Genomic Analysis of Ceftazidime/Avibactam-Resistant GES-Producing Sequence Type 235 Pseudomonas aeruginosa Isolates
Abstract
:1. Introduction
2. Methods
2.1. Bacterial Sample Collection
2.2. Clinical Data Collection
2.3. Microbiological Methods
2.4. Whole-Genome Sequencing (WGS) and Bioinformatics Analysis
2.5. Ethical Consideration
3. Results
3.1. Bacterial Isolates and Clinical Data
3.2. Antimicrobial Susceptibility Data
3.3. Molecular Epidemiology
3.4. Acquired Resistome
3.5. Mutational Resistome
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef]
- Del Barrio-Tofiño, E.; López-Causapé, C.; Cabot, G.; Rivera, A.; Benito, N.; Segura, C.; Montero, M.M.; Sorlí, L.; Tubau, F.; Gómez-Zorrilla, S.; et al. Genomics and Susceptibility Profiles of Extensively Drug-Resistant Pseudomonas aeruginosa Isolates from Spain. Antimicrob. Agents Chemother. 2017, 61, e01589-17. [Google Scholar] [CrossRef] [Green Version]
- Del Barrio-Tofiño, E.; Zamorano, L.; Cortes-Lara, S.; López-Causapé, C.; Sánchez-Diener, I.; Cabot, G.; Bou, G.; Martínez-Martínez, L.; Oliver, A.; Galán, F.; et al. Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. J. Antimicrob. Chemother. 2019, 74, 1825–1835. [Google Scholar] [CrossRef]
- Oliver, A.; Mulet, X.; López-Causapé, C.; Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updates 2015, 21–22, 41–59. [Google Scholar] [CrossRef]
- Treepong, P.; Kos, V.; Guyeux, C.; Blanc, D.; Bertrand, X.; Valot, B.; Hocquet, D. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin. Microbiol. Infect. 2018, 24, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Del Barrio-Tofiño, E.; López-Causapé, C.; Oliver, A. Pseudomonas aeruginosa Epidemic High-Risk Clones and Their Association with Horizontally-Acquired β-Lactamases: 2020 Update. Int. J. Antimicrob. Agents 2020, 56, 106196. [Google Scholar] [CrossRef]
- Abboud, M.I.; Damblon, C.; Brem, J.; Smargiasso, N.; Mercuri, P.; Gilbert, B.; Rydzik, A.M.; Claridge, T.D.W.; Schofield, C.J.; Frère, J.-M. Interaction of Avibactam with Class B Metallo-β-Lactamases. Antimicrob. Agents Chemother. 2016, 60, 5655–5662. [Google Scholar] [CrossRef] [Green Version]
- Sader, H.S.; Castanheira, M.; Mendes, R.E.; Flamm, R.K.; Farrell, D.J.; Jones, R.N. Ceftazidime-Avibactam Activity against Multidrug-Resistant Pseudomonas aeruginosa Isolated in U.S. Medical Centers in 2012 and 2013. Antimicrob. Agents Chemother. 2015, 59, 3656–3659. [Google Scholar] [CrossRef] [Green Version]
- Sader, H.S.; Castanheira, M.; Shortridge, D.; Mendes, R.E.; Flamm, R.K. Antimicrobial Activity of Ceftazidime-Avibactam Tested against Multidrug-Resistant Enterobacteriaceae and Pseudomonas aeruginosa Isolates from U.S. Medical Centers, 2013 to 2016. Antimicrob. Agents Chemother. 2017, 61, e01045-17. [Google Scholar] [CrossRef] [Green Version]
- Sader, H.S.; Castanheira, M.; Flamm, R.K.; Mendes, R.E.; Farrell, D.J.; Jones, R.N. Ceftazidime/avibactam tested against Gramnegative bacteria from intensive care unit (ICU) and non-ICU patients, including those with ventilator-associated pneumonia. Int. J. Antimicrob. Agents 2015, 46, 53–59. [Google Scholar] [CrossRef]
- Sader, H.S.; Castanheira, M.; Flamm, R.K. Antimicrobial Activity of Ceftazidime-Avibactam against Gram-Negative Bacteria Isolated from Patients Hospitalized with Pneumonia in U.S. Medical Centers, 2011 to 2015. Antimicrob. Agents Chemother. 2017, 61, e02083-16. [Google Scholar] [CrossRef] [Green Version]
- Kazmierczak, K.M.; De Jonge, B.L.M.; Stone, G.G.; Sahm, D.F. In vitro activity of ceftazidime/avibactam against isolates of Pseudomonas aeruginosa collected in European countries: INFORM global surveillance 2012–15. J. Antimicrob. Chemother. 2018, 73, 2777–2781. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Kazmierczak, K.M.; Bouchillon, S.K.; de Jonge, B.L.M.; Stone, G.G.; Sahm, D.F. In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of Enterobacteriaceae and Pseudomonas aeruginosa Collected in Asia-Pacific Countries: Results from the INFORM Global Surveillance Program, 2012 to 2015. Antimicrob. Agents Chemother. 2018, 62, e02569-17. [Google Scholar] [CrossRef] [Green Version]
- Recio, R.; Mancheño, M.; Viedma, E.; Villa, J.; Orellana, M.; Lora-Tamayo, J.; Chaves, F. Predictors of Mortality in Bloodstream Infections Caused by Pseudomonas aeruginosa and Impact of Antimicrobial Resistance and Bacterial Virulence. Antimicrob. Agents Chemother. 2020, 64, e01759-19. [Google Scholar] [CrossRef]
- Recio, R.; Viedma, E.; González-Bodí, S.; Villa, J.; Orellana, M.; Mancheño-Losa, M.; Lora-Tamayo, J.; Chaves, F. Clinical and bacterial characteristics of Pseudomonas aeruginosa affecting the outcome of patients with bacteraemic pneumonia. Int. J. Antimicrob. Agents 2021, 58, 106450. [Google Scholar] [CrossRef]
- Didelot, X.; Bowden, R.; Wilson, D.J.; Peto, T.E.A.; Crook, D.W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 2012, 13, 601–612. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Hasman, H.; Saputra, D.; Sicheritz-Ponten, T.; Lund, O.; Svendsen, C.A.; Frimodt-Møller, N.; Aarestrup, F.M. Rapid Whole-Genome Sequencing for Detection and Characterization of Microorganisms Directly from Clinical Samples. J. Clin. Microbiol. 2014, 52, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Hunt, M.; Mather, A.E.; Sánchez-Busó, L.; Page, A.; Parkhill, J.; Keane, J.A.; Harris, S.R. ARIBA: Rapid antimicrobial resistance genotyping directly from sequencing reads. Microb. Genom. 2017, 3, e000131. [Google Scholar] [CrossRef]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The Comprehensive Antibiotic Resistance Database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Thrane, S.W.; Taylor, V.L.; Lund, O.; Lam, J.S.; Jelsbak, L. Application of Whole-Genome Sequencing Data for O-Specific Antigen Analysis and In Silico Serotyping of Pseudomonas aeruginosa Isolates. J. Clin. Microbiol. 2016, 54, 1782–1788. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Fraile-Ribot, P.A.; Fernández, J.; Gomis-Font, M.A.; Forcelledo, L.; Mulet, X.; López-Causapé, C.; Oliver, A. In Vivo Evolution of GES β-Lactamases Driven by Ceftazidime/Avibactam Treatment of Pseudomonas aeruginosa Infections. Antimicrob. Agents Chemother. 2021, 65, AAC0098621. [Google Scholar] [CrossRef]
- Choi, Y.; Chan, A.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015, 31, 2745–2747. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, J.; Wang, R.; Cai, Y. Resistance to ceftazidime–avibactam and underlying mechanisms. J. Glob. Antimicrob. Resist. 2019, 22, 18–27. [Google Scholar] [CrossRef]
- Lahiri, S.D.; Walkup, G.K.; Whiteaker, J.D.; Palmer, T.; McCormack, K.; Tanudra, M.A.; Nash, T.J.; Thresher, J.; Johnstone, M.R.; Hajec, L.; et al. Selection and molecular characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains containing derepressed AmpC. J. Antimicrob. Chemother. 2015, 70, 1650–1658. [Google Scholar] [CrossRef] [Green Version]
- Fraile-Ribot, P.A.; Mulet, X.; Cabot, G.; del Barrio-Tofiño, E.; Juan, C.; Pérez, J.L.; Oliver, A. In Vivo Emergence of Resistance to Novel Cephalosporin–β-Lactamase Inhibitor Combinations through the Duplication of Amino Acid D149 from OXA-2 β-Lactamase (OXA-539) in Sequence Type 235 Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e01117-17. [Google Scholar] [CrossRef] [Green Version]
ID | Collection Date | Age | Gender | Ward | Sample Type | Prior Antipseudomonal Antibiotics | Prior CZA | Primary Reason for Admission | Patient Outcome |
---|---|---|---|---|---|---|---|---|---|
PACZA-01 | 2020-01-08 | 69 | Female | ICU | Urine | MEM, CST | None | Hepatic transplant | Death |
PACZA-02 | 2020-08-03 | 60 | Male | Haematology | Respiratory | TZP, MEM, CST | None | Febrile neutropenia | Hospital discharge |
PACZA-04 | 2020-01-09 | 34 | Female | Medical | Blood | MEM | None | Catheter-related bloodstream infection | Hospital discharge |
PACZA-05 | 2020-04-10 | 64 | Female | ICU | Respiratory | TZP, MEM, CST, CZA, AMK | Yes | Ventilator-associated pneumonia | Hospital discharge |
PACZA-06 | 2020-09-04 | 38 | Female | Surgical | Urine | CIP | None | Heart transplant | Death |
PACZA-07 | 2020-09-09 | 80 | Male | Medical | Blood | MEM | None | Urinary tract infection | Hospital discharge |
PACZA-08 | 2020-11-09 | 81 | Male | Medical | Urine | MEM, CST | None | Urinary tract infection | Hospital discharge |
PACZA-09 | 2020-02-11 | 29 | Male | Surgical | Soft tissue | MEM, CZA | Yes | Wound infection | Hospital discharge |
PACZA-10 | 2020-02-14 | 70 | Female | Medical | Colonization | CIP | None | Decompensate heart failure | Death |
PA14-13 | 2014-09-26 | 82 | Male | Medical | Blood | CIP | None | Respiratory tract infection | Death |
PA15-05 | 2015-05-25 | 68 | Male | Medical | Blood | IPM, CIP | None | Decompensation of liver cirrhosis | Death |
PA15-18 | 2015-12-16 | 57 | Male | ICU | Blood | TZP | None | Respiratory tract infection | Death |
PA16-05 | 2016-06-19 | 59 | Male | ICU | Blood | MEM, CST, ATM, AMK | None | Haematopoietic transplantation | Death |
PA16-13 | 2016-09-16 | 86 | Male | ICU | Blood | CIP | None | Schönlein-Henoch purpura vasculitis | Death |
PA16-16 | 2016-10-10 | 63 | Female | Haematology | Blood | MEM, AMK | None | Febrile neutropenia | Death |
PA16-19 | 2016-11-16 | 51 | Male | Haematology | Blood | CIP | None | Febrile neutropenia | Death |
PA16-22 | 2016-02-24 | 62 | Male | Haematology | Blood | MEM, AMK | None | Febrile neutropenia | Death |
PA17-01 | 2017-10-26 | 76 | Male | Oncology | Blood | None | None | Late-stage lung carcinoma | Death |
PA17-08 | 2017-02-11 | 39 | Female | ICU | Blood | None | None | Subdural haematoma | Death |
PA17-11 | 2017-04-02 | 66 | Male | Haematology | Blood | MEM, CIP | None | Leukaemia treatment | Death |
PA17-13 | 2017-05-05 | 42 | Male | ICU | Blood | TZP | None | Coronary acute syndrome | Death |
PA17-15 | 2017-05-18 | 79 | Female | Medical | Blood | TZP, MEM, AMK | None | Paralytic ileus | Death |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recio, R.; Villa, J.; González-Bodí, S.; Brañas, P.; Orellana, M.Á.; Mancheño-Losa, M.; Lora-Tamayo, J.; Chaves, F.; Viedma, E. Genomic Analysis of Ceftazidime/Avibactam-Resistant GES-Producing Sequence Type 235 Pseudomonas aeruginosa Isolates. Antibiotics 2022, 11, 871. https://doi.org/10.3390/antibiotics11070871
Recio R, Villa J, González-Bodí S, Brañas P, Orellana MÁ, Mancheño-Losa M, Lora-Tamayo J, Chaves F, Viedma E. Genomic Analysis of Ceftazidime/Avibactam-Resistant GES-Producing Sequence Type 235 Pseudomonas aeruginosa Isolates. Antibiotics. 2022; 11(7):871. https://doi.org/10.3390/antibiotics11070871
Chicago/Turabian StyleRecio, Raúl, Jennifer Villa, Sara González-Bodí, Patricia Brañas, María Ángeles Orellana, Mikel Mancheño-Losa, Jaime Lora-Tamayo, Fernando Chaves, and Esther Viedma. 2022. "Genomic Analysis of Ceftazidime/Avibactam-Resistant GES-Producing Sequence Type 235 Pseudomonas aeruginosa Isolates" Antibiotics 11, no. 7: 871. https://doi.org/10.3390/antibiotics11070871
APA StyleRecio, R., Villa, J., González-Bodí, S., Brañas, P., Orellana, M. Á., Mancheño-Losa, M., Lora-Tamayo, J., Chaves, F., & Viedma, E. (2022). Genomic Analysis of Ceftazidime/Avibactam-Resistant GES-Producing Sequence Type 235 Pseudomonas aeruginosa Isolates. Antibiotics, 11(7), 871. https://doi.org/10.3390/antibiotics11070871