Transmission of Methicillin-Resistant Staphylococcus spp. from Infected Dogs to the Home Environment and Owners
Abstract
:1. Introduction
2. Results
2.1. Identification of MRS Isolates
2.2. Location of Clinical Methicillin-Resistant Staphylococci
2.3. Contact Dogs
2.4. Phenotypic Resistance
2.5. Genomic Data Analysis
2.6. Persistence over Time
2.7. Virulence
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Participants
5.2. Sampling
5.3. Culturing and Species Identification
5.4. Susceptibility Testing
5.5. DNA Extraction and Whole-Genome Sequencing
5.6. Bioinformatical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. DNA Extraction Protocol
- Pellet via centrifugation 4.0 mL of an overnight Staphylococcus bacterial culture. (4600× g, 15 min, 15 °C) Growth media: TSB or BHI. Discard the supernatant.
- Resuspend the pellet in 1.0 mL PBS. Pellet via centrifugation. (100,00× g, 10 min, 22 °C) Discard the supernatant.
- Repeat Step 2.
- Add 460 µL TE buffer and 20 µL lysozyme (100 mg/mL) (Sigma-Aldrich, St. Louis, MO, USA). Vortex for 10 s.
- Incubate at 37 °C overnight.
- Add 150 µL MasterPure™ Gram Positive Cell Lysis solution (Lucigen Corporation, Middleton, MA, USA) and 20 µL Proteinase K (20 mg/mL) (Qiagen, Hilden, Germany)
- Incubate at 65–70 °C for 15 min, vortexing briefly every 5 min.
- Cool the samples to 37 °C.
- Place the samples on ice for 5–7 min.
- Add 175 µL of MPC Protein Precipitation Reagent (Luicgen Corporation, Middleton, MA, USA), and vortex vigorously for 10 s.
- Pellet the debris via centrifugation at 4 °C for 10 min at 15,000× g.
- Transfer the supernatant to a clean Eppendorf tube and discard the debris pellet.
- Add 2 µL of RNase A (17,500 units) (Qiagen, Hilden, Germany) and vortex for a couple of seconds.
- Incubate at 37 °C for 30 min.
- Add 500 µL of isopropanol. Invert the tube 40 times. DNA should now be visible in the suspension.
- Pellet the DNA via centrifugation at 4 °C for 10 min at 15,000× g.
- Discard the supernatant.
- Rinse the pellet with 1000 µL of 70% ethanol. Leave the ethanol for 2–3 min before centrifuging at 4 °C for 2 min at 10,000× g.
- Discard the ethanol and leave the tubes open to air-dry the pellet, or incubate at 42 °C for ~15 min.
- Resuspend the DNA in the desired volume of elution buffer.
References
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Pires Dos Santos, T.; Damborg, P.; Moodley, A.; Guardabassi, L. Systematic review on global epidemiology of methicillin-resistant Staphylococcus pseudintermedius: Inference of population structure from multilocus sequence typing data. Front. Microbiol. 2016, 7, 1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, N.C.; Moodley, A.; Ghibaudo, G.; Guardabassi, L. Carriage of methicillin-resistant Staphylococcus pseudintermedius in small animal veterinarians: Indirect evidence of zoonotic transmission. Zoonoses Public Health 2011, 58, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Börjesson, S.; Gómez-Sanz, E.; Ekström, K.; Torres, C.; Grönlund, U. Staphylococcus pseudintermedius can be misdiagnosed as Staphylococcus aureus in humans with dog bite wounds. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Somayaji, R.; Priyantha, M.A.R.; Rubin, J.E.; Church, D. Human infections due to Staphylococcus pseudintermedius, an emerging zoonosis of canine origin: Report of 24 cases. Diagn. Microbiol. Infect. Dis. 2016, 85, 471–476. [Google Scholar] [CrossRef]
- Yarbrough, M.L.; Lainhart, W.; Burnham, C.A. Epidemiology, clinical characteristics, and antimicrobial susceptibility profiles of human clinical isolates of Staphylococcus intermedius group. J. Clin. Microbiol. 2018, 56, e01788-17. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. Staphylococcus epidermidis—The ‘accidental’ pathogen. Nat. Rev. Microbiol. 2009, 7, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Barbier, F.; Ruppé, E.; Hernandez, D.; Lebeaux, D.; Francois, P.; Felix, B.; Desprez, A.; Maiga, A.; Woerther, P.-L.; Gaillard, K.; et al. Methicillin-resistant coagulase-negative staphylococci in the community: High homology of SCCmec IVa between Staphylococcus epidermidis and major clones of methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 2010, 202, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, V.M.; Williams, N.J.; Pinchbeck, G.; Corless, C.E.; Shaw, S.; McEwan, N.; Dawson, S.; Nuttall, T. Antimicrobial resistance and characterisation of staphylococci isolated from healthy Labrador retrievers in the United Kingdom. BMC Vet. Res. 2014, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Sanz, E.; Ceballos, S.; Ruiz-Ripa, L.; Zarazaga, M.; Torres, C. clonally diverse methicillin and multidrug resistant coagulase negative staphylococci are ubiquitous and pose transfer ability between pets and their owners. Front. Microbiol. 2019, 10, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanal, M.; Joshi, P.R.; Paudel, S.; Acharya, M.; Rijal, K.R.; Ghimire, P.; Banjara, M.R. Methicillin-resistant coagulase negative staphylococci and their antibiotic susceptibility pattern from healthy dogs and their owners from Kathmandu Valley. Trop. Med. Infect. Dis. 2021, 6, 194. [Google Scholar] [CrossRef] [PubMed]
- Carbon, C. MRSA and MRSE: Is there an answer? Clin. Microbiol. Infect. 2000, 6, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, L.A.; Loeffler, A. Meticillin-resistant Staphylococcus pseudintermedius: Clinical challenge and treatment options. Vet. Dermatol. 2012, 23, 283-e56. [Google Scholar] [CrossRef]
- Beard-Pegler, M.A.; Stubbs, E.; Vickery, A.M. Observations on the resistance to drying of staphylococcal strains. J. Med. Microbiol. 1988, 26, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.F.; Iverson, S.A.; Baron, P.; Vasse, A.; Silbergeld, E.K.; Lautenbach, E.; Morris, D.O. Household transmission of meticillin-resistant Staphylococcus aureus and other staphylococci. Lancet Infect. Dis. 2012, 12, 703–716. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Vuong, C.; Otto, M. Staphylococcus epidermidis infections. Microbes Infect. 2002, 4, 481–489. [Google Scholar] [CrossRef]
- Van Hoovels, L.; Vankeerberghen, A.; Boel, A.; Van Vaerenbergh, K.; De Beenhouwer, H. First Case of Staphylococcus pseudintermedius Infection in a Human. J. Clin. Microbiol. 2006, 44, 4609–4612. [Google Scholar] [CrossRef] [Green Version]
- Stegmann, R.; Burnens, A.; Maranta, C.A.; Perreten, V. Human infection associated with methicillin-resistant Staphylococcus pseudintermedius ST71. J. Antimicrob. Chemother. 2010, 65, 2047–2048. [Google Scholar] [CrossRef]
- Savini, V.; Barbarini, D.; Polakowska, K.; Gherardi, G.; Białecka, A.; Kasprowicz, A.; Polilli, E.; Marrollo, R.; Di Bonaventura, G.; Fazii, P.; et al. Methicillin-resistant Staphylococcus pseudintermedius infection in a bone marrow transplant recipient. J. Clin. Microbiol. 2013, 51, 1636–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McManus, B.A.; Coleman, D.C.; Deasy, E.C.; Brennan, G.I.; O’ Connell, B.; Monecke, S.; Ehricht, R.; Leggett, B.; Leonard, N.; Shore, A.C. Comparative genotypes, staphylococcal cassette chromosome mec (SCCmec) genes and antimicrobial resistance amongst Staphylococcus epidermidis and Staphylococcus haemolyticus isolates from infections in humans and companion animals. PLoS ONE 2015, 10, e0138079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuan, E.C.; Yoon, A.J.; Vijayan, T.; Humphries, R.M.; Suh, J.D. Canine Staphylococcus pseudintermedius sinonasal infection in human hosts. Int. Forum Allergy Rhinol. 2016, 6, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Laarhoven, L.M.; de Heus, P.; van Luijn, J.; Duim, B.; Wagenaar, J.A.; van Duijkeren, E. Longitudinal study on methicillin-resistant Staphylococcus pseudintermedius in households. PLoS ONE 2011, 6, e27788. [Google Scholar] [CrossRef] [PubMed]
- van Duijkeren, E.; Kamphuis, M.; van der Mije, I.C.; Laarhoven, L.M.; Duim, B.; Wagenaar, J.A.; Houwers, D.J. Transmission of methicillin-resistant Staphylococcus pseudintermedius between infected dogs and cats and contact pets, humans and the environment in households and veterinary clinics. Vet. Microbiol. 2011, 150, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Kern, A.; Perreten, V. Clinical and molecular features of methicillin-resistant, coagulase-negative staphylococci of pets and horses. J. Antimicrob. Chemother. 2013, 68, 1256–1266. [Google Scholar] [CrossRef]
- Kim, S.-J.; Moon, D.C.; Park, S.-C.; Kang, H.Y.; Na, S.H.; Lim, S.-K. Antimicrobial resistance and genetic characterization of coagulase-negative staphylococci from bovine mastitis milk samples in Korea. J. Dairy Sci. 2019, 102, 11439–11448. [Google Scholar] [CrossRef]
- Asante, J.; Hetsa, B.A.; Amoako, D.G.; Abia, A.L.K.; Bester, L.A.; Essack, S.Y. Genomic analysis of antibiotic-resistant Staphylococcus epidermidis isolates from clinical sources in the Kwazulu-Natal Province, South Africa. Front. Microbiol. 2021, 12, 656306. [Google Scholar] [CrossRef]
- Holm, B.R.; Rest, J.R.; Seewald, W. A prospective study of the clinical findings, treatment and histopathology of 44 cases of pyotraumatic dermatitis. Vet. Dermatol. 2004, 15, 369–376. [Google Scholar] [CrossRef]
- Wladyka, B.; Piejko, M.; Bzowska, M.; Pieta, P.; Krzysik, M.; Mazurek, Ł.; Guevara-Lora, I.; Bukowski, M.; Sabat, A.J.; Friedrich, A.W.; et al. A peptide factor secreted by Staphylococcus pseudintermedius exhibits properties of both bacteriocins and virulence factors. Sci. Rep. 2015, 5, 14569. [Google Scholar] [CrossRef]
- Neely Alice, N.; Maley Matthew, P. Survival of enterococci and staphylococci on hospital fabrics and plastic. J. Clin. Microbiol. 2000, 38, 724–726. [Google Scholar] [CrossRef] [Green Version]
- Bannoehr, J.; Guardabassi, L. Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet. Dermatol. 2012, 23, 253-e52. [Google Scholar] [CrossRef] [PubMed]
- Mathelié-Guinlet, M.; Viela, F.; Pietrocola, G.; Speziale, P.; Alsteens, D.; Dufrêne, Y.F. Force-clamp spectroscopy identifies a catch bond mechanism in a Gram-positive pathogen. Nat. Commun. 2020, 11, 5431. [Google Scholar] [CrossRef] [PubMed]
- Maali, Y.; Martins-Simões, P.; Valour, F.; Bouvard, D.; Rasigade, J.-P.; Bes, M.; Haenni, M.; Ferry, T.; Laurent, F.; Trouillet-Assant, S. Pathophysiological mechanisms of Staphylococcus non-aureus bone and joint infection: Interspecies homogeneity and specific behavior of S. pseudintermedius. Front. Microbiol. 2016, 7, 1063. [Google Scholar] [CrossRef] [PubMed]
- Hanselman, B.A.; Kruth, S.A.; Rousseau, J.; Weese, J.S. Coagulase positive staphylococcal colonization of humans and their household pets. Can. Vet. J. Rev. Vet. Can. 2009, 50, 954–958. [Google Scholar]
- Starlander, G.; Börjesson, S.; Grönlund-Andersson, U.; Tellgren-Roth, C.; Melhus, Å.; Munson, E. Cluster of infections caused by methicillin-resistant Staphylococcus pseudintermedius in humans in a tertiary hospital. J. Clin. Microbiol. 2014, 52, 3118–3120. [Google Scholar] [CrossRef] [Green Version]
- Stegger, M.; Andersen, P.S.; Kearns, A.; Pichon, B.; Holmes, M.A.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A.R. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251. Clin. Microbiol. Infect. 2012, 18, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- Krueger, F. Trim Galore. A Wrapper Tool around Cutadapt and FastQC to Consistently Apply Quality and Adapter Trimming to FastQ Files; Babraham Bioinformatics: Cambridgeshire, UK, 2015; Volume 516. [Google Scholar]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. A J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. MLST. Available online: https://github.com/tseemann/mlst (accessed on 9 February 2022).
- Kaya, H.; Hasman, H.; Larsen, J.; Stegger, M.; Johannesen, T.B.; Allesøe, R.L.; Lemvigh, C.K.; Aarestrup, F.M.; Lund, O.; Larsen, A.R. SCCmecFinder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 2018, 3, e00612-17. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Abricate: Mass Screening of Contigs for Antimicrobial and Virulence Genes. Available online: https://github.com/tseemann/abricate (accessed on 9 February 2022).
- McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef] [PubMed]
- Zukancic, A.; Khan Mubin, A.; Gurmen Sumayya, J.; Gliniecki Quinn, M.; Moritz-Kinkade Dayna, L.; Maddox Carol, W.; Alam Md, T.; Fey Paul, D. Staphylococcal protein A (spa) locus is a hot spot for recombination and horizontal gene transfer in Staphylococcus pseudintermedius. mSphere 2020, 5, e00666-20. [Google Scholar] [CrossRef] [PubMed]
Dog | Owner | Environment | Contact Dog | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Household | Isolate | Infection Site | Perineum | Mouth | Nose | Throat | Food Bowl | Sleeping Place | Floor | Bathroom | Kitchen | Perineum/Mouth |
A | MRSP | + | + | + | + | - | + | + | + | - | + | n/a |
B | MRSP | + | - | - | - | - | - | + | + | - | - | n/a |
C | MRSP | + | + | + | - | - | + | + | + | - | - | - |
D | MRSP | + | + | + | - | - | + | + | + | + | + | n/a |
E | MRSP | + | + | - | - | - | + | + | + | - | - | + |
F | MRSP | + | + | - | - | - | + | - | - | - | - | + |
G | MRSP | + | + | + | - | - | + | + | + | + | + | n/a |
H | MRSE | + | + | - | + | - | + | + | + | - | + | n/a |
Household | Isolate(s) | T/S | Tet | Fus | Enr | Gen | Cli | Oxa | Cef | Chl | Ery |
---|---|---|---|---|---|---|---|---|---|---|---|
A | MRSP | R | S/R | R | n/a | R | |||||
B | MRSP | R | R | R | R | R | R | n/a | R | ||
C | MRSP | R | R | R | R | R | R | n/a | R | ||
D | MRSP | R | R | R | R | R | n/a | R | |||
E | MRSP | R | R | R | n/a | ||||||
F | MRSP | R | R | R | R | R | n/a | R | |||
G | MRSP | R | R | R | R | n/a | R | ||||
G | MSSP | R | R | R | n/a | R | |||||
H | MRSE | R | S/I | R | R | R |
Household | A | B | C | D | E | F | G | H | |
---|---|---|---|---|---|---|---|---|---|
Isolate | MRSP | MRSP | MRSP | MRSP | MRSP | MRSP | MRSP | MRSE | |
ST | 258 | 551 | - | 680 | 258 | 386 | 258 | 640 | |
AB class | SCCmec | IVg (2B) | Vc (5C2&5) | V (5C2&5) | III (3A) | IVg (2B) | IVg (2B) | IVg (2B) | IVd (2B) |
Aminoglycoside | ant(6′)-la | + | + | + | + | + | + | ||
aph(3′)-llla | + | + | + | + | + | + | |||
aac(6′)-le | + | + | + | + | |||||
aph(2”)-la | + | + | + | + | |||||
ant(4′)-lb | + | ||||||||
ant(9)-la | + | ||||||||
sat4 | + | + | + | + | + | ||||
Beta-lactam | blaZ | + | + | + | + | + | + | + | + |
mecA | + | + | + | + | + | + | + | + | |
Folate pathway antagonist | dfrG | + | + | + | + | + | + | + | |
dfrC | + | ||||||||
Macrolide, Lincosamide, Streptogramin B | ermB | + | + | + | + | + | + | ||
lsaE | + | ||||||||
mefE | + | + | |||||||
msrA | + | ||||||||
Tetracycline | tetM | + | + | + | + | + | + | ||
tetK | + | ||||||||
Steroid antibacterial | fusB | + | |||||||
Multidrug | mgrA | + | |||||||
norA | + |
Household A | Sampling 1 | Sampling Period 2 | Sampling Period 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Day 1 | D1 | D2 | D3 | D4 | D5 | D1 | D2 | D3 | D4 | D5 | ||
Dog | Infection site | + | + | + | + | + | + | + | + | + | + | |
Perineum, mouth | + | + | + | + | + | + | ||||||
Owner | Nose/Throat | + | * | |||||||||
Environment | Floor | + | + | + | + | + | + | |||||
Bathroom | + | + | + | |||||||||
Kitchen | + | |||||||||||
Household B | Sampling 1 | Sampling Period 2 | Sampling Period 3 | |||||||||
Day 1 | D1 | D2 | D3 | D4 | D5 | D1 | D2 | D3 | D4 | D5 | ||
Dog | Infection site | + | + | |||||||||
Perineum, mouth | + | |||||||||||
Owner | Nose/Throat | * | * | |||||||||
Environment | Floor | + | + | + | + | + | + | + | + | + | + | |
Bathroom | + | |||||||||||
Kitchen | + | + | + |
Dog | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|
Breed | English Bulldog | Hungarian Vizsla | Chow Chow | English Staffordshire Bullterrier | Rottweiler | Great Dane | Bullmastiff | Rottweiler |
Age | 4 | 2 | 1 | 1 | 2 | 8 months | 8 | 3 |
Sex | Neutered male | Male | Female | Male | Female | Male | Female | Male |
Diagnosis | Interdigital furunculosis | Otitis externa | Pyotraumatic dermatitis | Surgical site infection | Mastitis | Surgical site infection | Surgical site infection | Pyotraumatic dermatitis |
Bacteria | MRSP | MRSP | MRSP | MRSP | MRSP | MRSP | MRSP | MRSE, MSSP |
Contact dog | - | - | Mixed breed (n = 1) | - | Rottweiler (n = 10) | Rottweiler (n = 1) | - | - |
AM at time of sampling | - | - | - | Cefalexin | Amoxicillin Trimetho-prim | Amoxicillin Ampicillin Cefalexin Enrofloxacin | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Røken, M.; Iakhno, S.; Haaland, A.H.; Wasteson, Y.; Bjelland, A.M. Transmission of Methicillin-Resistant Staphylococcus spp. from Infected Dogs to the Home Environment and Owners. Antibiotics 2022, 11, 637. https://doi.org/10.3390/antibiotics11050637
Røken M, Iakhno S, Haaland AH, Wasteson Y, Bjelland AM. Transmission of Methicillin-Resistant Staphylococcus spp. from Infected Dogs to the Home Environment and Owners. Antibiotics. 2022; 11(5):637. https://doi.org/10.3390/antibiotics11050637
Chicago/Turabian StyleRøken, Mari, Stanislav Iakhno, Anita Haug Haaland, Yngvild Wasteson, and Ane Mohn Bjelland. 2022. "Transmission of Methicillin-Resistant Staphylococcus spp. from Infected Dogs to the Home Environment and Owners" Antibiotics 11, no. 5: 637. https://doi.org/10.3390/antibiotics11050637
APA StyleRøken, M., Iakhno, S., Haaland, A. H., Wasteson, Y., & Bjelland, A. M. (2022). Transmission of Methicillin-Resistant Staphylococcus spp. from Infected Dogs to the Home Environment and Owners. Antibiotics, 11(5), 637. https://doi.org/10.3390/antibiotics11050637