Antibiotic Exposure during the Preceding Six Months Is Related to Intestinal ESBL-Producing Enterobacteriaceae Carriage in the Elderly
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Cohort Enrollment
2.2. Strain Identification and Characterization
2.3. Healthcare Details
2.4. Statistical Analysis
3. Results
3.1. Intestinal Carriage of ESBL-PE
3.2. Risk Factors for Intestinal ESBL-PE Carriage in the Elderly
3.3. Effect of Antibiotic Exposure on Intestinal ESBL-PE Carriage
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Guo, C.; Du, W.; Hu, C.; Zheng, X. Prevalence and factors associated with healthcare service use among Chinese elderly with disabilities. J. Public Health 2016, 38, e345–e351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowerman, T.J.; Zhang, J.; Waite, L.M. Antibacterial treatment of aspiration pneumonia in older people: A systematic review. Clin. Interv. Aging 2018, 13, 2201–2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K. Past and Present Perspectives on β-Lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jean, S.S.; Hsueh, P.R.; SMART Asia-Pacific Group. Distribution of ESBLs, AmpC β-lactamases and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal and urinary tract infections in the Asia-Pacific region during 2008–2014: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). J. Antimicrob. Chemother. 2017, 72, 166–171. [Google Scholar] [PubMed]
- Day, M.J.; Hopkins, K.L.; Wareham, D.W.; Toleman, M.A.; Elviss, N.; Randall, L.; Teale, C.; Cleary, P.; Wiuff, C.; Doumith, M.; et al. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: An epidemiological surveillance and typing study. Lancet Infect. Dis. 2019, 19, 1325–1335. [Google Scholar] [CrossRef] [Green Version]
- Clemenceau, M.; Ahmed-Elie, S.; Vilfaillot, A.; Chocron, R.; Compain, F.; Lebeaux, D.; Grohs, P. Appropriateness of empirical antibiotic prescription for bloodstream infections in an emergency department from 2006 to 2018: Impact of the spread of ESBL-producing Enterobacterales. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 41, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Gorrie, C.L.; Mirceta, M.; Wick, R.R.; Edwards, D.J.; Thomson, N.R.; Strugnell, R.A.; Pratt, N.F.; Garlick, J.S.; Watson, K.M.; Pilcher, D.V.; et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin. Infect. Dis. 2017, 65, 208–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeFilipp, Z.; Bloom, P.P.; Torres Soto, M.; Mansour, M.K.; Sater, M.R.A.; Huntley, M.H.; Turbett, S.; Chung, R.T.; Chen, Y.B.; Hohmann, E.L. Drug-Resistant E. coli Bacteremia Transmitted by Fecal Microbiota Transplant. N. Engl. J. Med. 2019, 381, 2043–2050. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, F.; Mózes, J.; Mészáros, J.; Juhász, Á.; Majoros, L.; Szarka, K.; Kardos, G. Asymptomatic faecal carriage of ESBL producing enterobacteriaceae in Hungarian healthy individuals and in long-term care applicants: A shift towards CTX-M producers in the community. Infect. Dis. 2016, 48, 557–559. [Google Scholar] [CrossRef]
- Blom, A.; Ahl, J.; Månsson, F.; Resman, F.; Tham, J. The prevalence of ESBL-producing Enterobacteriaceae in a nursing home setting compared with elderly living at home: A cross-sectional comparison. BMC Infect. Dis. 2016, 16, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoyama, K.; Uehara, Y.; Sasaki, T.; Hiramatsu, K. Risk factors of fecal colonization with extended-spectrum β-lactamase-producing Enterobacteriaceae in special nursing homes in Japan. J. Gen. Fam. Med. 2018, 19, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.Y.; Zhang, J.; Zhang, Y.L.; Wang, Y.C.; Xiao, S.Z.; Gu, F.F.; Guo, X.K.; Ni, Y.X.; Han, L.Z. Epidemiology and risk factors for faecal extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) carriage derived from residents of seven nursing homes in western Shanghai, China. Epidemiol. Infect. 2016, 144, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Van den Bunt, G.; Fluit, A.C.; Bootsma, M.C.J.; van Duijkeren, E.; Scharringa, J.; van Pelt, W.; Bonten, M.J.M. Dynamics of Intestinal Carriage of Extended-Spectrum Beta-lactamase-Producing Enterobacteriaceae in the Dutch General Population, 2014–2016. Clin. Infect. Dis. 2020, 71, 1847–1855. [Google Scholar] [CrossRef] [PubMed]
- Moschou, A.; Ioannou, P.; Moraitaki, E.; Stafylaki, D.; Maraki, S.; Samonis, G.; Kofteridis, D.P. Rectal Colonization by Drug Resistant Bacteria in Nursing Home Residents in Crete, Greece. Trop. Med. Infect. Dis. 2021, 6, 123. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing: M100, 32nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Denisuik, A.J.; Karlowsky, J.A.; Adam, H.J.; Baxter, M.R.; Lagacé-Wiens, P.R.S.; Mulvey, M.R.; Hoban, D.J.; Zhanel, G.G. Canadian Antimicrobial Resistance Alliance (CARA) and CANWARD. Dramatic rise in the proportion of ESBL-producing Escherichia coli and Klebsiella pneumoniae among clinical isolates identified in Canadian hospital laboratories from 2007 to 2016. J. Antimicrob. Chemother. 2019, 74 (Suppl. S4), iv64–iv71. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, 1109–1116. [Google Scholar] [PubMed]
- Birgand, G.; Armand-Lefevre, L.; Lolom, I.; Ruppe, E.; Andremont, A.; Lucet, J.C. Duration of colonization by extended-spectrum β-lactamase-producing Enterobacteriaceae after hospital discharge. Am. J. Infect. Control. 2013, 41, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Hu, F.; Wu, S.; Ye, X.; Zhu, D.; Zhang, Y.; Wang, M. Comparison of adhesin genes and antimicrobial susceptibilities between uropathogenic and intestinal commensal Escherichia coli strains. PLoS ONE 2013, 8, e61169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wielders, C.C.H.; Van Duijkeren, E.; Van Den Bunt, G.; Meijs, A.P.; Dierikx, C.M.; Bonten, M.J.M.; Van Pelt, W.; Franz, E.; De Greeff, S.C. Seasonality in carriage of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in the general population: A pooled analysis of nationwide cross-sectional studies. Epidemiol. Infect. 2020, 148, e68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antimicrobial Agent | MIC (μg/mL) | % | ||||
---|---|---|---|---|---|---|
MIC Range | MIC50 | MIC90 | Susceptible | Intermediate | Resistant | |
E. coli (n = 484) | ||||||
Ampicillin | 32–>128 | >128 | >128 | 0 | 0 | 100 |
Cefotaxime | 2–>128 | 32 | >128 | 0 | 1.0 | 99.0 |
Ceftazidime | 0.125–>128 | 4 | 32 | 76.0 | 11.8 | 12.2 |
Cefepime | 0.06–>128 | 4 | 16 | 86.8 | 8.6 | 4.6 |
Cefoxitin | 0.5–>128 | 4 | 16 | 86.6 | 4.4 | 9.0 |
Meropenem | 0.06–0.5 | 0.06 | 0.06 | 100 | 0 | 0 |
Imipenem | 0.06–0.5 | 0.06 | 0.5 | 100 | 0 | 0 |
Piperacillin-tazobactam | 1–64 | 2 | 4 | 99.2 | 0.8 | 0 |
Levofloxacin | 0.06–64 | 2 | 16 | 36.4 | 4.1 | 59.5 |
Amikacin | 1–>128 | 2 | 4 | 99.2 | 0 | 0.8 |
K. pneumoniae (n = 58) | ||||||
Ampicillin | 32–>128 | >128 | >128 | 0 | 0 | 100 |
Cefotaxime | 0.125 –>128 | 32 | >128 | 0 | 3.4 | 96.6 |
Ceftazidime | 0.25–>128 | 4 | 32 | 65.5 | 8.6 | 25.9 |
Cefepime | 0.06–>128 | 4 | 16 | 86.2 | 8.6 | 5.2 |
Cefoxitin | 2–>128 | 4 | >128 | 74.1 | 6.9 | 19.0 |
Meropenem | 0.06–0.5 | 0.06 | 0.06 | 100 | 0 | 0 |
Imipenem | 0.06–0.5 | 0.06 | 0.5 | 100 | 0 | 0 |
Piperacillin-tazobactam | 1–64 | 2 | 4 | 98.3 | 1.7 | 0 |
Levofloxacin | 0.06–64 | 2 | 16 | 34.5 | 10.3 | 55.2 |
Amikacin | 1–>128 | 2 | 4 | 98.3 | 0 | 1.7 |
Fosfomycin | 0.125–32 | 0.25 | 8 | 100 | 0 | 0 |
Risk Factor | Carriers (n = 491) no. (%) | Noncarriers (n = 430) no. (%) | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|---|
p Value | OR (95% CI) | p Value | OR (95% CI) | |||
Age, years | ||||||
61–70 | 100 (20.4) | 41 (9.5) | 1 | |||
71–80 | 190 (38.7) | 158 (36.7) | 0.001 | 0.493 (0.324, 0.751) | 0.001 | 0.419 (0.249, 0.706) |
≥81 | 201 (40.9) | 231 (53.7) | <0.001 | 0.357 (0.237, 0.537) | <0.001 | 0.312 (0.186, 0.522) |
Sex (male/female) | 431/60 | 387/43 | 0.001 | 0.427 (0.259, 0.704) | 0.533 | 0.847 (0.503, 1.427) |
Hypertension | 308 (62.7) | 275 (64.0) | 0.701 | 0.949 (0.725, 1.241) | ||
Coronary artery disease | 101 (20.6) | 98 (22.8) | 0.414 | 0.877 (0.640, 1.201) | ||
Respiratory tract diseases a | 90 (18.3) | 85 (19.8) | 0.579 | 0.911 (0.655, 1.267) | ||
Diabetes mellitus | 136 (27.7) | 95 (22.1) | 0.050 | 1.351 (0.999, 1.827) | 0.116 | 1.348 (0.929, 1.956) |
Benign prostatic hyperplasia | 55 (11.2) | 48 (11.2) | 0.985 | 1.004 (0.666, 1.514) | ||
Constipation | 27 (5.5) | 19 (4.4) | 0.453 | 1.259 (0.690, 2.298) | ||
Prior surgery | 95 (19.4) | 81 (18.8) | 0.844 | 1.034 (0.743, 1.437) | ||
Tumor | 31 (6.3) | 22 (5.1) | 0.436 | 1.250 (0.712, 2.193) | ||
Thyroid disease | 7 (1.4) | 16 (3.7) | 0.026 | 0.374 (0.152, 0.918) | 0.28 | 0.604 (0.242, 1.506) |
Prostate disease | 80 (16.3) | 80 (18.6) | 0.356 | 0.852 (0.605, 1.198) | ||
Peptic ulcer | 29 (5.9) | 35 (8.1) | 0.184 | 0.708 (0.425, 1.180) | ||
Liver disease | 29 (5.9) | 26 (6.1) | 0.929 | 0.975 (0.565, 1.684) | ||
Use of gastric mucosal protective agent | 104 (21.2) | 85 (19.8) | 0.596 | 1.091 (0.791, 1.504) | ||
Oral probiotics | 62 (12.6) | 60 (14.0) | 0.554 | 0.891 (0.609, 1.305) | ||
Laxatives | 85 (17.3) | 83 (19.3) | 0.435 | 0.875 (0.626, 1.223) | ||
Oral digestive enzymes | 48 (9.8) | 59 (13.7) | 0.062 | 0.681 (0.454, 1.022) | ||
Long-term steroid use | 7 (1.4) | 9 (2.1) | 0.439 | 0.677 (0.250, 1.832) | ||
Self-care deficit | 13 (2.7) | 10 (2.3) | 0.755 | 1.142 (0.496, 2.632) | ||
Nursing home residence | 166 (33.8) | 32 (7.4) | <0.001 | 6.353 (4.234, 9.532) | <0.001 | 9.13 (5.526, 15.085) |
International travel | 67 (13.7) | 8 (1.9) | <0.001 | 8.335 (3.955, 17.566) | 0.088 | 2.112 (0.896, 4.982) |
Antibiotic exposure | 415 (84.5) | 157 (36.5) | <0.001 | 9.495 (6.939, 12.992) | <0.001 | 11.12 (7.734, 15.989) |
Hospital admission | 40 (8.2) | 29 (6.7) | 0.420 | 1.226 (0.746, 2.015) |
Month Prior to Sampling | Antimicrobial Exposure | |||
---|---|---|---|---|
Carriers (n = 780) no. (%) | Noncarriers (n = 492) no. (%) | p Value | RR (95% CI) | |
No exposure | 76 (9.7) | 273 (55.5) | <0.001 | 0.176 (0.140, 0.221) |
1st month | 60 (7.7) | 11 (2.2) | <0.001 | 3.441 (1.827, 6.479) |
2nd month | 108 (13.8) | 28 (5.7) | <0.001 | 2.433 (1.631, 3.630) |
3rd month | 95 (12.2) | 18 (3.7) | <0.001 | 3.329 (2.037, 5.440) |
4th month | 110 (14.1) | 23 (4.7) | <0.001 | 3.017 (1.953, 4.661) |
5th month | 99 (12.7) | 31 (6.3) | <0.001 | 2.014 (1.368, 2.967) |
6th month | 82 (10.5) | 13 (2.6) | <0.001 | 3.979 (2.241, 7.064) |
7th month | 56 (7.2) | 31 (6.3) | 0.545 | 1.139 (0.746, 1.741) |
8th month | 45 (5.8) | 28 (5.7) | 0.953 | 1.014 (0.641, 1.603) |
9th month | 49 (6.3) | 36 (7.3) | 0.472 | 0.859 (0.567, 1.300) |
Frequency of Antimicrobial Exposure | ESBL-PE Carriers (n = 491) n (%) | ESBL-PE Noncarriers (n = 430) n (%) | p Value | RR (95% CI) |
---|---|---|---|---|
0 | 76 (15.5) | 273 (63.5) | <0.001 | 0.244 (0.196, 0.303) |
1 | 250 (50.9) | 120 (27.9) | <0.001 | 1.825 (1.532, 2.173) |
2 | 77 (15.7) | 18 (4.2) | <0.001 | 3.746 (2.280, 6.155) |
3 | 52 (10.6) | 13 (3.0) | <0.001 | 3.503 (1.934, 6.344) |
≥4 | 36 (7.3) | 6 (1.4) | <0.001 | 5.255 (2.236, 12.349) |
Antimicrobials | Antimicrobials Exposure | |||
---|---|---|---|---|
ESBL-PE Carriers (n = 780) n (%) | ESBL-PE Noncarriers (n = 492) n (%) | p Value | RR (95%CI) | |
No exposure | 76 (9.7) | 273 (55.5) | <0.001 | 0.176 (0.140, 0.221) |
1st generation cephalosporins | 37 (4.7) | 24 (4.9) | 0.913 | 1.822 (1.269, 2.617) |
2nd generation cephalosporins | 104 (13.3) | 36 (7.3) | 0.001 | 2.048 (1.662, 2.525) |
3rd generation cephalosporins | 289 (37.1) | 89 (18.1) | <0.001 | 2.557 (1.947, 3.359) |
Fluoroquinolones | 223 (28.6) | 55 (11.2) | <0.001 | 2.334 (1.171, 4.650) |
Macrolides | 37 (4.7) | 10 (2.0) | 0.013 | 1.766 (0.640, 4.873) |
Others | 14 (1.8) | 5 (1.0) | 0.265 | 1.822 (1.269, 2.617) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Qin, X.; Ding, B.; Shen, Z.; Sheng, Z.; Wu, S.; Yang, Y.; Xu, X.; Hu, F.; Wang, X.; et al. Antibiotic Exposure during the Preceding Six Months Is Related to Intestinal ESBL-Producing Enterobacteriaceae Carriage in the Elderly. Antibiotics 2022, 11, 953. https://doi.org/10.3390/antibiotics11070953
Zhang M, Qin X, Ding B, Shen Z, Sheng Z, Wu S, Yang Y, Xu X, Hu F, Wang X, et al. Antibiotic Exposure during the Preceding Six Months Is Related to Intestinal ESBL-Producing Enterobacteriaceae Carriage in the Elderly. Antibiotics. 2022; 11(7):953. https://doi.org/10.3390/antibiotics11070953
Chicago/Turabian StyleZhang, Man, Xiaohua Qin, Baixing Ding, Zhen Shen, Zike Sheng, Shi Wu, Yang Yang, Xiaogang Xu, Fupin Hu, Xiaoqin Wang, and et al. 2022. "Antibiotic Exposure during the Preceding Six Months Is Related to Intestinal ESBL-Producing Enterobacteriaceae Carriage in the Elderly" Antibiotics 11, no. 7: 953. https://doi.org/10.3390/antibiotics11070953
APA StyleZhang, M., Qin, X., Ding, B., Shen, Z., Sheng, Z., Wu, S., Yang, Y., Xu, X., Hu, F., Wang, X., Zhang, Y., & Wang, M. (2022). Antibiotic Exposure during the Preceding Six Months Is Related to Intestinal ESBL-Producing Enterobacteriaceae Carriage in the Elderly. Antibiotics, 11(7), 953. https://doi.org/10.3390/antibiotics11070953