Risk Factors for Community-Acquired Urinary Tract Infections Caused by Multidrug-Resistant Enterobacterales in Thailand
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics and Isolation of MDRE from Patients with CA-UTIs
2.2. Risk Factors for CA-UTIs Caused by MDRE
2.3. Susceptibility Test for Enterobacterales
2.4. Characterization of the Colistin-Resistant Isolate
3. Discussion
4. Materials and Methods
4.1. Study Setting and Patients
4.2. Data Collection
4.3. Microbiological Methods
4.4. Definitions
4.5. Detection of Mobile Colistin Resistance (mcr) Gene and Conjugative Ability
4.6. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, R.D.; Hultgren, S.J. Urinary tract infections: Microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 2020, 18, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 2017, 376, 2235–2244. [Google Scholar] [CrossRef]
- Sugianli, A.K.; Ginting, F.; Parwati, I.; de Jong, M.D.; van Leth, F.; Schultsz, C. Antimicrobial resistance among uropathogens in the Asia-Pacific region: A systematic review. JAC Antimicrob. Resist. 2021, 3, dlab003. [Google Scholar] [CrossRef] [PubMed]
- Pruetpongpun, N.; Khawcharoenporn, T.; Damronglerd, P.; Suwantarat, N.; Apisarnthanarak, A.; Rutjanawech, S. Inappropriate empirical treatment of uncomplicated cystitis in Thai women: Lessons learned. Clin. Infect. Dis. 2017, 64, S115–S118. [Google Scholar] [CrossRef]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.; Takahashi, E.; Hongsuwan, M.; Wuthiekanun, V.; Thamlikitkul, V.; Hinjoy, S.; Day, N.P.; Peacock, S.J.; Limmathurotsakul, D. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. Elife 2016, 5, e18082. [Google Scholar] [CrossRef] [PubMed]
- Phodha, T.; Riewpaiboon, A.; Malathum, K.; Coyte, P.C. Excess annual economic burdens from nosocomial infections caused by multi-drug resistant bacteria in Thailand. Expert Rev. Pharm. Outcomes Res. 2019, 19, 305–312. [Google Scholar] [CrossRef]
- Troiano, G.; Messina, G.; Nante, N. Bacterial lysates (OM-85 BV): A cost-effective proposal in order to contrast antibiotic resistance. J. Prev. Med. Hyg. 2021, 62, E564–E573. [Google Scholar] [CrossRef] [PubMed]
- Suwantarat, N.; Carroll, K.C. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia. Antimicrob. Resist. Infect. Control 2016, 5, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chautrakarn, S.; Khumros, W.; Phutrakool, P. Self-medication with over-the-counter medicines among the working age population in metropolitan areas of Thailand. Front. Pharmacol. 2021, 12, 726643. [Google Scholar] [CrossRef]
- Jean, S.S.; Coombs, G.; Ling, T.; Balaji, V.; Rodrigues, C.; Mikamo, H.; Kim, M.J.; Rajasekaram, D.G.; Mendoza, M.; Tan, T.Y.; et al. Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010–2013. Int. J. Antimicrob. Agents 2016, 47, 328–334. [Google Scholar] [CrossRef] [PubMed]
- National Antimicrobial Resistance Surveillance, Thailand. Antimicrobial Resistance 2000–2020, 2020. Available online: http://narst.dmsc.moph.go.th/data/AMR%202000-2020–12M.pdf (accessed on 5 June 2022).
- Almomani, B.A.; Hayajneh, W.A.; Ayoub, A.M.; Ababneh, M.A.; Al Momani, M.A. Clinical patterns, epidemiology and risk factors of community-acquired urinary tract infection caused by extended-spectrum beta-lactamase producers: A prospective hospital case-control study. Infection 2018, 46, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Faine, B.A.; Harland, K.K.; Porter, B.; Liang, S.Y.; Mohr, N. A clinical decision rule identifies risk factors associated with antimicrobial-resistant urinary pathogens in the emergency department: A retrospective validation study. Ann. Pharmacother. 2015, 49, 649–655. [Google Scholar] [CrossRef]
- Savatmorigkorngul, S.; Poowarattanawiwit, P.; Sawanyawisuth, K.; Sittichanbunchaet, Y. Factors associated with extended spectrum beta-lactamase producing Escherichia coli in community-acquired urinary tract infection at hospital emergency department, Bangkok, Thailand. Southeast Asian J. Trop. Med. Public Health 2016, 47, 227–233. [Google Scholar] [PubMed]
- Bunjoungmanee, P.; Tangsathapornpong, A.; Kulalert, P. Clinical manifestations and risk factors in urinary tract infection caused by community-acquired extended-spectrum beta-lactamase enzyme producing bacteria in children. Southeast Asian J. Trop. Med. Public Health 2018, 49, 123–132. [Google Scholar]
- Sangsuwan, T.; Jariyasoonthornkit, K.; Jamulitrat, S. Antimicrobial resistance patterns amid community-acquired uropathogens in outpatient settings of a tertiary care hospital in Thailand. Siriraj Med. J. 2021, 73, 501–509. [Google Scholar] [CrossRef]
- Manges, A.R.; Smith, S.P.; Lau, B.J.; Nuval, C.J.; Eisenberg, J.N.; Dietrich, P.S.; Riley, L.W. Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: A case-control study. Foodborne Pathog. Dis. 2007, 4, 419–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khawcharoenporn, T.; Vasoo, S.; Singh, K. Urinary tract infections due to multidrug-resistant Enterobacteriaceae: Prevalence and risk factors in a Chicago emergency department. Emerg. Med. Int. 2013, 2013, 258517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Ayed, H.; Koubaa, M.; Hammami, F.; Marrakchi, C.; Rekik, K.; Ben Jemaa, T.; Maaloul, I.; Yaich, S.; Damak, J.; Ben Jemaa, M. Performance of an easy and simple new scoring model in predicting multidrug-resistant Enterobacteriaceae in community-acquired urinary tract infections. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2019; Volume 6, p. ofz103. [Google Scholar] [CrossRef]
- Benaissa, E.; Belouad, E.; Mechal, Y.; Benlahlou, Y.; Chadli, M.; Maleb, A.; Elouennass, M. Multidrug-resistant community-acquired urinary tract infections in a northern region of Morocco: Epidemiology and risk factors. Germs 2021, 11, 562–569. [Google Scholar] [CrossRef]
- Boonyasiri, A.; Tangkoskul, T.; Seenama, C.; Saiyarin, J.; Tiengrim, S.; Thamlikitkul, V. Prevalence of antibiotic resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog. Glob. Health 2014, 108, 235–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magruder, M.; Sholi, A.N.; Gong, C.; Zhang, L.; Edusei, E.; Huang, J.; Albakry, S.; Satlin, M.J.; Westblade, L.F.; Crawford, C.; et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat. Commun. 2019, 10, 5521. [Google Scholar] [CrossRef] [PubMed]
- Parikumsil, N.; Prapasawat, W.; Siriphap, A.; Chonsin, K.; Theethakaew, C.; Sukolrattanamaetee, N.; Ratchatanpha, D.; Siripanichgon, K.; Suthienkul, O. Virulence factors and molecular epidemiology of uropatho genic Escherichia coli isolated from paired urine and rectal swab samples of patients with urinary tract infections in Thailand. Southeast Asian. J. Trop. Med. Public Health 2017, 48, 1029–1041. [Google Scholar]
- European Association of Urology, Arnhem, The Netherlands. EAU Guidelines on Urological Infections, 2022. Available online: https://uroweb.org/guideline/urological-infections/ (accessed on 6 June 2022).
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yim, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Ling, Z.; Yin, W.; Shen, Z.; Wang, Y.; Shen, J.; Walsh, T.R. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. J. Antimicrob. Chemother. 2020, 75, 3087–3095. [Google Scholar] [CrossRef]
- Paveenkittiporn, W.; Kamjumphol, W.; Ungcharoen, R.; Kerdsin, A. Whole-genome sequencing of clinically isolated carbapenem-resistant Enterobacterales harboring mcr genes in Thailand, 2016–2019. Front. Microbiol. 2021, 11, 586368. [Google Scholar] [CrossRef] [PubMed]
- Luk-In, S.; Chatsuwan, T.; Kueakulpattana, N.; Rirerm, U.; Wannigama, D.L.; Plongla, R.; Lawung, R.; Pulsrikarn, C.; Chantaroj, S.; Chaichana, P.; et al. Occurrence of mcr-mediated colistin resistance in Salmonella clinical isolates in Thailand. Sci. Rep. 2021, 11, 14170. [Google Scholar] [CrossRef]
- Li, Y.; Dai, X.; Zeng, J.; Gao, Y.; Zhang, Z.; Zhang, L. Characterization of the global distribution and diversified plasmid reservoirs of the colistin resistance gene mcr-9. Sci. Rep. 2020, 10, 8113. [Google Scholar] [CrossRef] [PubMed]
- Khanawapee, A.; Kerdsin, A.; Chopjitt, P.; Boueroy, P.; Hatrongjit, R.; Akeda, Y.; Tomono, K.; Nuanualsuwan, S.; Hamada, S. Distribution and molecular characterization of Escherichia coli harboring mcr genes isolated from slaughtered pigs in Thailand. Microb. Drug Resist. 2021, 27, 971–979. [Google Scholar] [CrossRef]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef] [Green Version]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: Chichester, UK, 1991; pp. 115–175. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 28th Informational supplement. M100-S28; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Falagas, M.E.; Karageorgopoulos, D.E. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: Need for international harmonization in terminology. Clin. Infect. Dis. 2008, 46, 1121–1122. [Google Scholar] [CrossRef] [Green Version]
- Lescat, M.; Poirel, L.; Nordmann, P. Rapid multiplex polymerase chain reaction for detection of mcr-1 to mcr-5 genes. Diagn. Microbiol. Infect. Dis. 2018, 92, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Borowiak, M.; Baumann, B.; Fischer, J.; Thomas, K.; Deneke, C.; Hammerl, J.A.; Szabo, I.; Malorny, B. Development of a novel mcr-6 to mcr-9 multiplex PCR and assessment of mcr-1 to mcr-9 occurrence in colistin-resistant Salmonella enterica isolates from environment, feed, animals and food (2011–2018) in Germany. Front. Microbiol. 2020, 11, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
Variables | Total Patients n = 284 | No. of Patients with MDRE n = 73 | No. of Patients with Non MDRE n = 211 | Univariate Analysis p Value a | Multivariate Logistic Regression Analysis | ||
---|---|---|---|---|---|---|---|
p Value b | aOR | 95% CI | |||||
n (%) | n (%) | n (%) | |||||
Female gender | 251 (88.4) | 67 (91.8) | 184 (87.2) | 0.293 | |||
Age ≤ 30 years | 92 (32.4) | 21 (22.8) | 71 (33.6) | 0.442 | |||
Age 31−45 years | 53 (18.7) | 13 (17.8) | 40 (19.0) | 0.828 | |||
Age 46−60 years | 68 (23.9) | 16 (21.9) | 52 (24.6) | 0.638 | |||
Age > 60 years | 71 (25.0) | 23 (31.5) | 48 (22.7) | 0.136 | |||
Living in urban area | 161 (56.7) | 42 (57.5) | 119 (56.4) | 0.866 | |||
Education | |||||||
Primary school | 85 (29.9) | 25 (34.2) | 60 (28.4) | 0.350 | |||
Secondary school | 115 (40.5) | 30 (41.1) | 85 (40.3) | 0.903 | |||
College and university or higher | 78 (27.5) | 16 (21.9) | 62 (29.4) | 0.218 | |||
Occupation | |||||||
Government officer or company employee | 69 (24.3) | 17 (23.3) | 52 (24.6) | 0.616 | |||
Labor | 58 (20.4) | 10 (13.7) | 48 (22.7) | 0.098 | 0.213 | 0.620 | 0.291–1.317 |
Farmer | 22 (7.7) | 11 (15.1) | 11 (5.2) | 0.007 | 0.013 | 3.101 | 1.272–7.564 |
Having pets at home (dogs or cats) | 84 (29.6) | 22 (30.1) | 62 (29.4) | 0.903 | |||
Raising chicken or duck | 10 (3.5) | 5 (6.8) | 5 (2.4) | 0.073 | 0.277 | 2.086 | 0.554–7.859 |
Drinking water | |||||||
tap water | 35 (12.3) | 8 (11.0) | 27 (12.8) | 0.681 | |||
filtered water | 200 (70.4) | 47 (64.4) | 153 (72.5) | 0.190 | |||
Consumption of undercooked meat c | 35 (12.3) | 11 (15.1) | 24 (11.4) | 0.408 | |||
Underlying diseases | |||||||
Hypertension | 60 (21.1) | 19 (26.0) | 41 (19.4) | 0.234 | |||
Dyslipidemia | 36 (12.7) | 12 (16.4) | 24 (11.4) | 0.262 | |||
Diabetes | 24 (8.5) | 7 (9.6) | 17 (8.1) | 0.685 | |||
Respiratory disease | 8 (2.8) | 1 (1.4) | 7 (3.3) | 0.386 | |||
Antibiotic usage within previous 3 months | 32 (11.3) | 13 (17.8) | 19 (9.0) | 0.040 | 0.062 | 2.093 | 0.693–4.546 |
History of hospitalization within previous 6 months | 17 (6.0) | 7 (9.6) | 10 (4.7) | 0.132 |
Enterobacterales | No. of MDRE n = 77 | No. of Non-MDRE Isolates n = 232 | Total No. of Isolates n = 309 |
---|---|---|---|
n (%) | n (%) | n (%) | |
Escherichia coli | 67 (87) | 200 (86.2) | 267 (86.4) |
Klebsiella pneumoniae | 7 (9.1) | 15 (6.5) | 22 (7.1) |
Enterobacter cloacae | 1 (1.3) | 10 (4.3) | 11 (3.6) |
Proteus spp. | 1 (1.3) | 3 (1.3) | 4 (1.3) |
Proteus mirabilis | 1 (1.3) | 1 (0.4) | 2 (0.7) |
Enterobacter aerogenes | 0 | 1 (0.4) | 1 (0.3) |
Citrobacter spp. | 0 | 1 (0.4) | 1 (0.3) |
Salmonella spp. | 0 | 1 (0.4) | 1 (0.3) |
Antibiotics | No. (%) of Resistance Isolates | |||
---|---|---|---|---|
Total (n = 309) | MDRE (n = 77) | Non-MDRE (n = 232) | p Value a | |
ampicillin | 207 (67.0) | 77 (100) | 131 (56.5) | <0.001 |
amoxicillin/clavulanate | 19 (6.1) | 5 (6.5) | 15 (6.5) | 0.891 |
cephalexin | 61 (19.7) | 30 (39.0) | 32 (13.8) | <0.001 |
cefuroxime | 42 (13.6) | 28 (36.4) | 14 (6.0) | <0.001 |
cefotaxime | 45 (14.6) | 30 (39.0) | 16 (6.9) | <0.001 |
ceftriaxone | 43 (13.9) | 29 (37.7) | 14 (6.0) | <0.001 |
imipenem | 0 | 0 | 0 | ND |
gentamicin | 49 (15.9) | 44 (57.1) | 5 (2.2) | <0.001 |
amikacin | 6 (1.9) | 4 (5.2) | 2 (0.9) | 0.096 |
cotrimoxazole | 101 (32.7) | 63 (81.8) | 38 (16.4) | <0.001 |
ciprofloxacin | 105 (34.0) | 62 (80.5) | 43 (18.5) | <0.001 |
levofloxacin | 54 (17.5) | 37 (48.1) | 17 (7.3) | <0.001 |
fosfomycin | 4 (1.3) | 2 (2.6) | 2 (0.9) | 0.245 |
nitrofurantoin | 12 (3.9) | 5 (6.5) | 8 (3.4) | 0.174 |
Resistance Profiles | MDRE n = 77 | Non-MDRE n = 232 |
---|---|---|
n (%) | n (%) | |
AMP | - | 47 (20.3) |
AMP-SXT | - | 26 (11.2) |
AMP-CIP | - | 18 (7.8) |
AMP-CN-SXT | 9 (11.7) | - |
AMP-SXT-CIP | 8 (10.4) | - |
AMP-CN-SXT-CIP-LEV | 8 (10.4) | - |
AMP-SXT-CIP-LEV | 7 (9.1) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assawatheptawee, K.; Treebupachatsakul, P.; Luangtongkum, T.; Niumsup, P.R. Risk Factors for Community-Acquired Urinary Tract Infections Caused by Multidrug-Resistant Enterobacterales in Thailand. Antibiotics 2022, 11, 1039. https://doi.org/10.3390/antibiotics11081039
Assawatheptawee K, Treebupachatsakul P, Luangtongkum T, Niumsup PR. Risk Factors for Community-Acquired Urinary Tract Infections Caused by Multidrug-Resistant Enterobacterales in Thailand. Antibiotics. 2022; 11(8):1039. https://doi.org/10.3390/antibiotics11081039
Chicago/Turabian StyleAssawatheptawee, Kanit, Pornpit Treebupachatsakul, Taradon Luangtongkum, and Pannika R. Niumsup. 2022. "Risk Factors for Community-Acquired Urinary Tract Infections Caused by Multidrug-Resistant Enterobacterales in Thailand" Antibiotics 11, no. 8: 1039. https://doi.org/10.3390/antibiotics11081039
APA StyleAssawatheptawee, K., Treebupachatsakul, P., Luangtongkum, T., & Niumsup, P. R. (2022). Risk Factors for Community-Acquired Urinary Tract Infections Caused by Multidrug-Resistant Enterobacterales in Thailand. Antibiotics, 11(8), 1039. https://doi.org/10.3390/antibiotics11081039