The Potential of α-Mangostin from Garcinia mangostana as an Effective Antimicrobial Agent—A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Selection
2.2. PICO
- Population/problem: microbes.
- Intervention or exposure: use of α-mangostin extracted from Garcinia mangostana.
- Comparison or control: antibiotics.
- Outcome: antimicrobial activity of α-mangostin against studied microbes.
2.3. Search Strategy
2.4. Eligibility Criteria for Inclusion of Studies
2.4.1. Inclusion Criteria
2.4.2. Exclusion Criteria
2.5. Data Extraction and Analysis
Outcome Measures
2.6. Quality Assessment [Risk of Bias]
2.7. Meta-Analysis Scoring Criteria Assessment by Using Newcastle–Ottawa
Data Extracted for Meta-Analysis
3. Results
3.1. Search Results
3.2. Methodical Characterization of the Included Studies
3.3. Risk of Bias in the Included Studies
3.4. Meta-Analysis Result
4. Discussion
4.1. Standardization of the Garcinia Mangostana Extracts
4.2. The Efficacy of α-Mangostin on Microbes
4.3. Strengths and Limitations of This Study
5. Conclusions
Implications for Future Studies
Study ID | Author | Country of Study | Main Antimicrobial Agent | Plant Part Used | Control | Microbes | Method | MIC * of Test | MIC * of Control | MBC **/MFC *** | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inhibitory (mm) | Count (µg/mL) | Inhibitory (mm) | Count (µg/mL) | Test Count (µg/mL) | Control Count (µg/mL) | ||||||||
1. | Chokpaisam et al. (2019) [54] | Thailand | Ya-Samarn-Phlae (YSP) | Pericarp of Garcinia, seeds of Areca catechu and Oryza sativa and rhizome of Cucurma longa | PBS | P. aeruginosa | Crystal violet assay | 12.29 μm | - | 18 | - | ||
2. | Ghasemzadeh et al. (2018) [38] | Malaysia | α-mangostin | Pericarp | Ciprofloxacin | L. ivanovii, S. aureus, Mycobacterium smegmatis, Streptococcus uberis, Vibrio parahaemolyticus, Enterobacter cloacae, E. coli | DPPH assay, FRAP assay, | 17, 18, 16, 14, 12, 12, 10 | 18, 16, 17, 18, 14, 12, 12, 10 | ||||
3. | Narasimhan et al. (2017) [8] | - | α-mangostin and synthetic derivatives | Dried fruits | Ciprofloxacin | E. coli, Bacillus subtilis, S. aureus, and P. aeruginosa, | Muller Hilton agar plates | 4 | 50 | 11 | 50 | ||
Ketoconazole | Candida albicans, Aspergillus niger | Disc diffusion method | 13 | 100 | |||||||||
4. | Phuong et al. (2017) [23] | Vietnam | α-Mangostin | Peels | PBS | Staphylococcus aureus | Membrane activity assay | 4.58–9.15 μmol/L | 2 folds higher | ||||
5. | Phitaktim et al. (2016) [13] | Thailand | α-mangostin alone and combination with oxacillin and nisin | Matured dried fruit hulls | S. aureus | S. saprophyticus | MTT assays | 8 | 4 | ||||
6. | Tatiya-Aphiradee et al. (2016) [16] | Thailand | α- and γ-mangostin | Crude dried pericarp | Gentamicin, Erythromycin | Methicillin-resistant Staphylococcus aureus | Agar well diffusion assay | 10 | 0 | 6.25 | >10,000 | 100 | >10,000 |
7. | Samprasit et al. (2015) [50] | Thailand | α-mangostin | Pericarp | 0.2% w/v chlorhexidine | S. mutans and S. sanguinis | MTT assay | 0.1 mg/mL | 1 mg/mL | 0.2 mg/mL | |||
8. | Nguyen et al. (2014) [40] | Vietnam | α-mangostin | Peels | S. mutans | F-ATPase and phosphotransferase system (PTS) assays | |||||||
9. | Mohamed et al. (2014) [3] | Vietnam | Mangostanaxanthones I and II, 9-hydroxycalabaxanthone, parvifolixanthone C, α-mangostin and rubraxanthone | Air-dried pericarps | Ampicillin | Staphylococcus aureus, Bacillus cereus, Escherichia coli, and C. violaceum | Agar plate diffusion and dilution | 2 | 250 | 24 | - | ||
Fluconazole | C. albicans and A. fumigatus | 0 | 20 | NA | NA | ||||||||
10. | Asasutjarit et al. (2014) [49] | Thailand | α-mangostin | Air-dried rind | Amoxicillin | Propionibacterium acnes | Microdilution assay | 0.5 | 0 | ||||
11. | Al-Massarani et al. (2013) [39] | Saudi Arabia | α-Mangostin | Pericarp | Amoxifen for MRC-5, chloroquine for P. falciparum, miltefosine for L. infantum, benznidazole for T. cruzi and suramin for T. brucei. | C. albicans, Plasmodium falciparum, Leishmania infantum and Trypanosoma cruzi and T. brucei, Escherichia coli, Pseudomonas aeruginosa, Bacillius subtilis, Staphylococcus aureus, Mycobacterium smegmatis, M. cheleneoi, M. xenopi and M. intracellulare. | Broth microdilution | NA | >200 µg/mL | NA | NA | NA | NA |
12. | Seesom et al. (2013) [48] | Thailand | α-, ϒ-Mangostin | Pericarp | Penicillin | Leptospira biflexa | Broth microdilution method | 200 to >800 | 0.39 to 6.25 | ||||
13. | Charernsriwilaiwat et al. (2013) [26] | - | α-Mangostin | Fruit hull | Penicillin | Staphylococcus aureus and Escherichia coli | Metal ion chelating assay | 0.5 | 0.5 | ||||
14. | Koh et al. (2013) [28] | - | 1,5,8-trihydroxy-3-methoxy-2-(3- methyl-2-butenyl) xanthone, γ-mangostin, garcinia E, α-mangostin and mangostenoneD | Fruit hull | Vancomycin | Methicillin-resistant Staphylococcus aureus (MRSA) | SYTOX green assay | 3.125 | 0.78–1.56 | ||||
15. | Arunrattiyakorn et al. (2011) [46] | - | a-Mangostin (1), mangostin 3-sulfate (2), mangosteen 6-sulfate (3), 17,18-dihydroxymangostanin 6-sulfate (4) and isomangostanin 3-sulfate (5). | Fruit hull | Rifampicin, streptomycin, isoniazid, and ofloxacin | Colletotrichum gloeosporioides and Neosartorya spathulata | Green fluorescent protein microplate assay (GFPMA) | 15.24 and 6.75 μm for 1 and 2, respectively, 3–5 showed no activity (MIC > 50 lg/mL). | 0.36 × 10−2, 1.46 × 10−2, 0.29–0.54, 0.17–0.34, and 1.08–2.16 μm for rifampicin, streptomycin, isoniazid, and ofloxacin, respectively. | ||||
16. | Nguyen et al. (2011) [45] | Vietnam | α-Mangostin | Peel | α-Mangostin with 25% ethanol | Streptococcus mutans | F-ATPase and phosphotransferase system (PTS) assays | 70% | |||||
17. | Pothitirat et al. (2010) [1] | Thailand | α-mangostin | Rind | other extracts (Hex, EtOH, H2O) | S. epidermidis, P. acne | Microdilution assay | 15.63, 7.8–15.63 | 3.91 µg/mL | NA | 7.81–500 µg/mL | 15.63 µg/mL | 31.25–(>500) µg/mL |
18. | Pothitirat et al. (2009) [21] | Thailand | α-mangostin | Matured rinds | Pure α-mangostin | S. epidermidis, P. acnes | Microdilution assay | NA | 15.63 for both | NA | 1.95 (P. acnes), 3.91 (S. epidermidis) | 15.63 (P.acnes), 31.25 (S. epidermidis) | 1.95 (P. acnes), 3.91 (S. epidermidis) |
Young rinds | Pure α-mangostin | S. epidermidis, P. acnes | Microdilution assay | NA | 15.63 (P.acnes), 31.25 (S. epidermidis) | NA | 31.25 (P.acnes), 62.50 (S. epidermidis) | ||||||
19. | Chomnawang et al. (2009) [43] | Thailand | α-mangostin | Not mentioned | 16 other medicinal plants | Methicillin-resistant Staphylococcus aureus, S. epidermidis | Disc diffusion and microdilution assay | 11.3 ± 0.60 (S. aureus), 10.50 ± 0.70 (S. epidermidis) mm | 0.039 mg/mL for all | Not detected to 19.70 ± 0.60 mm | 0.625–(>5) mg/mL | 0.156 for both (mg/mL) | ≥5 mg/mL |
20. | Sakagami et al. (2005) [9] | - | α-, β- Mangostin | Stem bark | Gentamicin | Vancomycin-resistant Enterococci (VRE) | Agar Dilution | NA | 3.13 (α-Mangostin), 25 (β- Mangostin | NA | >100 | NA | NA |
Methicillin-resistant Staphylococcus aureus (MRSA) | Agar Dilution | NA | 6.25 (α-Mangostin), >100 (β- Mangostin | NA | >100 | NA | NA | ||||||
21. | Iinuma et al. (1996) [7] | Indonesia | α-Mangostin | Dried and ground pericarp | Vancomycin, Gentamycin | Staphylococcus aureus | 1.57–>12.5 | 0.8 (Vancomycin) and 1.57 (Gentamicin) | |||||
E. coli | Bioassay | 25 | >25 (Vancomycin) and 25 (Gentamicin) | ||||||||||
22. | Guzmán-Beltrán et al. (2015) [51] | - | α-Mangostin, NDGA | - | Rifampicin at 0.4 μg/mL | Mycobacterium tuberculosis | Colourimetric assay | 250 (NDGA), 62.5 (α-Mangostin) | |||||
23. | Kaomongkolgit et al. (2013) [47] | Thailand | α-Mangostin | Dried pericarps | NaOCl and CHX | Enterococcus faecalis | MTT assay | 1.97 | 0.15% (NaOCl), 2.5 (CHX) | 3.94 | 0.31% (NaOCl), 5 (CHX) | ||
24. | Nittayananta et al. (2018) [52] | Thailand | α-Mangostin and/or lawsone methyl ether (2-methoxy-1,4-naphthoquinone) (LME) | Pericarp | Gentamicin | Candida albicans | Microdilution assay | 625 mg/mL | 0.625 mg/mL | ||||
Streptococcus mutans | Microdilution assay | 0.3125 mg/mL | >2.5 mg/mL | ||||||||||
Porphyromonas gingivalis | Microdilution assay | 2.5 mg/mL | 2.5 mg/mL | ||||||||||
25 | Meepagala et al. (2018) [42] | USA | α-mangostinγ-Mangostin(-)-Epicatechin | Pericarp of Garcinia mangostana | Florfenicol | Flavobacterium columnare | MTT assay ALM-00-173 | - | 41.0 | - | 0.36 | - | - |
26 | Larsuprom et al. (2019) [41] | Thailand | a-mangostin | Pericarp of Garcinia mangostana | Methicillin-susceptible S. pseudintermedius (MSSP) methicillin-resistant S. pseudintermedius (MRSP) | Broth Microdilution Method | - | 0.53 ± 0.35 µg/mL, 0.47 ± 0.27 µg/mL | - | - | - | - | |
27 | Boonnak et al. (2020) [55] | Thailand | a-mangostin and derivatives norathyriol γ-Mangostin and deririatives dulxisxantone β-mangostin | CH2Cl2 extracts of the C. cochichinense resin and G. mangostana hulls | Vancomycin | MRSA B. subtilis E. faecalis VRE S. typhi S. sonei P. aeruginosa | Not stated | - | 2.34 2.34 150 150 18.75 150 2.34 | 2.34 | - | - | |
28. | Suksamsarn et al. (2003) [44] | Thailand | (1)a-mangostin | Fruit hulls and the edible arils and seeds of Garcinia mangostana | Rifam picin Isoniazid Kanamycin | Mycobacterium tuberculosis | Microplate Alamar Blue Assay | - | 6.25 | - | 0.003–0.0047, 0.025–0.05 1.25–2.5 | - | - |
29. | Tatiya-aphiradee et al. (2019) [53] | Thailand | a-mangostin | Pericarp extract of Garcinia mangostana | Oxacillin Erythromycin | MSSA ATCC 9144 MSSA ATCC 23235 MRSA DMST4738 MRSA DMST20651 MRSA DMST20654 | Micro-dilution method. | - | 3.625 7.250 12.50 6.25 6.25 | - | 0.800 0.800 O—25.00 E—>400 >400 O—200 E > 400 | - | - |
30. | Samprasit et al. (2014) [37] | - | α-Mangostin | - | Oral microbes | Time kill assay | Only abstract available to the researcher |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Yes | No | Unclear | Not applicable | |
| □ | □ | □ | □ |
| □ | □ | □ | □ |
| □ | □ | □ | □ |
| □ | □ | □ | □ |
| □ | □ | □ | □ |
| □ | □ | □ | □ |
| □ | □ | □ | □ |
| □ | □ | □ | □ |
| □ | □ | □ | □ |
References
- Pothitirat, W.; Chomnawang, M.T.; Supabphol, R.; Gritsanapan, W. Free radical scavenging and anti-acne activities of mangosteen fruit rind extracts prepared by different extraction methods. Pharm. Biol. 2010, 48, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Janardhan, S.; Mahendra, J.; Girija, A.S.S.; Mahendra, L.; Priyadharsini, V. Antimicrobial effects of Garcinia mangostana on cariogenic microorganisms. J. Clin. Diagn. Res. 2017, 11, ZC19–ZC22. [Google Scholar]
- Mohamed, G.A.; Ibrahim, S.R.M.; Shaaban, M.I.A.; Ross, S.A. Mangostanaxanthones I and II, new xanthones from the pericarp of Garcinia mangostana. Fitoterapia 2014, 98, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Orozco-Ibarra, M.; Pérez-Rojas, J.M. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol. 2008, 46, 3227–3239. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.A.; Al-Abd, A.M.; El-halawany, A.M.; Abdallah, H.M.; Ibrahim, S.R.M. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J. Ethnopharmacol. 2017, 198, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.A.; Matoba, Y.; Tosa, H.; Iinuma, M. Effects of mangosteen pericarp extracts against mammary cancer. Altern. Integr. Med. 2013, 2, 1000139. [Google Scholar]
- Iinuma, M.; Tosa, H.; Tanaka, T.; Asai, F.; Kobayashi, Y.; Shimano, R.; Miyauchi, K.I. Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphylococcus aureus. J. Pharm. Pharmacol. 1996, 48, 861–865. [Google Scholar] [CrossRef]
- Narasimhan, S.; Maheshwaran, S.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Rethavathi, J.; Das, P.E.; Poltronieri, P. Anti-bacterial and anti-fungal activity of xanthones obtained via semi-synthetic modification of α-mangostin from Garcinia mangostana. Molecules 2017, 22, 275. [Google Scholar] [CrossRef] [Green Version]
- Sakagami, Y.; Iinuma, M.; Piyasena, K.G.N.P.; Dharmaratne, H.R.W. Antibacterial activity of α-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine 2005, 12, 203–208. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Wang, W.; Deng, L. Bioactivity and pharmacological properties of α-mangostin from the mangosteen fruit: A review. Expert Opin. Ther. Pat. 2018, 28, 415–427. [Google Scholar] [CrossRef]
- Wang, M.H.; Zhang, K.J.; Gu, Q.L.; Bi, X.L.; Wang, J.X. Pharmacology of mangostins and their derivatives: A comprehensive review. Chin. J. Nat. Med. 2017, 15, 81–93. [Google Scholar] [CrossRef]
- Steinmetz, K.A.; Potter, J.D. Vegetables, fruit, and cancer prevention: A review. J. Am. Diet. Assoc. 1996, 96, 1027–1039. [Google Scholar] [CrossRef]
- Phitaktim, S.; Chomnawang, M.; Sirichaiwetchakoon, K.; Dunkhunthod, B.; Hobbs, G.; Eumkeb, G. Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC Microbiol. 2016, 16, 195. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Crisostomo, C.J.J.; Garcia, K.; Shen, C. Antimicrobial xanthones from Garcinia mangostana L. Philipp. Scient. 2010, 47, 63–75. [Google Scholar]
- Alsultan, Q.M.N.; Sijam, K.; Rashid, T.S.; Ahmad, K.B. GC-MS Analysis and antibacterial activity of mangosteen leaf extracts against plant pathogenic bacteria. Am. J. Plant Sci. 2016, 7, 1013. [Google Scholar] [CrossRef] [Green Version]
- Tatiya-aphiradee, N.; Chatuphonprasert, W.; Jarukamjorn, K. In vivo antibacterial activity of Garcinia mangostana pericarp extract against methicillin-resistant Staphylococcus aureus in a mouse superficial skin infection model. Pharm. Biol. 2016, 54, 2606–2615. [Google Scholar] [CrossRef] [Green Version]
- Murad, C.F.; Sassone, L.M.; Faveri, M.; Hirata, R.; Figueiredo, L.; Feres, M. Microbial diversity in persistent root canal infections investigated by checkerboard DNA-DNA hybridization. J. Endod. 2014, 40, 899–906. [Google Scholar] [CrossRef]
- Kasemwattanaroj, P.; Moongkarndi, P.; Pattanapanyasat, K.; Mangmool, S.; Rodpai, E.; Samer, J.; Sukapirom, K. Immunomodulatory Activities of α-Mangostin on Peripheral Blood Mononuclear Cells. Nat. Prod. Commun. 2019, 8, 1934578X1300800. [Google Scholar] [CrossRef] [Green Version]
- Dharmaratne, H.R.W.; Sakagami, Y.; Piyasena, K.G.P.; Thevanesam, V. Antibacterial activity of xanthones from Garcinia mangostana (L.) and their structure-activity relationship studies. Nat. Prod. Res. 2013, 27, 938–941. [Google Scholar] [CrossRef]
- Chomnawang, M.T.; Surassmo, S.; Nukoolkarn, V.S.; Gritsanapan, W. Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J. Ethnopharmacol. 2005, 101, 330–333. [Google Scholar] [CrossRef]
- Pothitirat, W.; Chomnawang, M.T.; Supabphol, R.; Gritsanapan, W. Comparison of bioactive compounds content, free radical scavenging and anti-acne inducing bacteria activities of extracts from the mangosteen fruit rind at two stages of maturity. Fitoterapia 2009, 80, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Sivaranjani, M.; Prakash, M.; Gowrishankar, S.; Rathna, J.; Pandian, S.K.; Ravi, A.V. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl. Microbiol. Biotechnol. 2017, 101, 3349–3359. [Google Scholar] [CrossRef] [PubMed]
- Phuong, N.T.M.; Van Quang, N.; Mai, T.T.; Anh, N.V.; Kuhakarn, C.; Reutrakul, V.; Bolhuis, A. Antibiofilm activity of α-mangostin extracted from Garcinia mangostana L. against Staphylococcus aureus. Asian Pac. J. Trop. Med. 2017, 10, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Koh, J.J.; Li, J.; Qiu, S.; Aung, T.; Lin, H.; Beuerman, R. Design and synthesis of amphiphilic xanthone-based, membrane-targeting antimicrobials with improved membrane selectivity. J. Med. Chem. 2013, 56, 2359–2373. [Google Scholar] [CrossRef] [PubMed]
- Tarasuk, M.; Songprakhon, P.; Chimma, P.; Sratongno, P.; Na-Bangchang, K.; Yenchitsomanus, T.P. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression. Virus Res. 2017, 240, 180–189. [Google Scholar] [CrossRef]
- Charernsriwilaiwat, N.; Rojanarata, T.; Ngawhirunpat, T.; Sukma, M.; Opanasopit, P. Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int. J. Pharm. 2013, 452, 333–343. [Google Scholar] [CrossRef]
- Wimley, W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol. 2010, 5, 905–917. [Google Scholar] [CrossRef] [Green Version]
- Koh, J.J.; Qiu, S.; Zou, H.; Lakshminarayanan, R.; Li, J.; Zhou, X.; Beuerman, R.W. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim. Biophys. Acta-Biomembr. 2013, 1828, 834–844. [Google Scholar] [CrossRef] [Green Version]
- Negi, P.S.; Jayaprakasha, G.K.; Jena, B.S. Antibacterial activity of the extracts from the fruit rinds of Garcinia cowa and Garcinia pedunculata against food borne pathogens and spoilage bacteria. LWT-Food Sci. Technol. 2008, 41, 1857–1861. [Google Scholar] [CrossRef]
- Taher, M.; Susanti, D.; Rezali, M.F.; Zohri, F.S.A.; Ichwan, S.J.A.; Alkhamaiseh, S.I.; Ahmad, F. Apoptosis, antimicrobial and antioxidant activities of phytochemicals from Garcinia malaccensis Hk.f. Asian Pac. J. Trop. Med. 2012, 5, 136–141. [Google Scholar] [CrossRef]
- McBain, A.J.; Bartolo, R.G.; Catrenich, C.E.; Charbonneau, D.; Ledder, R.G.; Gilbert, P. Effects of a chlorhexidine gluconate-containing mouthwash on the vitality and antimicrobial susceptibility of in vitro oral bacterial ecosystems. Appl. Environ. Microbiol. 2003, 69, 4770–4776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Linares, M.; Ferrer-Luque, C.M.; Arias-Moliz, T.; de Castro, P.; Aguado, B.; Baca, P. Antimicrobial activity of alexidine, chlorhexidine and cetrimide against Streptococcus mutans biofilm. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vianna, M.E.; Gomes, B.P.; Berber, V.B.; Zaia, A.A.; Ferraz, C.C.R.; de Souza-Filho, F.J. In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2004, 97, 79–84. [Google Scholar] [CrossRef]
- Sodata, P.; Juntavee, A.; Juntavee, N.; Peerapattana, J. Optimization of Adhesive Pastes for Dental Caries Prevention. AAPS PharmSciTech 2017, 18, 3087–3096. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- JBI Checklist for Quasi-Experimental Studies (Non-Randomized Experimental Studies). 2017. Available online: http://joannabriggs.org/research/critical-appraisal-tools.html (accessed on 11 April 2022).
- Samprasit, W.; Opanasopit, P.; Sukma, M.; Kaomongkolgit, R. Antibacterial activity of Garcinia mangostana extracts on oral pathogens. Minerva Stomatol. 2014, 63, 249–257. [Google Scholar]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Baghdadi, A.; Tayebi-Meigooni, A. Alpha-mangostin-rich extracts from mangosteen pericarp: Optimization of green extraction protocol and evaluation of the biological activity. Molecules 2018, 23, 1852. [Google Scholar] [CrossRef] [Green Version]
- Al-Massarani, S.M.; El Gamal, A.A.; Al-Musayeib, N.M.; Mothana, R.A.; Basudan, O.A.; Al-Rehaily, A.J.; Maes, L. Phytochemical, antimicrobial and antiprotozoal evaluation of Garcinia mangostana pericarp and α-mangostin, its major xanthone derivative. Molecules 2013, 18, 10599–10608. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.T.M.; Falsetta, M.L.; Hwang, G.; Gonzalez-Begne, M.; Koo, H. α-mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal. PLoS ONE 2014, 9, e111312. [Google Scholar] [CrossRef] [Green Version]
- Larsuprom, L.; Rungroj, N.; Lekcharoensuk, C.; Pruksakorn, C.; Kongkiatpaiboon, S.; Chen, C.; Sukatta, U. In vitro antibacterial activity of mangosteen (Garcinia mangostana Linn.) crude extract against Staphylococcus pseudintermedius isolates from canine pyoderma. Vet. Dermatol. 2019, 30, 487. [Google Scholar] [CrossRef]
- Meepagala, K.; Schrader, K. Antibacterial Activity of Constituents from Mangosteen Garcinia mangostana Fruit Pericarp against Several Channel Catfish Pathogens. J. Aquat. Anim. Health 2018, 30, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Chomnawang, M.T.; Surassmo, S.; Wongsariya, K.; Bunyapraphatsara, N. Antibacterial Activity of Thai Medicinal Plants against Methicillin-resistant Staphylococcus aureus. Fitoterapia 2009, 80, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Suksamrarn, S.; Suwannapoch, N.; Phakhodee, W.; Thanuhiranlert, J.; Ratananukul, P.; Chimnoi, N.; Suksamrarn, A. Antimycobacterial Activity of Prenylated Xanthones from the Fruits of Garcinia mangostana. Chem. Pharm. Bull. 2003, 51, 857–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, P.T.M.; Marquis, R.E. Antimicrobial actions of α-mangostin against oral streptococci. Can. J. Microbiol. 2011, 57, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Arunrattiyakorn, P.; Suksamrarn, S.; Suwannasai, N.; Kanzaki, H. Microbial metabolism of α-mangostin isolated from Garcinia mangostana L. Phytochemistry 2011, 72, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Kaomongkolgit, R.; Jamdee, K.; Pumklin, J.; Pavasant, P. Laboratory evaluation of the antibacterial and cytotoxic effect of alpha-mangostin when used as a root canal irrigant. Indian J. Dent. 2013, 4, 12–17. [Google Scholar] [CrossRef]
- Seesom, W.; Jaratrungtawee, A.; Suksamrarn, S.; Mekseepralard, C.; Ratananukul, P.; Sukhumsirichart, W. Antileptospiral activity of xanthones from Garcinia mangostana and synergy of gamma-mangostin with penicillin G. BMC Complementary Altern. Med. 2013, 13, 182. [Google Scholar] [CrossRef] [Green Version]
- Asasutjarit, R.; Larpmahawong, P.; Fuongfuchat, A.; Sareedenchai, V.; Veeranondha, S. Physicochemical Properties and Anti-Propionibacterium acnes activity of film-forming solutions containing alpha-mangostin-rich extract. AAPS PharmSciTech 2014, 15, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Samprasit, W.; Kaomongkolgit, R.; Sukma, M.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P. Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr. Polym. 2015, 117, 933–940. [Google Scholar] [CrossRef]
- Guzmán-Beltrán, S.; Rubio-Badillo, M.Á.; Juárez, E.; Hernández-Sánchez, F.; Torres, M. Nordihydroguaiaretic acid (NDGA) and α-mangostin inhibit the growth of Mycobacterium tuberculosis by inducing autophagy. Int. Immunopharmacol. 2016, 31, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Nittayananta, W.; Limsuwan, S.; Srichana, T.; Sae-Wong, C.; Amnuaikit, T. Oral spray containing plant-derived compounds is effective against common oral pathogens. Arch. Oral Biol. 2018, 90, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Tatiya-aphiradee, N.; Chatuphonprasert, W.; Jarukamjorn, K. Anti-inflammatory effect of Garcinia mangostana Linn. pericarp extract in methicillin-resistant Staphylococcus aureus-induced superficial skin infection in mice. Biomed. Pharmacother. 2019, 111, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Chokpaisam, J.; Yincharoen, K.; Sanpinit, S.; Karutha Pandian, S.T.; Nandhini, J.R.; Gowrishankar, S.; Chusri, S. Effects of a traditional Thai polyherbal medicine ‘Ya-Samarn-Phlae’ as a natural anti-biofilm agent against Pseudomonas aeruginosa. Microb. Pathog. 2019, 128, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Boonnak, N.; Chantrapromma, S.; Sathirakul, K.; Kaewpiboon, C. Modified tetra-oxygenated xanthones analogues as anti-MRSA and P. aeruginosa agent and their synergism with vancomycin. Bioorganic Med. Chem. Lett. 2020, 30, 127494. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.H.; Taher, M.; Susanti, D.; Amiroudine, M.Z.; Ahmed, Q.U. Direct and indirect antimicrobial effects of α-mangostin on the pathogenic microorganism. J. Coast. Life Med. 2014, 2, 70–75. [Google Scholar]
Search Words | Results |
---|---|
“garcinia” | 1898 |
“garcinia mangostana” OR (“garcinia” AND “mangostana”) | 540 |
(“garcinia mangostana” OR (“garcinia” AND “mangostana”) OR “garcinia mangostana”) AND (“mangostin” OR “mangosteen”) | 431 |
(“garcinia mangostana” OR (“garcinia” AND “mangostana” OR “garcinia mangostana”) AND (“mangostin”) OR “mangosteen”) AND Anti) | 199 |
((((garcinia mangostana) OR garcinia)) AND ((((((mangostana) OR garcinia mangostana) OR mangosteen) OR mangostin) OR mangostin) OR alpha mangostin)) AND (((anti-bacterial agents) OR anti-bacterial agents OR anti-bacterial)) AND ((((((agents) OR anti-bacterial agents) OR antibacterial) OR anti-infective agents) OR anti-infective agents OR anti-infective)) AND (((agents) OR anti-infective agents) OR antimicrobial) | 55 |
Score | Criteria |
---|---|
0 | Inadequate description of case and control group Studies that did not clearly define their sample sizes along with their means and standard deviations |
1 | Studies that used another antimicrobial agent except for antibiotics and antiseptics as the control group Studies that used α-mangostin as an antimicrobial agent in both the case and control group |
2 | Studies that did not include α-mangostin as a major antimicrobial agent Studies that used fungi and parasites as micro-organisms |
3 | Studies included in this meta-analysis: Studies that provided a proper description of the case and control group Studies that clearly defined their sample sizes along with the mean and standard deviations Studies that incorporated α-mangostin in their case groups and compared it against different antibiotics and antiseptic agents |
Author Name (Year) | Title | Reason of Exclusion |
---|---|---|
Chokpaisam (2019) | Effects of a traditional Thai polyherbal medicine ‘Ya-Samarn-Phlae’ as a natural anti-biofilm agent against Pseudomonas aeruginosa | 2 |
Larsuprom (2019) | In vitro antibacterial activity of mangosteen (Garcinia mangostana Linn.) crude extract against Staphylococcus pseudintermedius isolates from canine pyoderma | 0 |
Larsuprom (2019) | In vitro antibacterial activity of mangosteen (Garcinia mangostana Linn.) crude extract against Staphylococcus pseudintermedius isolates from canine pyoderma | 0 |
Narasimhan (2017) | Anti-bacterial and anti-fungal activity of xanthones obtained via semi-synthetic modification of α-mangostin from Garcinia mangostana | 1 |
Nguyen (2017) | Antibiofilm activity of a-mangostin extracted from Garcinia mangostana L. against Staphylococcus aureus | 1 |
Phitaktim (2016) | Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus | 1 |
Tatiya-Aphiradee (2016) | In vivo antibacterial activity of Garcinia mangostana pericarp extract against methicillin-resistant Staphylococcus aureus in a mouse superficial skin infection model | 1 |
Mohamed (2014) | Mangostanaxanthones I and II, new xanthones from the pericarp of Garcinia mangostana | 0 |
Asasutjarit (2014) | Physicochemical properties and anti-propionibacterium acnes activity of film-forming solutions containing alpha-mangostin-rich extract | 0 |
Nguen (2014) | a-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal | 1 |
Samprasit (2014) | Mucoadhesive electrospun chitosan-based nanofiber mats for dental caries prevention | 0 |
Samprasit (2014) | Antibacterial activity of Garcinia mangostana extracts on oral pathogens | 0 |
Koh (2013) | Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting | 1 |
Al-Massarani (2013) | Phytochemical, antimicrobial, and antiprotozoal evaluation of Garcinia mangostana pericarp and α-mangostin, it is a major xanthone derivative | 2 |
Charernsriwilaiwat (2013) | Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts | 0 |
Seesom (2013) | Antileptospiral activity of xanthones from Garcinia mangostana and synergy of gamma-mangostin with penicillin G | 2 |
Arunrattiyakorn (2011) | Microbial metabolism of a-mangostin isolated from Garcinia mangostana L. | 2 |
Nguyen (2011) | Antimicrobial actions of a-mangostin against oral Streptococci | 0 |
Pothitirat (2010) | Free radical scavenging and anti-acne activities of mangosteen fruit rind extracts prepared by different extraction methods | 0 |
Pothitirat (2009) | Comparison of bioactive compounds content, free radical scavenging, and anti-acne inducing bacteria activities of extracts from the mangosteen fruit rind at two stages of maturity | 0 |
Chomnawang (2009) | Antibacterial activity of Thai medicinal plants against methicillin-resistant Staphylococcus aureus | 1 |
Sakagami (2005) | Antibacterial activity of a-mangostin against vancomycin-resistant Enterococci (VRE) and synergism with antibiotics | 1 |
Iinuma (1996) | Antibacterial Activity of Xanthones from Guttiferaeous Plants against Methicillin-resistant Staphylococcus aureus | 1 |
Database | Initial Hits | After Screening 1 (Only Research Articles Included) | After Screening 2 (Only G. mangostana Included) | After Screening 3 (Only α-Mangostin Included) | After Screening 4 (Type of Microbe Mentioned) Unique Records |
---|---|---|---|---|---|
PUBMED | 55 | 53 | 49 | 33 | 28 |
Science Direct | 39 | 12 | 12 | 9 | 2 |
Total | 94 | 65 | 61 | 42 | 30 |
Author of the Study | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Chokpaisam et al. (2019) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
2 | Ghasemzadeh et al. (2018) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
3 | Narasimhan et al. (2017) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 0 | 5 |
4 | Phitaktim et al. (2016) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
5 | Tatiya-Aphiradee et al. (2016) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
6 | Samprasit et al. (2015) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
7 | Nguyen et al. (2014) | 1 | 1 | 1 | 0 | 0 | na | 1 | unclear | 1 | 5 |
8 | Mohamed et al. (2014) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 0 | 5 |
9 | Asasutjarit et al. (2014) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
10 | Al-Massarani et al. (2013) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 0 | 5 |
11 | Seesom et al. (2013) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 0 | 5 |
12 | Charernsriwilaiwat et al. (2013) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
13 | Koh et al. (2013) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 0 | 5 |
14 | Arunrattiyakorn et al. (2011) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 0 | 5 |
15 | Nguyen et al. (2011) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 0 | 5 |
16 | Pothitirat et al. (2010) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
17 | Pothitirat et al. (2009) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
18 | Chomnawang et al. (2009) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 0 | 5 |
19 | Sakagami et al. (2005) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 0 | 5 |
20 | Iinuma et al. (1996) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 0 | 5 |
21 | Phuong et al. (2017) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
22 | Guzmán-Beltrán et al. (2016) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
23 | Kaomongkolgit et al. (2013) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
24 | Nittayananta et al. (2018) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 0 | 5 |
25 | Meepagala et al. (2018) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
26 | Larsuprom et al. (2019) | 1 | 1 | 1 | 0 | 0 | na | 1 | unclear | 1 | 5 |
27 | Boonnak et al. (2020) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
28 | Suksamsarn et al. (2003) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
29 | Tatiya-aphiradee et al. (2019) | 1 | 1 | 1 | 1 | 0 | na | 1 | unclear | 1 | 6 |
30 | Samprasit et al. (2014) | 1 | 1 | 1 | 0 | 0 | na | 1 | unclear | 1 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultan, O.S.; Kantilal, H.K.; Khoo, S.P.; Davamani, A.F.; Eusufzai, S.Z.; Rashid, F.; Jamayet, N.B.; Soh, J.A.; Tan, Y.Y.; Alam, M.K. The Potential of α-Mangostin from Garcinia mangostana as an Effective Antimicrobial Agent—A Systematic Review and Meta-Analysis. Antibiotics 2022, 11, 717. https://doi.org/10.3390/antibiotics11060717
Sultan OS, Kantilal HK, Khoo SP, Davamani AF, Eusufzai SZ, Rashid F, Jamayet NB, Soh JA, Tan YY, Alam MK. The Potential of α-Mangostin from Garcinia mangostana as an Effective Antimicrobial Agent—A Systematic Review and Meta-Analysis. Antibiotics. 2022; 11(6):717. https://doi.org/10.3390/antibiotics11060717
Chicago/Turabian StyleSultan, Omer Sheriff, Haresh Kumar Kantilal, Suan Phaik Khoo, Amalraj Fabian Davamani, Sumaiya Zabin Eusufzai, Farah Rashid, Nafij Bin Jamayet, Jue Ann Soh, Yen Yee Tan, and Mohammad Khursheed Alam. 2022. "The Potential of α-Mangostin from Garcinia mangostana as an Effective Antimicrobial Agent—A Systematic Review and Meta-Analysis" Antibiotics 11, no. 6: 717. https://doi.org/10.3390/antibiotics11060717
APA StyleSultan, O. S., Kantilal, H. K., Khoo, S. P., Davamani, A. F., Eusufzai, S. Z., Rashid, F., Jamayet, N. B., Soh, J. A., Tan, Y. Y., & Alam, M. K. (2022). The Potential of α-Mangostin from Garcinia mangostana as an Effective Antimicrobial Agent—A Systematic Review and Meta-Analysis. Antibiotics, 11(6), 717. https://doi.org/10.3390/antibiotics11060717