The Resistance Mechanisms and Clinical Impact of Resistance to the Third Generation Cephalosporins in Species of Enterobacter cloacae Complex in Taiwan
Abstract
:1. Introduction
2. Results
2.1. Species Identification of ECC Isolates Based on hsp60 Sequencing
2.2. The Distributions of the Isolation Sites of Enterobacter
2.3. Antimicrobial Susceptibility of Enterobacter Species
2.4. β-Lactamase Genes of Enterobacter Isolates
2.5. Class 1 Integrons and Gene Cassettes in Enterobacter Isolates
2.6. PFGE Analysis
2.7. Clinical Features of Patients Infected with Enterobacter
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Antimicrobial Susceptibility Testing
4.3. Species Identification of ECC Based on hsp60 Sequencing
4.4. Detection of Genes Encoding ESBLs, AmpC, and Carbapenemases
4.5. Analysis of Class 1 Integrons and Gene Cassettes
4.6. Pulsed Field Gel Electrophoresis (PFGE)
4.7. Analysis of Clinical Features of Patients Infected with ECC
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mezzatesta, M.L.; Gona, F.; Stefani, S. Enterobacter cloacae complex: Clinical impact and emerging antibiotic resistance. Future Microbiol. 2012, 7, 887–902. [Google Scholar] [CrossRef]
- Pavlovic, M.; Konrad, R.; Iwobi, A.N.; Sing, A.; Busch, U.; Huber, I. A dual approach employing MALDI-TOF MS and real-time PCR for fast species identification within the Enterobacter cloacae complex. FEMS Microbiol. Lett. 2012, 328, 46–53. [Google Scholar] [CrossRef]
- Davin-Regli, A.; Lavigne, J.P.; Pages, J.M. Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin. Microbiol. Rev. 2019, 32, e00002-19. [Google Scholar] [CrossRef]
- Wu, W.; Feng, Y.; Zong, Z. Precise Species identification for Enterobacter: A genome sequence-based study with reporting of two novel species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov. MSystems 2020, 5, e00527-20. [Google Scholar] [CrossRef]
- Morand, P.C.; Billoet, A.; Rottman, M.; Sivadon-Tardy, V.; Eyrolle, L.; Jeanne, L.; Tazi, A.; Anract, P.; Courpied, J.P.; Poyart, C.; et al. Specific distribution within the Enterobacter cloacae complex of strains isolated from infected orthopedic implants. J. Clin. Microbiol. 2009, 47, 2489–2495. [Google Scholar] [CrossRef]
- Paauw, A.; Caspers, M.P.; Schuren, F.H.; Leverstein-van Hall, M.A.; Deletoile, A.; Montijn, R.C.; Verhoef, J.; Fluit, A.C. Genomic diversity within the Enterobacter cloacae complex. PLoS ONE 2008, 3, e3018. [Google Scholar] [CrossRef]
- Annavajhala, M.K.; Gomez-Simmonds, A.; Uhlemann, A.C. Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front. Microbiol. 2019, 10, 44. [Google Scholar] [CrossRef]
- Hoffmann, H.; Roggenkamp, A. Population genetics of the nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol. 2003, 69, 5306–5318. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi-Akiyama, T.; Hayakawa, K.; Ohmagari, N.; Shimojima, M.; Kirikae, T. Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae. PLoS ONE 2013, 8, e66358. [Google Scholar] [CrossRef] [PubMed]
- Chavda, K.D.; Chen, L.; Fouts, D.E.; Sutton, G.; Brinkac, L.; Jenkins, S.G.; Bonomo, R.A.; Adams, M.D.; Kreiswirth, B.N. Comprehensive genome analysis of carbapenemase-producing Enterobacter spp.: New insights into phylogeny, population structure, and resistance mechanisms. MBio 2016, 7, e02093-16. [Google Scholar] [CrossRef] [Green Version]
- Pot, M.; Reynaud, Y.; Couvin, D.; Ducat, C.; Ferdinand, S.; Gravey, F.; Gruel, G.; Guerin, F.; Malpote, E.; Breurec, S.; et al. Wide distribution and specific resistance pattern to third-generation cephalosporins of Enterobacter cloacae complex members in humans and in the environment in Guadeloupe (French West Indies). Front. Microbiol. 2021, 12, 628058. [Google Scholar] [CrossRef] [PubMed]
- Sutton, G.G.; Brinkac, L.M.; Clarke, T.H.; Fouts, D.E. Enterobacter hormaechei subsp. hoffmannii subsp. nov., Enterobacter hormaechei subsp. xiangfangensis comb. nov., Enterobacter roggenkampii sp. nov., and Enterobacter muelleri is a later heterotypic synonym of Enterobacter asburiae based on computational analysis of sequenced Enterobacter genomes. F1000Res 2018, 7, 521. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Hu, Y.; Zong, Z. Reexamining the association of AmpC variants with Enterobacter species in the context of updated taxonomy. Antimicrob. Agents Chemother. 2021, 65, e0159621. [Google Scholar] [CrossRef]
- Guerin, F.; Isnard, C.; Cattoir, V.; Giard, J.C. Complex regulation pathways of AmpC-mediated β-lactam resistance in Enterobacter cloacae complex. Antimicrob. Agents Chemother. 2015, 59, 7753–7761. [Google Scholar] [CrossRef]
- Liu, S.; Fang, R.; Zhang, Y.; Chen, L.; Huang, N.; Yu, K.; Zhou, C.; Cao, J.; Zhou, T. Characterization of resistance mechanisms of Enterobacter cloacae complex co-resistant to carbapenem and colistin. BMC Microbiol. 2021, 21, 208. [Google Scholar] [CrossRef]
- Garinet, S.; Fihman, V.; Jacquier, H.; Corvec, S.; Le Monnier, A.; Guillard, T.; Cattoir, V.; Zahar, J.R.; Woerther, P.L.; Carbonnelle, E.; et al. Elective distribution of resistance to beta-lactams among Enterobacter cloacae genetic clusters. J. Infect. 2018, 77, 178–182. [Google Scholar] [CrossRef]
- Liu, S.; Huang, N.; Zhou, C.; Lin, Y.; Zhang, Y.; Wang, L.; Zheng, X.; Zhou, T.; Wang, Z. Molecular mechanisms and epidemiology of carbapenem-resistant Enterobacter cloacae complex isolated from Chinese patients during 2004–2018. Infect. Drug Resist. 2021, 14, 3647–3658. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, C.; Zhao, M.; Yu, X.; Lan, K.; Liao, K.; Guo, P.; Zhang, W.; Ma, X.; He, Y.; et al. High prevalence of metallo-β-lactamase-producing Enterobacter cloacae from three tertiary hospitals in China. Front. Microbiol. 2019, 10, 1610. [Google Scholar] [CrossRef]
- Kang, C.I.; Kim, S.H.; Park, W.B.; Lee, K.D.; Kim, H.B.; Oh, M.D.; Kim, E.C.; Choe, K.W. Bloodstream infections caused by Enterobacter species: Predictors of 30-day mortality rate and impact of broad-spectrum cephalosporin resistance on outcome. Clin. Infect. Dis. 2004, 39, 812–818. [Google Scholar] [CrossRef]
- Lee, C.C.; Lee, N.Y.; Yan, J.J.; Lee, H.C.; Chen, P.L.; Chang, C.M.; Wu, C.J.; Ko, N.Y.; Wang, L.R.; Chi, C.H.; et al. Bacteremia due to extended-spectrum-β-lactamase-producing Enterobacter cloacae: Role of carbapenem therapy. Antimicrob. Agents Chemother. 2010, 54, 3551–3556. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.T.; Wu, U.I.; Lauderdale, T.L.; Chen, M.C.; Li, S.Y.; Hsu, L.Y.; Chang, S.C. Carbapenem-nonsusceptible Enterobacteriaceae in Taiwan. PLoS ONE 2015, 10, e0121668. [Google Scholar] [CrossRef]
- Yang, F.C.; Yan, J.J.; Hung, K.H.; Wu, J.J. Characterization of ertapenem-resistant Enterobacter cloacae in a Taiwanese university hospital. J. Clin. Microbiol. 2012, 50, 223–226. [Google Scholar] [CrossRef]
- Yu, W.L.; Cheng, K.C.; Chi, C.J.; Chen, H.E.; Chuang, Y.C.; Wu, L.T. Characterisation and molecular epidemiology of extended-spectrum β-lactamase-producing Enterobacter cloacae isolated from a district teaching hospital in Taiwan. Clin. Microbiol. Infect. 2006, 12, 579–582. [Google Scholar] [CrossRef]
- Jean, S.S.; Lee, Y.L.; Liu, P.Y.; Lu, M.C.; Ko, W.C.; Hsueh, P.R. Multicenter surveillance of antimicrobial susceptibilities and resistance mechanisms among Enterobacterales species and non-fermenting Gram-negative bacteria from different infection sources in Taiwan from 2016 to 2018. J. Microbiol. Immunol. Infect. 2022, 55, 463–473. [Google Scholar] [CrossRef]
- Chen, C.J.; Lu, P.L.; Jian, S.H.; Fu, H.L.; Huang, P.H.; Chang, C.Y. Molecular epidemiology, risk factors and clinical outcomes of carbapenem-nonsusceptible Enterobacter cloacae complex infections in a Taiwan university hospital. Pathogens 2022, 11, 151. [Google Scholar] [CrossRef] [PubMed]
- Kremer, A.; Hoffmann, H. Prevalences of the Enterobacter cloacae complex and its phylogenetic derivatives in the nosocomial environment. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2951–2955. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wei, L.; Feng, Y.; Xie, Y.; Zong, Z. Precise species identification by whole-genome sequencing of Enterobacter bloodstream infection, China. Emerg. Infect. Dis. 2021, 27, 161–169. [Google Scholar] [CrossRef]
- Mokracka, J.; Koczura, R.; Pawlowski, K.; Kaznowski, A. Resistance patterns and integron cassette arrays of Enterobacter cloacae complex strains of human origin. J. Med. Microbiol. 2011, 60, 737–743. [Google Scholar] [CrossRef]
- Tamma, P.D.; Smith, T.T.; Adebayo, A.; Karaba, S.M.; Jacobs, E.; Wakefield, T.; Nguyen, K.; Whitfield, N.N.; Simner, P.J. Prevalence of blaCTX-M genes in Gram-negative bloodstream isolates across 66 hospitals in the United States. J. Clin. Microbiol. 2021, 59, e00127-21. [Google Scholar] [CrossRef]
- Manandhar, S.; Zellweger, R.M.; Maharjan, N.; Dongol, S.; Prajapati, K.G.; Thwaites, G.; Basnyat, B.; Dixit, S.M.; Baker, S.; Karkey, A. A high prevalence of multi-drug resistant Gram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-encoding genes. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 48. [Google Scholar] [CrossRef]
- Sawa, T.; Kooguchi, K.; Moriyama, K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J. Intensive Care 2020, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Chang, L.L.; Chang, Y.H.; Lee, T.M.; Chang, S.F. Characterisation of drug resistance gene cassettes associated with class 1 integrons in clinical isolates of Escherichia coli from Taiwan, ROC. J. Med. Microbiol. 2000, 49, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Fang, Y.T.; Tsai, S.M.; Chang, L.L.; Yu, W.L. Characterization of class 1 integrons and gene cassettes in clinical isolates of Klebsiella pneumoniae from Taiwan. Diagn. Microbiol. Infect. Dis. 2009, 65, 214–216. [Google Scholar] [CrossRef]
- Chang, L.L.; Chang, T.M.; Chang, C.Y. Variable gene cassette patterns of class 1 integron-associated drug-resistant Escherichia coli in Taiwan. Kaohsiung J. Med. Sci. 2007, 23, 273–280. [Google Scholar] [CrossRef]
- Sabbagh, P.; Rajabnia, M.; Maali, A.; Ferdosi-Shahandashti, E. Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. Iran. J. Basic Med. Sci. 2021, 24, 136–142. [Google Scholar] [CrossRef]
- Cheng, L.; Nelson, B.C.; Mehta, M.; Seval, N.; Park, S.; Giddins, M.J.; Shi, Q.; Whittier, S.; Gomez-Simmonds, A.; Uhlemann, A.C. Piperacillin-Tazobactam versus other antibacterial agents for treatment of bloodstream infections due to AmpC β-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e00276-17. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Garau, J. Current and future perspectives in the treatment of multidrug-resistant Gram-negative infections. J. Antimicrob. Chemother. 2021, 76, iv23–iv37. [Google Scholar] [CrossRef] [PubMed]
- Alves, P.H.; Boff, R.T.; Barth, A.L.; Martins, A.F. Synergy of polymyxin B, tigecycline and meropenem against carbapenem-resistant Enterobacter cloacae complex isolates. Diagn. Microbiol. Infect. Dis. 2019, 94, 81–85. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.; Zhang, J.; Fu, Y.; Hu, K.; Su, S.; Wang, Y.; Li, H.; Zhang, X. The in vitro activity of polymyxin B and tigecycline alone and combination with other antibiotics against carbapenem-resistant Enterobacter cloacae complex isolates, including high-risk clones. Ann. Transl. Med. 2019, 7, 779. [Google Scholar] [CrossRef]
- Chen, C.H.; Huang, C.C. Risk factor analysis for extended-spectrum β-lactamase-producing Enterobacter cloacae bloodstream infections in central Taiwan. BMC Infect. Dis. 2013, 13, 417. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, Z.A.; Paterson, D.L.; Pakstis, D.L.; Adams-Haduch, J.M.; Sandkovsky, G.; Sordillo, E.; Polsky, B.; Peleg, A.Y.; Bhussar, M.K.; Doi, Y. Risk factors and outcome of extended-spectrum β-lactamase-producing Enterobacter cloacae bloodstream infections. Int. J. Antimicrob. Agents 2011, 37, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Guri, A.; Flaks-Manov, N.; Ghilai, A.; Hoshen, M.; Flidel Rimon, O.; Ciobotaro, P.; Zimhony, O. Risk factors for third-generation cephalosporin resistant Enterobacteriaceae in gestational urine cultures: A retrospective cohort study based on centralized electronic health records. PLoS ONE 2020, 15, e0226515. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.C.; Hung, Y.P.; Lee, C.C.; Lin, W.T.; Huang, L.C.; Dai, W.; Kuo, C.S.; Ko, W.C.; Huang, Y.L. Clinical impact and risk factors of nonsusceptibility to third-generation cephalosporins among hospitalized adults with monomicrobial Enterobacteriaceae bacteremia in southern Taiwan: A multicenter study. Infect. Drug Resist. 2021, 14, 689–697. [Google Scholar] [CrossRef]
- Lin, W.P.; Huang, Y.S.; Wang, J.T.; Chen, Y.C.; Chang, S.C. Prevalence of and risk factor for community-onset third-generation cephalosporin-resistant Escherichia coli bacteremia at a medical center in Taiwan. BMC Infect. Dis. 2019, 19, 245. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Oliveira, C.R.; Goncalves, K.V.; Santos, M.S.; Tardelli, A.C.; Nobre, V.A., Jr. Enterobacteriaceae resistant to third generation cephalosporins upon hospital admission: Risk factors and clinical outcomes. Braz. J. Infect. Dis. 2015, 19, 239–245. [Google Scholar] [CrossRef]
- Liu, S.; Chen, L.; Wang, L.; Zhou, B.; Ye, D.; Zheng, X.; Lin, Y.; Zeng, W.; Zhou, T.; Ye, J. Cluster differences in antibiotic resistance, biofilm formation, mobility, and virulence of clinical Enterobacter cloacae complex. Front. Microbiol. 2022, 13, 814831. [Google Scholar] [CrossRef] [PubMed]
- CLSI. CLSI Supplement M100. In Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2021. [Google Scholar]
- Eckert, C.; Gautier, V.; Saladin-Allard, M.; Hidri, N.; Verdet, C.; Ould-Hocine, Z.; Barnaud, G.; Delisle, F.; Rossier, A.; Lambert, T.; et al. Dissemination of CTX-M-type β-lactamases among clinical isolates of Enterobacteriaceae in Paris, France. Antimicrob. Agents Chemother. 2004, 48, 1249–1255. [Google Scholar] [CrossRef]
- Ma, L.; Chang, F.Y.; Fung, C.P.; Chen, T.L.; Lin, J.C.; Lu, P.L.; Huang, L.Y.; Chang, J.C.; Siu, L.K. Variety of TEM-, SHV-, and CTX-M-type β-lactamases present in recent clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae from Taiwan. Microb. Drug Resist. 2005, 11, 31–39. [Google Scholar] [CrossRef]
- Rasheed, J.K.; Jay, C.; Metchock, B.; Berkowitz, F.; Weigel, L.; Crellin, J.; Steward, C.; Hill, B.; Medeiros, A.A.; Tenover, F.C. Evolution of extended-spectrum β-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob. Agents Chemother. 1997, 41, 647–653. [Google Scholar] [CrossRef]
- Giakkoupi, P.; Tambic-Andrasevic, A.; Vourli, S.; Skrlin, J.; Sestan-Crnek, S.; Tzouvelekis, L.S.; Vatopoulos, A.C. Transferable DHA-1 cephalosporinase in Escherichia coli. Int. J. Antimicrob. Agents 2006, 27, 77–80. [Google Scholar] [CrossRef]
- Perez-Perez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.J.; Ko, W.C.; Tsai, S.H.; Wu, H.M.; Jin, Y.T.; Wu, J.J. Dissemination of CTX-M-3 and CMY-2 β-lactamases among clinical isolates of Escherichia coli in southern Taiwan. J. Clin. Microbiol. 2000, 38, 4320–4325. [Google Scholar] [CrossRef] [PubMed]
- Queenan, A.M.; Bush, K. Carbapenemases: The versatile β-lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [PubMed]
- Bass, L.; Liebert, C.A.; Lee, M.D.; Summers, A.O.; White, D.G.; Thayer, S.G.; Maurer, J.J. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob. Agents Chemother. 1999, 43, 2925–2929. [Google Scholar] [CrossRef] [PubMed]
- Levesque, C.; Piche, L.; Larose, C.; Roy, P.H. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 1995, 39, 185–191. [Google Scholar] [CrossRef] [PubMed]
- D’Agata, E.M.; Gerrits, M.M.; Tang, Y.W.; Samore, M.; Kusters, J.G. Comparison of pulsed-field gel electrophoresis and amplified fragment-length polymorphism for epidemiological investigations of common nosocomial pathogens. Infect. Control Hosp. Epidemiol. 2001, 22, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef]
- Xiao, Y.; Wei, Z.; Shen, P.; Ji, J.; Sun, Z.; Yu, H.; Zhang, T.; Ji, P.; Ni, Y.; Hu, Z.; et al. Bacterial-resistance among outpatients of county hospitals in China: Significant geographic distinctions and minor differences between central cities. Microbes Infect. 2015, 17, 417–425. [Google Scholar] [CrossRef]
Species | Cluster | n | % | Nomenclature of Species by Wu et al. [4] |
---|---|---|---|---|
Enterobacter asburiae | I | 4 | 2.2 | Enterobacter asburiae |
Enterobacter kobei | II | 19 | 10.3 | Enterobacter kobei |
Enterobacter hormaechei subsp. hoffmannii | III | 10 | 5.4 | Enterobacter hoffmannii |
Enterobacter roggenkampii | IV | 13 | 7.1 | Enterobacter roggenkampii |
Enterobacter hormaechei subsp. oharae | VI | 37 | 20.1 | Enterobacter xiangfangensisa |
Enterobacter hormaechei subsp. hormaechei | VII | 3 | 1.6 | Enterobacter hormaechei |
Enterobacter hormaechei subsp. steigerwaltii | VIII | 55 | 29.9 | Enterobacter xiangfangensisa |
Enterobacter bugandensis | IX | 9 | 4.9 | Enterobacter bugandensis |
Enterobacter cloacae subsp. cloacae | XI | 22 | 12.0 | Enterobacter cloacae |
Enterobacter cloacae subsp. dissolvens | XII | 2 | 1.1 | Enterobacter dissolvens |
Enterobacter chuandaensis | - | 1 | 0.5 | Enterobacter chuandaensis |
Enterobacter mori | - | 2 | 1.1 | Enterobacter mori |
Enterobacter quasihormaechei | - | 2 | 1.1 | Enterobacter quasihormaechei |
Enterobacter sichuanensis | - | 1 | 0.5 | Enterobacter sichuanensis |
Not determined | - | 4 | 2.2 | - |
Species (n) | Cluster | AN | CAZ | CRO | ETP | FEP | GM | LFV | MEM | SXT | TGC | TZP | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % | n | % | ||
E. asburiae (4) | I | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
E. kobei (19) | II | 0 | 0.0 | 3 | 15.8 | 3 | 15.8 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 5.3 | 0 | 0.0 | 3 | 15.8 |
E.hormaechei subsp. hoffmannii (10) | III | 0 | 0.0 | 3 | 30.0 | 5 | 50.0 | 1 | 10.0 | 0 | 0.0 | 2 | 20.0 | 6 | 60.0 | 0 | 0.0 | 9 | 90.0 | 6 | 60.0 | 4 | 40.0 |
E.roggenkampii (13) | IV | 0 | 0.0 | 2 | 15.4 | 3 | 23.1 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 7.7 | 3 | 23.1 |
E. hormaechei subsp. oharae (37) | VI | 0 | 0.0 | 15 | 40.5 | 15 | 40.5 | 2 | 5.4 | 0 | 0.0 | 7 | 18.9 | 3 | 8.1 | 0 | 0.0 | 14 | 37.8 | 1 | 2.7 | 12 | 32.4 |
E. hormaechei subsp. hormaechei (3) | VII | 0 | 0.0 | 1 | 33.3 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 33.3 | 1 | 33.3 | 0 | 0.0 | 1 | 33.3 | 0 | 0.0 | 0 | 0.0 |
E. hormaechei subsp. steigerwaltii (55) | VIII | 0 | 0.0 | 17 | 30.9 | 19 | 34.5 | 5 | 9.1 | 2 | 3.6 | 3 | 5.5 | 2 | 3.6 | 1 | 1.8 | 7 | 12.7 | 6 | 10.9 | 13 | 23.6 |
E.bugandensis (9) | IX | 0 | 0.0 | 1 | 11.1 | 1 | 11.1 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 11.1 |
E. cloacae subsp. cloacae (22) | XI | 0 | 0.0 | 6 | 27.3 | 6 | 27.3 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 2 | 9.1 | 0 | 0.0 | 6 | 27.3 |
E. cloacae subsp. dissolvens (2) | XII | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
E. chuandaensis (1) | - | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 100 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
E. mori (2) | - | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
E. quasihormaechei (2) | - | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
E. sichuanensis(1) | - | 0 | 0.0 | 1 | 100 | 1 | 100 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 100 |
Not determined (4) | - | 0 | 0.0 | 1 | 25.0 | 1 | 25.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 25.0 |
Total (184) | 0 | 0.0 | 50 | 27.2 | 54 | 29.3 | 8 | 4.3 | 2 | 1.1 | 13 | 7.1 | 13 | 7.1 | 1 | 0.5 | 34 | 18.5 | 14 | 7.6 | 44 | 23.9 |
Species (n) | Cluster | β-Lactamase Genes (n) | ||||
---|---|---|---|---|---|---|
blaESBL | blaAmpC | bla Genes Encoding Carbapenemases | Coexistence of blaESBL and blaAmpC Genes | Other β-Lactamase Genes | ||
E. asburiae (4) | I | |||||
E. kobei (19) | II | blaACT (1) | ||||
E. hormaechei subsp. hoffmannii (10) | III | blaACT (5) blaACT+blaDHA-1 (3) | blaTEM-1 (3) blaOXA-1+blaTEM-1 (1) | |||
E.roggenkampii (13) | IV | blaMIR (3) | ||||
E. hormaechei subsp. oharae (37) | VI | blaSHV-12 (1) | blaACT (5) | blaSHV-12+blaACT+blaDHA-1 (1) | blaTEM-1 (5) | |
E. hormaechei subsp. hormaechei (3) | VII | blaSHV-12+blaACT+blaDHA-1 (1) | blaTEM-1 (1) | |||
E. hormaechei subsp. steigerwaltii (55) | VIII | blaCTX-M-15 (1) | blaACT (2) blaDHA-1 (1) | blaIMP-8 (1) | blaTEM-1 (4) blaOXA-1 (2) | |
E. bugandensis (9) | IX | blaACT (1) | ||||
E. cloacae subsp. cloacae (22) | XI | blaSHV-12 (1) | blaTEM-1 (1) | |||
E. cloacae subsp. dissolvens (2) | XII | |||||
E. chuandaensis (1) | - | blaTEM-1 (1) | ||||
E. mori (2) | - | |||||
E. quasihormaechei (2) | - | |||||
E. sichuanensis(1) | - | |||||
Not determined (4) | - | blaACT (1) | ||||
Total (184) | 3 | 22 | 1 | 2 | 18 |
Species (n) | Cluster | intI1 (+) n | Gene Cassette Array of Class 1 Integrons (n) |
---|---|---|---|
E. asburiae (4) | I | - | - |
E. kobei (19) | II | 2 | aadA2 (2) |
E. hormaechei subsp. hoffmannii (10) | III | 10 | dfrA15 (6) aadA2 (2) aac(6′)-IIc-ereA2 (pseudogene)-IS1247-aac3-arr-ereA2 (pseudogene) (1) aadB/aadA2 (1) a |
E.roggenkampii (13) | IV | 2 | aadA2 (1) |
E. hormaechei subsp. oharae (37) | VI | 16 | aadB (1) aadA2 (2) aadB-aadA2 (2) dfrA12-orfF-aadA2 (3) aac(6′)-IIc-ereA2 (pseudogene)-IS1247-aac3-arr-ereA2 (pseudogene) (1) aadB/aadA2 (2) a aadA2/aadB-aadA2/aadA2-aadA2 (1) b |
E. hormaechei subsp. hormaechei (3) | VII | 1 | aadA2 (1) |
E. hormaechei subsp. steigerwaltii (55) | VIII | 9 | aadA1 (2) dfrA7/aadA2 (1) a |
E. bugandensis (9) | IX | - | - |
E. cloacae subsp. cloacae (22) | XI | 4 | aadA2 (1) aac(6′)-Ib-cr-arr3-dfrA27 (1) |
E. cloacae subsp. dissolvens (2) | XII | - | - |
E. chuandaensis (1) | - | 1 | dfrA12-orfF-aadA2 (1) |
E. mori (2) | - | - | - |
E. quasihormaechei (2) | - | - | - |
E. sichuanensis(1) | - | - | - |
Not determined (4) | - | - | - |
Total (184) | 45 (24.5%) | 32 |
Parameter (n = 161) | Infected with the Third Generation Cephalosporin Resistant Enterobacter n = 49 (%) | Infected with the Third Generation Cephalosporin Susceptible/Intermediate Enterobacter n = 112 (%) | χ2 | p Value a | OR (95% CI) |
---|---|---|---|---|---|
Age (years) | |||||
18–65 | 20 (40.8) | 60 (53.6) | 2.22 | 0.136 | 0.60 (0.30–1.18) |
>65 | 29 (59.2) | 52 (46.4) | 2.22 | 0.136 | 1.67 (0.85–3.30) |
Sex | |||||
Male | 34 (69.4) | 72 (64.3) | 0.39 | 0.532 | 1.26 (0.61–2.59) |
Female | 15 (30.6) | 40 (35.7) | 0.39 | 0.532 | 0.79 (0.39–1.63) |
Location | |||||
Outpatient | 4 (8.2) | 26 (23.2) | 5.09 | 0.024 | 0.29 (0.10–0.89) |
Ward | 45 (91.8) | 86 (76.8) | 5.09 | 0.024 | 3.40 (1.12–10.35) |
Isolation specimens | |||||
Ascites | 1 (2.0) | 0 (0.0) | NA | NA | NA |
Blood | 8 (16.3) | 18 (16.1) | 0 | 1 | 1.02 (0.41–2.53) |
Sputum | 16 (32.7) | 26 (23.2) | 1.57 | 0.210 | 1.60 (0.76–3.36) |
Bile | 4 (8.2) | 12 (10.7) | NA | 0.778 | 0.74 (0.23–2.42) |
Urine | 16 (32.7) | 30 (26.8) | 0.57 | 0.450 | 1.33 (0.64–2.75) |
Abscess/Pus | 4 (8.2) | 26 (23.2) | 5.09 | 0.024 | 0.29 (0.10–0.89) |
Comorbidities | |||||
Diabetes mellitus | 22 (44.9) | 39 (34.8) | 1.47 | 0.225 | 1.53 (0.77–3.02) |
Hypertension | 25 (51.0) | 55 (49.1) | 0.05 | 0.823 | 1.08 (0.55–2.11) |
Kidney disease | 29 (59.2) | 41 (36.6) | 7.07 | 0.007 | 2.51 (1.26–4.99) |
Gastrointestinal disease | 15 (30.6) | 26 (23.2) | 0.98 | 0.322 | 1.46 (0.69–3.09) |
Urinary tract infection | 24 (49.0) | 38 (33.9) | 3.26 | 0.071 | 1.87 (0.94–3.70) |
Heart failure | 5 (10.2) | 18 (16.1) | 0.96 | 0.327 | 0.59 (0.21–1.70) |
Cerebrovascular disease | 10 (20.4) | 18 (16.1) | 0.45 | 0.502 | 1.34 (0.57–3.16) |
Pulmonary disease | 23 (46.9) | 46 (41.1) | 0.48 | 0.488 | 1.27 (0.65–2.49) |
Malignancy | 13 (26.5) | 30 (26.8) | 0 | 1 | 0.99 (0.46–2.11) |
Drug exposure | |||||
Steroid exposure in the past 3 months | 19 (38.8) | 43 (38.4) | 0 | 1 | 1.02 (0.51–2.02) |
Antibiotics exposure in the past 3 months | 47 (95.9) | 103 (92.0) | NA | 0.506 | 2.05 (0.43–9.88) |
Antibiotic exposure in the past 2 weeks | 42 (85.7) | 96 (85.7) | 0 | 1 | 1 (0.38–2.61) |
Therapeutic devices and procedures in the past 3 months | |||||
Hemodialysis | 7 (14.3) | 9 (8.0) | 6.02 | 0.256 | 1.91 (0.67–5.46) |
Chemotherapy | 7 (14.3) | 16 (14.3) | 0 | 1 | 1 (0.38–2.61) |
Indwelling devices | 48 (98.0) | 98 (87.5) | NA | 0.040 | 6.86 (0.88–53.69) |
Transplantation | 0 (0.0) | 4 (3.6) | NA | 0.315 | NA |
Surgery | 27 (55.1) | 48 (42.9) | 2.05 | 0.152 | 1.64 (0.83–3.22) |
Site of acquisition | |||||
Hospital-acquired | 31 (63.3) | 54 (48.2) | 3.1 | 0.078 | 1.85 (0.93–3.68) |
Community-acquired | 5 (10.2) | 20 (17.9) | 1.52 | 0.218 | 0.52 (0.18–1.48) |
Healthcare-associated | 13 (26.5) | 38 (33.9) | 0.86 | 0.354 | 0.70 (0.33–1.48) |
ICU admission | 25 (51.0) | 32 (28.6) | 7.51 | 0.006 | 2.60 (1.30–5.21) |
Class 1 integron | 21 (42.9) | 18 1(6.1) | 13.32 | <0.001 | 3.92 (1.84–8.36) |
Outcomes | |||||
30-day mortality | 14 (28.6) | 7 (6.3) | 14.97 | <0.001 | 6 (2.24–16.06) |
100-day mortality | 15 (30.6) | 8 (7.1) | 15.33 | <0.001 | 5.74 (2.24–14.70) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-Y.; Huang, P.-H.; Lu, P.-L. The Resistance Mechanisms and Clinical Impact of Resistance to the Third Generation Cephalosporins in Species of Enterobacter cloacae Complex in Taiwan. Antibiotics 2022, 11, 1153. https://doi.org/10.3390/antibiotics11091153
Chang C-Y, Huang P-H, Lu P-L. The Resistance Mechanisms and Clinical Impact of Resistance to the Third Generation Cephalosporins in Species of Enterobacter cloacae Complex in Taiwan. Antibiotics. 2022; 11(9):1153. https://doi.org/10.3390/antibiotics11091153
Chicago/Turabian StyleChang, Chung-Yu, Po-Hao Huang, and Po-Liang Lu. 2022. "The Resistance Mechanisms and Clinical Impact of Resistance to the Third Generation Cephalosporins in Species of Enterobacter cloacae Complex in Taiwan" Antibiotics 11, no. 9: 1153. https://doi.org/10.3390/antibiotics11091153
APA StyleChang, C. -Y., Huang, P. -H., & Lu, P. -L. (2022). The Resistance Mechanisms and Clinical Impact of Resistance to the Third Generation Cephalosporins in Species of Enterobacter cloacae Complex in Taiwan. Antibiotics, 11(9), 1153. https://doi.org/10.3390/antibiotics11091153