In Vitro Activity of Sulbactam–Durlobactam against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Multicentre Report from Italy
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Susceptibility
2.2. Whole-Genome Sequencing of SUL–DUR Resistant A. baumannii: Resistome and Virulome Characterization
2.3. Molecular Analysis of PBP-3 Gene
3. Discussion
4. Materials and Methods
4.1. Antibiotics and Inhibitors
4.2. Bacterial Strains Selection
4.3. Bacterial Strains Identification
4.4. MIC Determination
4.5. Whole-Genome Sequencing
4.6. PBP-3 Amplification and Sequencing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1 (accessed on 1 August 2022).
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef] [PubMed]
- Carvalheira, A.; Silva, J.; Teixeira, P. Acinetobacter spp. in food and drinking water—A review. Food Microbiol. 2021, 95, 103675. [Google Scholar] [CrossRef] [PubMed]
- Kittinger, C.; Kirschner, A.; Lipp, M.; Baumert, R.; Mascher, F.; Farnleitner, A.H.; Zarfel, G.E. Antibiotic resistance of Acinetobacter spp. Isolates from the River Danube: Susceptibility stays high. Int. J. Environ. Res. Public Health 2017, 15, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, M.; Jafari, S.; Ghafouri, L.; Ardakani, H.M.; Abdollahi, A.; Beigmohammadi, M.T.; Manshadi, S.A.D.; Feizabadi, M.M.; Ramezani, M.; Abtahi, H.; et al. Ventilator-associated pneumonia: Multidrug resistant Acinetobacter vs. extended Sspectrum β-Lactamase-producing Klebsiella. J. Infect. Dev. Ctries. 2020, 14, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Gavaruzzi, F.; Ceccarelli, G.; Borrazzo, C.; Oliva, A.; Alessandri, F.; Magnanimi, E.; Pugliese, F.; Venditti, M. Multidrug-resistant Acinetobacter baumannii infections in COVID-19 patients hospitalized in intensive care unit. Infection 2022, 50, 83–92. [Google Scholar] [CrossRef]
- Andersen, C.T.; Langendorf, C.; Garba, S.; Sayinzonga-Makombe, N.; Mambula, C.; Mouniaman, I.; Hanson, K.E.; Grais, R.F.; Isanaka, S. Risk of community- and hospital-acquired bacteremia and profile of antibiotic resistance in children hospitalized with severe acute malnutrition in Niger. Int. J. Infect. Dis. 2022, 119, 163–171. [Google Scholar] [CrossRef]
- Manyahi, J.; Kibwana, U.; Mgimba, E.; Majigo, M. Multi-drug resistant bacteria predict mortality in bloodstream infection in a tertiary setting in Tanzania. PLoS ONE 2020, 15, e0220424. [Google Scholar] [CrossRef] [Green Version]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Bonomo, R.A.; Tolmasky, M.E. Carbapenemases: Transforming Acinetobacter baumannii into a yet more dangerous menace. Biomolecules 2020, 10, 720. [Google Scholar] [CrossRef]
- Nodari, C.S.; Cayô, R.; Streling, A.P.; Lei, F.; Wille, J.; Almeida, M.S.; de Paula, A.I.; Pignatari, A.C.C.; Seifert, H.; Higgins, P.G.; et al. Genomic analysis of carbapenem-resistant Acinetobacter baumannii isolates belonging to major endemic clones in South America. Front. Microbiol. 2020, 11, 584603. [Google Scholar] [CrossRef]
- Hammer, P.; Nguyen, N.H.; Nguyen, T.N.M.; Splettstoesser, W.D.; Makarewicz, O.; Neubauer, H.; Sprague, L.D.; Pletz, M.W. Phenotypic and WGS-derived antimicrobial resistance profiles of clinical and non-clinical Acinetobacter baumannii isolates from Germany and Vietnam. Int. J. Antimicrob. Agents 2020, 56, 106127. [Google Scholar]
- Zarrilli, R.; Bagattini, M.; Migliaccio, A.; Esposito, E.P.; Triassi, M. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in Italy. Ann. Ig. 2021, 33, 401–409. [Google Scholar] [PubMed]
- Vrancianu, C.O.; Gheorghe, I.; Czobor, I.B.; Chifiriuc, M.C. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii. Microorganisms 2020, 8, 935. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Asif, M.; Alvi, I.A.; Rehman, S.U. Insight into Acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect. Drug Resist. 2018, 11, 1249–1260. [Google Scholar] [CrossRef] [Green Version]
- Bartal, C.; Rolston, K.V.I.; Nesher, L. Carbapenem-resistant Acinetobacter baumannii: Colonization, Infection and Current Treatment Options. Infect. Dis. Ther. 2022, 11, 683–694. [Google Scholar] [CrossRef]
- Garnacho-Montero, J.; Ortiz-Leyba, C.; Jiménez-Jiménez, F.J.; Barrero-Almodóvar, A.E.; García-Garmendia, J.L.; Bernabeu-Wittell, M.; Gallego-Lara, S.L.; Madrazo-Osuna, J. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: A comparison with imipenem-susceptible VAP. Clin. Infect. Dis. 2003, 36, 1111–1118. [Google Scholar] [CrossRef] [Green Version]
- Pormohammad, A.; Mehdinejadiani, K.; Gholizadeh, P.; Nasiri, M.J.; Mohtavinejad, N.; Dadashi, M.; Karimaei, S.; Safari, H.; Azimi, T. Global prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: A systematic review and meta-analysis. Microb. Pathog. 2020, 139, 103887. [Google Scholar] [CrossRef]
- Russo, A.; Bassetti, M.; Bellelli, V.; Bianchi, L.; Marincola Cattaneo, F.; Mazzocchetti, S.; Paciacconi, E.; Cottini, F.; Schiattarella, A.; Tufaro, G.; et al. Efficacy of a fosfomycin-containing regimen for treatment of severe pneumonia caused by multidrug-resistant Acinetobacter baumannii: A prospective, observational study. Infect. Dis. Ther. 2021, 10, 187–200. [Google Scholar] [CrossRef]
- Kazmierczak, K.M.; Tsuji, M.; Wise, M.G.; Hackel, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In Vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-β-lactamase producing isolates (SIDERO-WT-2014). Int. J. Antimicrob. Agents 2019, 53, 177–184. [Google Scholar] [CrossRef]
- Barnes, M.D.; Kumar, V.; Bethel, C.R.; Moussa, S.H.; O’Donnell, J.; Rutter, J.D.; Good, C.E.; Hujer, K.M.; Hujer, A.M.; Marshall, S.H.; et al. Targeting multidrug-resistant Acinetobacter spp.: Sulbactam and the diazabicyclooctenone b-lactamase inhibitor ETX2514 as a novel therapeutic agent. mBio 2019, 10, e00159-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, A.B.; Gao, N. Interactions of the diazabicyclooctane serine β-lactamase inhibitor ETX1317 with target enzymes. ACS Infect. Dis. 2021, 7, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Taglietti, F.; Schiavone, F.; Petrosillo, N. Durlobactam in the treatment of multidrug-resistant Acinetobacter baumannii infections: A systematic review. J. Clin. Med. 2022, 11, 3258. [Google Scholar] [CrossRef] [PubMed]
- Petropoulou, D.; Siopi, M.; Vourli, S.; Pournaras, S. Activity of sulbactam-durlobactam and comparators against a national collection of carbapenem-resistant Acinetobacter baumannii isolates from Greece. Front. Cell. Infect. Microbiol. 2022, 11, 814530. [Google Scholar] [CrossRef]
- Findlay, J.; Poirel, L.; Bouvier, M.; Nordmann, P. In-Vitro activity of sulbactam-durlobactam against carbapenem-resistant Acinetobacter baumannii and mechanisms of resistance. J. Glob. Antimicrob. Resist. 2022, 9, 32. [Google Scholar] [CrossRef]
- Durand-Réville, T.F.; Guler, S.; Comita-Prevoir, J.; Chen, B.; Bifulco, N.; Huynh, H.; Lahiri, S.; Shapiro, A.B.; McLeod, S.M.; Carter, N.M.; et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol. 2017, 2, 17104. [Google Scholar] [CrossRef]
- McLeod, S.M.; Moussa, S.H.; Hackel, M.A.; Miller, A.A. In Vitro activity of sulbactam-durlobactam against Acinetobacter baumannii-calcoaceticus complex isolates collected globally in 2016 and 2017. Antimicrob. Agents Chemother. 2020, 64, e02534-19. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, Y.; Jia, P.; Zhu, Y.; Zhang, J.; Zhang, G.; Deng, J.; Hackel, M.; Bradford, P.A.; Reinhart, H.J. In Vitro activity of sulbactam/durlobactam against clinical isolates of Acinetobacter baumannii collected in China. J. Antimicrob. Chemother. 2020, 75, 1833–1839. [Google Scholar] [CrossRef]
- Nodari, C.S.; Santos, F.F.; Kurihara, M.N.L.; Valiatti, T.B.; Cayô, R.; Gales, A.C. In Vitro activity of sulbactam/durlobactam against extensively drug-resistant Acinetobacter baumannii isolates belonging to South American major clones. J. Glob. Antimicrob. Resist. 2021, 25, 363–366. [Google Scholar] [CrossRef]
- Seifert, H.; Müller, C.; Stefanik, D.; Higgins, P.G.; Miller, A.; Kresken, M. In Vitro activity of sulbactam/durlobactam against global isolates of carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2020, 75, 2616–2621. [Google Scholar] [CrossRef]
- Penwell, W.F.; Shapiro, A.B.; Giacobbe, R.A.; Gu, R.F.; Gao, N.; Thresher, J.; McLaughlin, R.E.; Huband, M.D.; DeJonge, B.L.; Ehmann, D.E.; et al. Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 1680–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, A.B.; Gao, N.; Jahic, H.; Carter, N.M.; Chen, A.; Miller, A.A. Reversibility of covalent, broad-spectrum serine β-lactamase inhibition by the diazabicyclooctenone ETX2514. ACS Infect. Dis. 2017, 3, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Rodvold, K.A.; Gotfried, M.H.; Isaacs, R.D.; O’Donnell, J.P.; Stone, E. Plasma and intrapulmonary concentrations of ETX2514 and sulbactam following intravenous administration of ETX2514SUL to healthy adult subjects. Antimicrob. Agents Chemother. 2018, 62, e01089-18. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, J.; Rubino, C.; Onufrak, N.J.; Bhaunani, S.M.; Ambrose, P.G.; Tommasi, R.; Stone, E.; Rodvold, K.; Mueller, J.; Isaacs, R.; et al. Pharmacokinetics/Pharmacodynamics and Phase 3 Dose Projection for the Novel β-Lactamase Inhibitor ETX2514 in Combination with Sulbactam against Acinetobacter baumannii-calcoaceticus Complex (ABC), Poster AAR-LB-14; Microbe: San Francisco, CA, USA, 2019. [Google Scholar]
- Mezzatesta, M.L.; D’Andrea, M.M.; Migliavacca, R.; Giani, T.; Gona, F.; Nucleo, E.; Fugazza, G.; Pagani, L.; Rossolini, G.M.; Stefani, S. Epidemiological characterization and distribution of carbapenem-resistant Acinetobacter baumannii clinical isolates in Italy. Clin. Microbiol. Infect. 2012, 18, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Caio, C.; Maugeri, G.; Zingali, T.; Gona, F.; Stefani, S.; Mezzatesta, M.L. Extensively drug-resistant ArmA-producing Acinetobacter baumannii in an Italian intensive care unit. New Microbiol. 2018, 41, 159–161. [Google Scholar] [PubMed]
- Mezzatesta, M.L.; Caio, C.; Gona, F.; Cormaci, R.; Salerno, I.; Zingali, T.; Denaro, C.; Gennaro, M.; Quattrone, C.; Stefani, S. Carbapenem and multidrug resistance in Gram-negative bacteria in a single centre in Italy: Considerations on In Vitro assay of active drugs. Int. J. Antimicrob. Agents 2014, 44, 112–116. [Google Scholar] [CrossRef]
- Carcione, D.; Siracusa, C.; Sulejmani, A.; Migliavacca, R.; Mercato, A.; Piazza, A.; Principe, L.; Clementi, N.; Mancini, N.; Leoni, V.; et al. In Vitro antimicrobial activity of the siderophore cephalosporin cefiderocol against Acinetobacter baumannii strains recovered from clinical samples. Antibiotics 2021, 10, 1309. [Google Scholar] [CrossRef]
- Migliavacca, R.; Espinal, P.; Principe, L.; Drago, M.; Fugazza, G.; Roca, I.; Nucleo, E.; Bracco, S.; Vila, J.; Pagani, L.; et al. Characterization of resistance mechanisms and genetic relatedness of carbapenem-resistant Acinetobacter baumannii isolated from blood, Italy. Diagn. Microbiol. Infect. Dis. 2013, 75, 180–186. [Google Scholar] [CrossRef]
- Principe, L.; Piazza, A.; Giani, T.; Bracco, S.; Caltagirone, M.S.; Arena, F.; Nucleo, E.; Tammaro, F.; Rossolini, G.M.; Pagani, L.; et al. AMCLI-CRAb Survey Participants. Epidemic diffusion of OXA-23-producing Acinetobacter baumannii isolates in Italy: Results of the first cross-sectional countrywide survey. J. Clin. Microbiol. 2014, 52, 3004–3010. [Google Scholar] [CrossRef] [Green Version]
- Nucleo, E.; Steffanoni, L.; Fugazza, G.; Migliavacca, R.; Giacobone, E.; Navarra, A.; Pagani, L.; Landini, P. Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. BMC Microbiol. 2009, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, S.; Perilli, M.; Segatore, B.; Fazii, P.; Parruti, G.; Frattari, A.; Amicosante, G.; Piccirilli, A. Whole-genome sequencing of ST2 A. baumannii causing bloodstream infections in COVID-19 patients. Antibiotics 2022, 11, 955. [Google Scholar] [CrossRef] [PubMed]
- D’Arezzo, S.; Principe, L.; Capone, A.; Petrosillo, N.; Petrucca, A.; Visca, P. Changing carbapenemase gene pattern in an epidemic multidrug-resistant Acinetobacter baumannii lineage causing multiple outbreaks in central Italy. J. Antimicrob. Chemother. 2011, 66, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Higgins, P.G.; Prior, K.; Harmsen, D.; Seifert, H. Development and evaluation of a core genome multilocus typing scheme for whole-genome sequence-based typing of Acinetobacter baumannii. PLoS ONE 2017, 12, e0179228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacono, M.; Villa, L.; Fortini, D.; Bordoni, R.; Imperi, F.; Bonnal, R.J.; Sicheritz-Ponten, T.; Bellis, G.D.; Visca, P.; Cassone, A.; et al. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group. Antimicrob. Agents Chemother. 2008, 52, 2616–2625. [Google Scholar] [CrossRef] [Green Version]
- Vranić-Ladavac, M.; Bedenić, B.; Minandri, F.; Ištok, M.; Bošnjak, Z.; Frančula-Zaninović, S.; Ladavac, R.; Visca, P. Carbapenem resistance and acquired class D β-lactamases in Acinetobacter baumannii from Croatia 2009–2010. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Corvec, S.; Poirel, L.; Naas, T.; Drugeon, H.; Nordmann, P. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-23 in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2007, 51, 1530–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agersø, Y.; Petersen, A. The tetracycline resistance determinant Tet 39 and the sulphonamide resistance gene sulII are common among resistant Acinetobacter spp. isolated from integrated fish farms in Thailand. J. Antimicrob. Chemother. 2007, 59, 23–27. [Google Scholar] [CrossRef]
- Piddock, L.J. Multidrug-resistance efflux pumps-not just for resistance. Nat. Rev. Microbiol. 2006, 4, 629–636. [Google Scholar] [CrossRef]
- Pérez-Varela, M.; Corral, J.; Aranda, J.; Barbé, J. Functional Characterization of AbaQ, a novel efflux pump mediating quinolone resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2018, 62, e00906-18. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, V.B.; Rajamohan, G.; Gebreyes, W.A. Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2009, 53, 5312–5316. [Google Scholar] [CrossRef] [Green Version]
- Piperaki, E.T.; Tzouvelekis, L.S.; Miriagou, V.; Daikos, G.L. Carbapenem-resistant Acinetobacter baumannii: In pursuit of an effective treatment. Clin. Microbiol. Infect. 2019, 25, 951–957. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Drwiega, E.N.; Rodvold, K.A. Penetration of antibacterial agents into pulmonary epithelial lining fluid: An update. Clin. Pharmacokinet. 2022, 61, 17–46. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; Approved Standard M07-A11; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Piccirilli, A.; Cherubini, S.; Azzini, A.M.; Tacconelli, E.; Lo Cascio, G.; Maccacaro, L.; Bazaj, A.; Naso, L.; Amicosante, G.; Ltcf-Veneto Working Group; et al. Whole-genome sequencing (WGS) of carbapenem-resistant K. pneumoniae isolated in Long-Term Care Facilities in the Northern Italian Region. Microorganisms 2021, 9, 1985. [Google Scholar] [CrossRef] [PubMed]
- Cherubini, S.; Perilli, M.; Azzini, A.M.; Tacconelli, E.; Maccacaro, L.; Bazaj, A.; Naso, L.; Amicosante, G.; LTCF-Veneto Working Group; Lo Cascio, G.; et al. Resistome and virulome of multi-drug resistant E. coli ST131 isolated from residents of Long-Term Care Facilities in the Northern Italian Region. Diagnostics 2022, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.B.; Moussa, S.H.; McLeod, S.M.; Durand-Réville, T.; Miller, A.A. Durlobactam, a new diazabicyclooctane β-lactamase inhibitor for the treatment of Acinetobacter infections in combination with sulbactam. Front. Microbiol. 2021, 12, 709974. [Google Scholar] [CrossRef]
Antimicrobial Agent | Number of Isolates at Each MIC (mg/L) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.06 | 0.125 | 0,25 | 0.5 | 1 | 2 | 4 | >4 | 8 | 16 | 32 | 64 | 128 | >128 | MIC RANGE | MIC50 | MIC90 | |
SUL | / | / | / | / | / | 2 | 8 | _ | 27 | 45 | 33 | 8 | 13 | 5 | 0.06–>128 | 16 | 128 |
DUR | / | / | / | / | / | / | / | _ | 3 | 7 | 44 | 39 | 47 | 1 | 0.06–>128 | 64 | 128 |
SUL–DUR | / | 4 | 25 | 51 | 30 | 14 | 6 | _ | 4 | 2 | / | / | / | 5 | 0.06/4–>128/4 | 0.5 | 4 |
CST | / | 7 | 6 | 12 | 20 | 19 | 22 | 55 | _ | _ | _ | _ | _ | _ | 0.06–>4 | 4 | >4 |
City (No. Isolates) Antimicrobial Agents | Number of Isolates with MIC (mg/L) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | >4 | 8 | 16 | 32 | 64 | 128 | >128 | |
Pavia (16) | ||||||||||||||
SUL | / | / | / | / | / | / | 1 | - | 1 | 5 | 7 | 2 | / | / |
DUR | / | / | / | / | / | / | / | - | / | / | / | 2 | 13 | 1 |
SUL–DUR | / | / | / | 6 | 6 | 4 | / | - | / | / | / | / | / | / |
CST | / | / | 1 | 6 | 9 | / | / | / | - | - | - | - | - | - |
Gemelli (26) | ||||||||||||||
SUL | / | / | / | / | / | 1 | 2 | - | 4 | 11 | 7 | 1 | / | / |
DUR | / | / | / | / | / | / | / | - | / | 2 | 6 | 11 | 7 | / |
SUL–DUR | / | / | 3 | 16 | 7 | / | / | - | / | / | / | / | / | / |
CST | / | / | / | / | / | / | 13 | 13 | - | - | - | - | - | - |
PE/AQ (9) | ||||||||||||||
SUL | / | / | / | / | / | / | / | - | / | 1 | 6 | 1 | 1 | / |
DUR | / | / | / | / | / | / | / | - | / | / | 3 | 2 | 4 | / |
SUL–DUR | / | / | 1 | 2 | 2 | 4 | / | - | / | / | / | / | / | / |
CST | / | / | / | / | / | / | / | 9 | - | - | - | - | - | - |
Roma Tre (20) | ||||||||||||||
SUL | / | / | / | / | / | 1 | 3 | - | 3 | 5 | 7 | 1 | / | / |
DUR | / | / | / | / | / | / | / | - | / | / | 6 | 6 | 8 | / |
SUL–DUR | / | / | 3 | 7 | 7 | 1 | 2 | - | / | / | / | / | / | / |
CST | / | / | / | / | / | 7 | 7 | 6 | - | - | - | - | - | - |
Catania (70) | ||||||||||||||
SUL | / | / | / | / | / | / | 2 | - | 19 | 23 | 6 | 3 | 12 | 5 |
DUR | / | / | / | / | / | / | / | - | 3 | 5 | 29 | 18 | 15 | / |
SUL–DUR | / | 4 | 18 | 20 | 8 | 5 | 4 | - | 4 | 2 | / | / | / | 5 |
CST | / | 7 | 5 | 6 | 11 | 12 | 2 | 27 | - | - | - | - | - | - |
Strain | Sequence Type | Ward | Sample | SUL–DUR MIC (mg/L) | SUL MIC (mg/L) | DUR MIC (mg/L) | CST MIC (mg/L) | Resistance Genes | Mobile Genetic Elements | |
---|---|---|---|---|---|---|---|---|---|---|
β-Lactamases | Other | |||||||||
A. baumannii CT20 | 2 | transplant | BAL | 8 | 128 | 128 | 0.125 | blaADC-25 blaOXA-20 blaOXA-58 | aac(6′)-Ib-cr aac(6′)-Ib3 tetA(41) | IS26, ISAba125 |
A. baumannii CT57 | 2 | ICU | BAL | 8 | 128 | 64 | 64 |
blaADC-25 blaOXA-20 blaOXA-58 | aac(6′)-Ib-cr aac(6′)-Ib3 tetA(41) | Tn6018, IS26, ISAba125 |
A. baumannii CT58 | 2 | ICU | wound | 8 | 128 | 32 | 32 |
blaADC-25 blaOXA-20 blaOXA-58 | aac(6′-)Ib-cr aac(6′)-Ib3 tetA(41) | Tn6018, IS26, ISAba125 |
A. baumannii CT68 | 2 | ICU | blood | 8 | 128 | 64 | 0.25 |
blaADC-25 blaOXA-20 blaOXA-58 | aac(6′)-Ib-cr aac(6′)-Ib3 sul1 | IS26, ISAba125 |
A. baumannii CT24 | 2 | ICU | blood | 16 | 64 | 128 | 0.5 |
blaADC-25 blaOXA-20 blaOXA-58 blaOXA-66 | aac(6′)-Ib-cr aac(6′)-Ib3 qacE sul1 gyrA (S81L) parC(V104I, D105E) | IS26, ISAba125 |
A. baumannii CT25 | 2 | ICU | catheter | 16 | 128 | 64 | 1 |
blaADC-25 blaOXA-20 blaOXA-58 blaOXA-66 | aac(6′)-Ib-cr aac(6′)-Ib3 sul1 | IS26, ISAba125 |
A. baumannii CT26 | 2 | surgery | bile | >128 | >128 | 64 | 0.5 |
blaADC-25 blaOXA-20 blaOXA-58 blaOXA-66 | aac(6′)-Ib-cr aac(6′)-Ib3 qacE sul1 gyrA (S81L) parC (V104I, D105E) | IS26, ISAba125 |
A. baumannii CT29 | 2 | ICU | exudate | >128 | >128 | 128 | 1 |
blaADC-25 blaOXA-20 blaOXA-58 blaOXA-66 | aac(6′)-Ib-cr aac(6′)-Ib3 qacE sul1 gyrA (S81L) parC (V104I, D105E) | IS26, ISAba125 |
A. baumannii CT30 | 20 | ICU | catheter | >128 | >128 | 32 | 1 |
blaADC-25 blaOXA-20 blaOXA-58 blaOXA-66 | aac(6′)-Ib-cr aac(6′)-Ib3 qacE sul1 gyrA (S81L) parC (V104I, D105E) | IS26, ISAba125 |
A. baumannii CT31 | 20 | ICU | pus | >128 | >128 | 128 | 0.125 |
blaADC-25 blaOXA-20 blaOXA-58 blaOXA-66 | aac(6′)-Ib-cr aac(6′)-Ib3 qacE sul1 gyrA (S81L) parC(V104I, D105E) | IS26, ISAba125 |
A. baumannii CT32 | 20 | ICU | BAL | >128 | >128 | 128 | 1 |
blaADC-25 blaOXA-20 blaOXA-58 blaOXA-66 | aac(6′)-Ib-cr aac(6′)-Ib3 qacE sul1 gyrA (S81L) parC (V104I, D105E) | IS26, ISAba125 |
SUL–DUR-Resistant A. baumannii (Strains No.: CT20, CT24, CT25, CT26, CT29, CT30, CT31, CT32, CT57, CT58, CT68) | |
---|---|
Virulence-Associated Genes | Virulence Factors |
adeA, adeC, adeF, adeG, adeH, adeI, adeK, adeL, adeN, adeJ, adeR | RND efflux pump AdeABC, AdeFGH and AdeIJK |
abeS | SMR family of transporter efflux pumps |
abaQ, abaF | MFS transporters |
plc, plcD | Phospholipase |
lpsB (only in CT57 and CT58) | Lipopolysaccharide synthesis (mutations are involved in CST resistance) |
lpxA, lpxB, lpxC, lpxD, lpxL, lpxM (only in CT57 and CT58) | Biosynthesis of lipid A (mutations are involved in CST resistance) |
barA, barB basA, basB, basC, basD, basF, basG, basH, basI, basJ bauA, bauB, bauC, bauD, bauE, bauF entE hemO | Iron uptake: acinetobactin and heme utilization |
bap, pgaA, pgaB, pgaC, pgaD, csuA, csuB, csuC, csuD, csuE, bfmR, bfmS | Biofilm formation system and cell–cell adhesion |
abaI, abaR | Quorum sensing |
pbpG (or PBP7) and PBP3Q488K and PBP3Y528H | Penicillin-binding protein |
katA | A secondary catalase/peroxidase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segatore, B.; Piccirilli, A.; Cherubini, S.; Principe, L.; Alloggia, G.; Mezzatesta, M.L.; Salmeri, M.; Di Bella, S.; Migliavacca, R.; Piazza, A.; et al. In Vitro Activity of Sulbactam–Durlobactam against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Multicentre Report from Italy. Antibiotics 2022, 11, 1136. https://doi.org/10.3390/antibiotics11081136
Segatore B, Piccirilli A, Cherubini S, Principe L, Alloggia G, Mezzatesta ML, Salmeri M, Di Bella S, Migliavacca R, Piazza A, et al. In Vitro Activity of Sulbactam–Durlobactam against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Multicentre Report from Italy. Antibiotics. 2022; 11(8):1136. https://doi.org/10.3390/antibiotics11081136
Chicago/Turabian StyleSegatore, Bernardetta, Alessandra Piccirilli, Sabrina Cherubini, Luigi Principe, Giovanni Alloggia, Maria Lina Mezzatesta, Mario Salmeri, Stefano Di Bella, Roberta Migliavacca, Aurora Piazza, and et al. 2022. "In Vitro Activity of Sulbactam–Durlobactam against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Multicentre Report from Italy" Antibiotics 11, no. 8: 1136. https://doi.org/10.3390/antibiotics11081136
APA StyleSegatore, B., Piccirilli, A., Cherubini, S., Principe, L., Alloggia, G., Mezzatesta, M. L., Salmeri, M., Di Bella, S., Migliavacca, R., Piazza, A., Meroni, E., Fazii, P., Visaggio, D., Visca, P., Cortazzo, V., De Angelis, G., Pompilio, A., & Perilli, M. (2022). In Vitro Activity of Sulbactam–Durlobactam against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Multicentre Report from Italy. Antibiotics, 11(8), 1136. https://doi.org/10.3390/antibiotics11081136