Analysis of Bacterial Stent Colonization: The Role of Urine and Device Microbiological Cultures
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Microbiology Laboratory Technique
4.2. Microbiological Analysis
4.2.1. Urine Culture Using the Calibrated Loop/Surface Streak Method
4.2.2. Stent Culture
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lange, D.; Bidnur, S.; Hoag, N.; Chew, B.H. Ureteral stent-associated complications—Where we are and where we are going. Nat. Rev. Urol. 2014, 12, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Damiano, R.; Oliva, A.; Esposito, C.; De Sio, M.; Autorino, R.; D’armiento, M. Early and Late Complications of Double Pigtail Ureteral Stent. Urol. Int. 2002, 69, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Kehinde, E.O.; Al-Awadi, K.A.; Tawheed, A.; Al-Hunayan, A.; Ali, Y.; Mahmoud, A.H. Factors Affecting the Fate of Prolonged Forgotten ?J? Stents. Scand. J. Urol. Nephrol. 2001, 35, 222–227. [Google Scholar] [CrossRef]
- Legrand, F.; Saussez, T.; Ruffion, A.; Celia, A.; Djouhri, F.; Musi, G.; Kalakech, S.; Desriac, I.; Roumeguère, T. Double Loop Ureteral Stent Encrustation According to Indwelling Time: Results of a European Multicentric Study. J. Endourol. 2021, 35, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Scotland, K.B.; Lo, J.; Grgic, T.; Lange, D. Ureteral stent-associated infection and sepsis: Pathogenesis and prevention: A review. Biofouling 2019, 35, 117–127. [Google Scholar] [CrossRef]
- Zhang, J.-M.; Liu, J.; Wang, K.; Zhang, X.; Zhao, T.; Luo, H.-M. Observations of Bacterial Biofilm on Ureteral Stent and Studies on the Distribution of Pathogenic Bacteria and Drug Resistance. Urol. Int. 2018, 101, 320–326. [Google Scholar] [CrossRef]
- Kawahara, T.; Ito, H.; Terao, H.; Yoshida, M.; Matsuzaki, J.; Ziemba, J.B.; Ludwig, W.W.; Ruiz, L.; Carvalhal, E.; Matlaga, B.R.; et al. Ureteral Stent Encrustation, Incrustation, and Coloring: Morbidity Related to Indwelling Times. J. Endourol. 2012, 26, 178–182. [Google Scholar] [CrossRef]
- Hanna, B.; Zhuo, K.; Chalasani, V.; Vass, J.; Rasiah, K.; Wines, M.; Vaux, K.; Chung, A. Association between ureteric stent dwell time and urinary tract infection. ANZ J. Surg. 2020, 91, 187–191. [Google Scholar] [CrossRef]
- Kehinde, E.O.; Rotimi, V.O.; Al-Hunayan, A.; Abdul-Halim, H.; Boland, F.; Al-Awadi, K.A. Bacteriology of Urinary Tract Infection Associated with Indwelling J Ureteral Stents. J. Endourol. 2004, 18, 891–896. [Google Scholar] [CrossRef]
- Berrondo, C.; Ahn, J.J.; Merguerian, P.A.; Lendvay, T.S.; Shnorhavorian, M. A survey of adult and pediatric urologists on current practice in antibiotic prophylaxis for ureteral stent removal. J. Pediatr. Urol. 2020, 17, 103–109. [Google Scholar] [CrossRef]
- Manzoor, M.A.; Mujeeburahiman, M.; Shabeena, K.; Bhargava, R. Characteristics of bacterial colonization after indwelling double-J ureteral stents for different time duration. Urol. Ann. 2018, 10, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Riedl, C.R.; Plas, E.; Hübner, W.A.; Zimmerl, H.; Ulrich, W.; Pflüger, H. Bacterial Colonization of Ureteral Stents. Eur. Urol. 1999, 36, 53–59. [Google Scholar] [CrossRef]
- Kliś, R.; Szymkowiak, S.; Madej, A.; Blewniewski, M.; Krześlak, A.; Forma, E.; Bryś, M.; Lipiński, M.; Różański, W. Rate of positive urine culture and double–J catheters colonization on the basis of microorganism DNA analysis. Central Eur. J. Urol. 2014, 67, 81–85. [Google Scholar] [CrossRef]
- Souhail, B.; Charlot, P.; Deroudilhe, G.; Coblentz, Y.; Pierquet, G.; Gimel, P.; Challut, N.; Levent, T.; Cusumano, S.; Dautezac, V.; et al. Urinary tract infection and antibiotic use around ureteral stent insertion for urolithiasis. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2077–2083. [Google Scholar] [CrossRef] [PubMed]
- Dyer, R.B.; Chen, M.Y.; Zagoria, R.J.; Regan, J.D.; Hood, C.G.; Kavanagh, P.V. Complications of Ureteral Stent Placement. RadioGraphics 2002, 22, 1005–1022. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, R.; Landman, J.; Minor, S.D.; Lee, D.I.; Rehman, J.; Vanlangendonck, R.; Ragab, M.; Morrissey, K.; Sundaram, C.P.; Clayman, R.V. Impact of a Double-Pigtail Stent on Ureteral Peristalsis in the Porcine Model: Initial Studies Using a Novel Implantable Magnetic Sensor. J. Endourol. 2005, 19, 170–176. [Google Scholar] [CrossRef]
- Mosayyebi, A.; Manes, C.; Carugo, D.; Somani, B.K. Advances in Ureteral Stent Design and Materials. Curr. Urol. Rep. 2018, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Lange, D.; Hilpert, K.; Kindrachuk, J.; Zou, Y.; Cheng, J.T.J.; Kazemzadeh-Narbat, M.; Yu, K.; Wang, R.; Straus, S.K.; et al. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 2011, 32, 3899–3909. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance Global Report on Surveillance. Available online: https://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf;jssionid=7CD2D037F35036393D8BC456B03B1991?sequence=1 (accessed on 6 April 2019).
- Al, K.F.; Denstedt, J.D.; Daisley, B.A.; Bjazevic, J.; Welk, B.K.; Pautler, S.E.; Gloor, G.B.; Reid, G.; Razvi, H.; Burton, J.P. Ureteral Stent Microbiota Is Associated with Patient Comorbidities but Not Antibiotic Exposure. Cell Rep Med. 2020, 1, 100094. [Google Scholar] [CrossRef]
- Zhao, Z.; Fan, J.; Sun, H.; Zhong, W.; Zhu, W.; Liu, Y.; Wu, W.; de la Rosette, J.; Pes, M.d.P.L.; Zeng, G. Recommended antibiotic prophylaxis regimen in retrograde intrarenal surgery: Evidence from a randomised controlled trial. BJU Int. 2019, 124, 496–503. [Google Scholar] [CrossRef]
- Mazur, D.J.; Fuchs, D.J.; Abicht, T.O.; Peabody, T.D. Update on Antibiotic Prophylaxis for Genitourinary Procedures in Patients with Artificial Joint Replacement and Artificial Heart Valves. Urol. Clin. N. Am. 2015, 42, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.C.; Galloway, A. ACP Best Practice No 167: The laboratory diagnosis of urinary tract infection. J. Clin. Pathol. 2001, 54, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Simões, E.; Silva, A.C.; Oliveira, E.A.; Mak, R.H. Urinary tract infection in pediatrics: An overview. J. Pediatr. 2019, 96, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Urinary Tract Infection (Catheter Associated Urinary Tract Infection [CAUTI] and Non-Catheter Associated Urinary Tract Infection [UTI] and Other Urinary System Infection (USI) Events). Available online: ttps://www.cdc.gov/nhsn/pdfs/pscmanual/7psccauticurrent.pdf (accessed on 13 October 2020).
- Guaglianone, E.; Cardines, R.; Vuotto, C.; Di Rosa, R.; Babini, V.; Mastrantonio, P.; Donelli, G. Microbial biofilms associated with biliary stent clogging. FEMS Immunol. Med. Microbiol. 2010, 59, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Biswas, M.R.; Alzubaidi, M.S.; Shah, U.; Abd-Alrazaq, A.A.; Shah, Z. A Scoping Review to Find out Worldwide COVID-19 Vaccine Hesitancy and Its Underlying Determinants. Vaccines 2021, 9, 1243. [Google Scholar] [CrossRef]
- Chang, C.-H. Cohen’s kappa for capturing discrimination. Int. Health 2014, 6, 125–129. [Google Scholar] [CrossRef]
Variables | |
---|---|
Patients, n. (%) | 97 (100.0) |
Age (years), median (IQR) | 60 (50–67) |
Sex, n. (%) | |
Male | 54 (55.7) |
Female | 43 (44.3) |
DM, n. (%) | 77 (79.4) |
CKD, n. (%) | 85 (87.6) |
CCI, n. (%) | |
0 | 13 (13.4) |
1 | 14 (14.4) |
≥2 | 70 (72.2) |
Side, n. (%) | |
Right | 53 (54.6) |
Left | 39 (40.2) |
Bilateral | 5 (5.2) |
History of stone-related surgery, n. (%) | 57 (58.8) |
2nd procedure, n. (%) | |
URS/RIRS | 40 (41.2) |
PCNL | 3 (3.1) |
SWL | 32 (33.0) |
none | 22 (22.7) |
In-stay double J (days), median (IQR) | 60 (29–88) |
Perioperative Complications, n. (%) | |
UTIs | 8 (8.2) |
Sepsis | 4 (4.1) |
Variables | (T1): BUC Pre-DoubleJ a | (T2): BUC In-Stay DoubleJ b | Proximal-J Culture c | Distal-J Culture d | (T3): RP Culture e | (T4): BUC Post-DoubleJ Removal f |
---|---|---|---|---|---|---|
Patients with a positive culture, n. (%) | 3 (3.1) | 32 (33.0) | 80 (82.5) | 76 (78.4) | 21 (21.6) | 11 (11.3) |
Bacteria, n. (%) | ||||||
E. coli | 1 (33.3) | 4 (12.5) | 7 (8.8) | 4 (5.3) | 0 (0.0) | 1 (9.1) |
E. faecalis | 0 (0.0) | 6 (18.8) | 16 (20.0) | 12 (15.8) | 5 (23.8) | 3 (27.3) |
E. faecium | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Klebsiella spp. | 0 (0.0) | 6 (18.8) | 5 (6.3) | 7 (9.2) | 6 (28.6) | 3 (27.3) |
Staphylococcus haemoliticus | 0 (0.0) | 0 (0.0) | 2 (2.5) | 5 (6.6) | 0 (0.0) | 0 (0.0) |
Staphylococcus epidermidis | 0 (0.0) | 0 (0.0) | 6 (7.5) | 5 (6.6) | 0 (0.0) | 1 (9.1) |
Staphylococcus lugdunensis | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (2.6) | 0 (0.0) | 0 (0.0) |
Candida albicans | 0 (0.0) | 2 (6.3) | 1 (1.3) | 3 (3.9) | 1 (4.8) | 1 (9.1) |
Candida glabrata | 0 (0.0) | 1 (3.1) | 0 (0.0) | 0 (0.0) | 1 (4.8) | 0 (0.0) |
Pseudomonas aeruginosa | 0 (0.0) | 2 (6.3) | 5 (6.3) | 5 (6.6) | 1 (4.8) | 0 (0.0) |
Candida kefyi | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
citrobacter | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Acinetobacter jejuni | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Staphylococcus capitis | 1 (33.3) | 6 (18.8) | 0 (0.0) | 1 (1.3) | 1 (4.8) | 1 (9.1) |
Staphylococcus species | 0 (0.0) | 0 (0.0) | 2 (2.5) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Staphylococcus hominis | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (1.3) | 0 (0.0) | 0 (0.0) |
Corynebacterium aurimucosum | 0 (0.0) | 0 (0.0) | 1 (1.3) | 1 (1.3) | 0 (0.0) | 0 (0.0) |
Corynebacterium jeikeium | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (1.3) | 0 (0.0) | 0 (0.0) |
Streptococcus agalactaie | 1 (33.3) | 1 (3.1) | 1 (1.3) | 1 (1.3) | 0 (0.0) | 0 (0.0) |
Morganella morganii | 0 (0.0) | 1 (3.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Mixed flora, n. (%) | 0 (0.0) | 3 (9.4) | 34 (42.5) | 28 (36.8) | 6 (28.8) | 1 (9.1) |
Positive proximal double-J culture | Negative proximal double-J culture | ||
Positive BUC in-stay double-J | 30 | 2 | Cohen’s kappa coefficient value 0.13 |
Negative BUC in stay double-J | 39 | 11 | Concordance rate 50.0% |
Positive distal double-J culture | Negative distal double-J culture | ||
Positive BUC in-stay double-J | 30 | 2 | Cohen’s kappa coefficient value 0.22 |
Negative BUC in stay double-J | 34 | 16 | Concordance rate 56.1% |
Positive distal double-J culture | Negative distal double-J culture | ||
Positive proximal double-J culture | 72 | 8 | Cohen’s kappa coefficient value 0.61 |
Negative proximal double-J culture | 4 | 13 | Concordance rate 88.0% |
Positive proximal double-J culture | Negative proximal double-J culture | ||
Positive RP culture | 18 | 3 | Cohen’s kappa coefficient value 0.01 |
Negative RP culture | 31 | 6 | Concordance rate 41.3% |
Positive distal double-J culture | Negative distal double-J culture | ||
Positive RP culture | 19 | 2 | Cohen’s kappa coefficient value 0.12 |
Negative RP culture | 28 | 9 | Concordance rate 48.3% |
Positive BUC in-stay double-J | Negative BUC in stay double-J | ||
Positive RP culture | 9 | 8 | Cohen’s kappa coefficient value 0.33 |
Negative RP culture | 6 | 23 | Concordance rate 69.6% |
Positive proximal double-J culture | Negative proximal double-J culture | ||
Positive BUC post-removal double-J | 10 | 1 | Cohen’s kappa coefficient value 0.06 |
Negative BUC post-removal double-J | 34 | 9 | Concordance rate 35.2% |
Positive distal double-J culture | Negative distal double-J culture | ||
Positive BUC post-removal double-J | 10 | 1 | Cohen’s kappa coefficient value 0.09 |
Negative BUC post-removal double-J | 31 | 12 | Concordance rate 40.7% |
Positive BUC in-stay double-J | Negative BUC in stay double-J | ||
Positive BUC post-removal double-J | 6 | 2 | Cohen’s kappa coefficient value 0.19 |
Negative BUC post-removal double-J | 17 | 24 | Concordance rate 61.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tulone, G.; Costanzo, A.; Pavan, N.; Giaimo, R.; Claps, F.; Fasciana, T.M.A.; Giammanco, A.; Bartoletti, R.; Simonato, A. Analysis of Bacterial Stent Colonization: The Role of Urine and Device Microbiological Cultures. Antibiotics 2023, 12, 1512. https://doi.org/10.3390/antibiotics12101512
Tulone G, Costanzo A, Pavan N, Giaimo R, Claps F, Fasciana TMA, Giammanco A, Bartoletti R, Simonato A. Analysis of Bacterial Stent Colonization: The Role of Urine and Device Microbiological Cultures. Antibiotics. 2023; 12(10):1512. https://doi.org/10.3390/antibiotics12101512
Chicago/Turabian StyleTulone, Gabriele, Angela Costanzo, Nicola Pavan, Rosa Giaimo, Francesco Claps, Teresa Maria Assunta Fasciana, Anna Giammanco, Riccardo Bartoletti, and Alchiede Simonato. 2023. "Analysis of Bacterial Stent Colonization: The Role of Urine and Device Microbiological Cultures" Antibiotics 12, no. 10: 1512. https://doi.org/10.3390/antibiotics12101512
APA StyleTulone, G., Costanzo, A., Pavan, N., Giaimo, R., Claps, F., Fasciana, T. M. A., Giammanco, A., Bartoletti, R., & Simonato, A. (2023). Analysis of Bacterial Stent Colonization: The Role of Urine and Device Microbiological Cultures. Antibiotics, 12(10), 1512. https://doi.org/10.3390/antibiotics12101512