharmacokinetics in critically ill patients: A prospective cohort study. J. Crit. Care. 2008, 23, 422–430. [Google Scholar] [CrossRef]
- Haeseker, M.; Stolk, L.; Nieman, F.; Hoebe, C.; Neef, C.; Bruggeman, C.; Verbon, A. The ciprofloxacin target AUC: MIC ratio is not reached in hospitalized patients with the recommended dosing regimens: Ciprofloxacin concentrations in hospitalized patients. Br. J. Clin. Pharmacol. 2013, 75, 180–185. [Google Scholar] [CrossRef]
- Zelenitsky, S.A.; Ariano, R.E. Support for higher ciprofloxacin AUC24/MIC targets in treating Enterobacteriaceae bloodstream infection. J. Antimicrob. Chemother. 2010, 65, 1725–1732. [Google Scholar] [CrossRef]
- Bustamante, C.I.; Drusano, G.L.; Tatem, B.A.; Standiford, H.C. Postantibiotic effect of imipenem on Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1984, 26, 678–682. [Google Scholar] [CrossRef]
- Stratton, C.W.; Franke, J.J.; Weeks, L.S.; Manion, F.A. Comparison of the bactericidal activity of ciprofloxacin alone and in combination with selected antipseudomonal beta-lactam agents against clinical isolates of Pseudomonas aeruginosa. Diagn. Microbiol. Infect. Dis. 1988, 11, 41–52. [Google Scholar] [CrossRef]
- Neu, H.C. Synergy and Antagonism of Fluoroquinolones with Other Classes of Antimicrobial Agents. Drugs 1993, 45, 54–58. [Google Scholar] [CrossRef]
- Louie, A.; Grasso, C.; Bahniuk, N.; Van Scoy, B.; Brown, D.L.; Kulawy, R.; Drusano, G.L. The Combination of Meropenem and Levofloxacin Is Synergistic with Respect to both Pseudomonas aeruginosa Kill Rate and Resistance Suppression. Antimicrob. Agents Chemother. 2010, 54, 2646–2654. [Google Scholar] [CrossRef]
- Bliziotis, I.A.; Michalopoulos, A.; Kasiakou, S.K.; Samonis, G.; Christodoulou, C.; Chrysanthopoulou, S.; Falagas, M.E. Ciprofloxacin vs. an Aminoglycoside in Combination With a β-Lactam for the Treatment of Febrile Neutropenia: A Meta-analysis of Randomized Controlled Trials. Mayo Clin. Proc. 2005, 80, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Drusano, G.L. Prevention of Resistance: A Goal for Dose Selection for Antimicrobial Agents. Clin. Infect. Dis. 2003, 36, S42–S50. [Google Scholar] [CrossRef] [PubMed]
- Lenhard, J.R.; Bulman, Z.P. Inoculum effect of β-lactam antibiotics. J. Antimicrob. Chemother. 2019, 74, 2825–2843. [Google Scholar] [CrossRef] [PubMed]
- Tilanus, A.; Drusano, G. Optimizing the Use of Beta-Lactam Antibiotics in Clinical Practice: A Test of Time. Open Forum Infect. Dis. 2023, 10, ofad305. [Google Scholar] [CrossRef]
- Daikos, G.L.; Lolans, V.T.; Jackson, G.G. First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob. Agents Chemother. 1991, 35, 117–123. [Google Scholar] [CrossRef]
- Wu, C.C.; Su, Y.C.; Wu, K.S.; Wu, T.H.; Yang, C.S. Loading dose and efficacy of continuous or extended infusion of beta-lactams compared with intermittent administration in patients with critical illnesses: A subgroup meta-analysis and meta-regression analysis. J. Clin. Pharm. Ther. 2021, 46, 424–432. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tilanus, A.; Drusano, G. Inoculum-Based Dosing: A Novel Concept for Combining Time with Concentration-Dependent Antibiotics to Optimize Clinical and Microbiological Outcomes in Severe Gram Negative Sepsis. Antibiotics 2023, 12, 1581. https://doi.org/10.3390/antibiotics12111581
Tilanus A, Drusano G. Inoculum-Based Dosing: A Novel Concept for Combining Time with Concentration-Dependent Antibiotics to Optimize Clinical and Microbiological Outcomes in Severe Gram Negative Sepsis. Antibiotics. 2023; 12(11):1581. https://doi.org/10.3390/antibiotics12111581
Chicago/Turabian StyleTilanus, Alwin, and George Drusano. 2023. "Inoculum-Based Dosing: A Novel Concept for Combining Time with Concentration-Dependent Antibiotics to Optimize Clinical and Microbiological Outcomes in Severe Gram Negative Sepsis" Antibiotics 12, no. 11: 1581. https://doi.org/10.3390/antibiotics12111581
APA StyleTilanus, A., & Drusano, G. (2023). Inoculum-Based Dosing: A Novel Concept for Combining Time with Concentration-Dependent Antibiotics to Optimize Clinical and Microbiological Outcomes in Severe Gram Negative Sepsis. Antibiotics, 12(11), 1581. https://doi.org/10.3390/antibiotics12111581