Temporal Variation of Meropenem Resistance in E. coli Isolated from Sewage Water in Islamabad, Pakistan
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Susceptibility Profiles
2.2. Phylogenetic Groups of E. coli
2.3. Molecular Screening of Antimicrobial Resistance Markers
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. Isolation and Identification of Meropenem-Resistant E. coli
4.3. Antibiotic Susceptibility Test
4.4. DNA Extraction
4.5. Phylogenetic Analysis of E. coli
4.6. Molecular Screening for Antibiotic Resistance Genes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkey, P.M.; Livermore, D.M. Carbapenem antibiotics for serious infections. BMJ 2012, 344, e3236. [Google Scholar] [CrossRef] [PubMed]
- Tzouvelekis, L.; Markogiannakis, A.; Psichogiou, M.; Tassios, P.T.; Daikos, G.L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 2012, 25, 682–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Duin, D.; Doi, Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017, 8, 460–469. [Google Scholar] [CrossRef]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum β-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Antimicrobial Resistance Global Report on Surveillance: 2014 Summary; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Rump, B.; Timen, A.; Hulscher, M.; Verweij, M. Ethics of infection control measures for carriers of antimicrobial drug–resistant organisms. Emerg. Infect. Dis. 2018, 24, 1609. [Google Scholar] [CrossRef] [Green Version]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Rochelle-Newall, E.; Nguyen, T.M.H.; Le, T.P.Q.; Sengtaheuanghoung, O.; Ribolzi, O. A short review of fecal indicator bacteria in tropical aquatic ecosystems: Knowledge gaps and future directions. Front. Microbiol. 2015, 6, 308. [Google Scholar] [CrossRef]
- Ercumen, A.; Pickering, A.J.; Kwong, L.H.; Arnold, B.F.; Parvez, S.M.; Alam, M.; Sen, D.; Islam, S.; Kullmann, C.; Chase, C.; et al. Animal feces contribute to domestic fecal contamination: Evidence from E. coli measured in water, hands, food, flies, and soil in Bangladesh. Environ. Sci. Technol. 2017, 51, 8725–8734. [Google Scholar] [CrossRef] [Green Version]
- Haberecht, H.B.; Nealon, N.J.; Gilliland, J.R.; Holder, A.V.; Runyan, C.; Oppel, R.C.; Ibrahim, H.M.; Mueller, L.; Schrupp, F.; Vilchez, S.; et al. Antimicrobial-resistant Escherichia coli from environmental waters in northern Colorado. J. Environ. Public Health 2019, 2019, 3862949. [Google Scholar] [CrossRef] [Green Version]
- Huijbers, P.M.; Larsson, D.J.; Flach, C.-F. Surveillance of antibiotic resistant Escherichia coli in human populations through urban wastewater in ten European countries. Environ. Pollut. 2020, 261, 114200. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.M.; Gupta, R. Escherichia coli (E. coli) as an Indicator of Fecal Contamination in Water: A Review. In Proceedings of the International Conference on Sustainable Development of Water and Environment, Incheon, Korea, 13–14 January 2020. [Google Scholar]
- World Health Organization; World Health Organisation Staff. Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2004; Volume 1. [Google Scholar]
- Zahra, R.; Javeed, S.; Malala, B.; Babenko, D.; Toleman, M.A. Analysis of Escherichia coli STs and resistance mechanisms in sewage from Islamabad, Pakistan indicates a difference in E. coli carriage types between South Asia and Europe. J. Antimicrob. Chemother. 2018, 73, 1781–1785. [Google Scholar] [CrossRef] [Green Version]
- Chandran, S.; Diwan, V.; Tamhankar, A.J.; Joseph, B.V.; Rosales-Klintz, S.; Mundayoor, S.; Lundborg, C.S.; Macaden, R. Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along with oqxAB gene in Escherichia coli in hospital wastewater: A matter of concern. J. Appl. Microbiol. 2014, 117, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontikis, K.; Karaiskos, I.; Bastani, S.; Dimopoulos, G.; Kalogirou, M.; Katsiari, M.; Oikonomou, A.; Poulakou, G.; Roilides, E.; Giamarellou, H. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria. Int. J. Antimicrob. Agents 2014, 43, 52–59. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, M.M.; Arena, F.; Pallecchi, L.; Rossolini, G.M. CTX-M-type β-lactamases: A successful story of antibiotic resistance. Int. J. Med. Microbiol. 2013, 303, 305–317. [Google Scholar] [CrossRef]
- Karanika, S.; Karantanos, T.; Arvanitis, M.; Grigoras, C.; Mylonakis, E. Fecal colonization with extended-spectrum beta-lactamase–producing Enterobacteriaceae and risk factors among healthy individuals: A systematic review and metaanalysis. Rev. Infect. Dis. 2016, 63, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Adegoke, A.A.; Madu, C.E.; Aiyegoro, O.A.; Stenstrom, T.A.; Okoh, A.I. Antibiogram and beta-lactamase genes among cefotaxime resistant E. coli from wastewater treatment plant. Antimicrob. Resist. Infect. 2020, 9, 46. [Google Scholar] [CrossRef]
- Mohsin, M.; Raza, S.; Roschanski, N.; Schaufler, K.; Guenther, S. First description of plasmid-mediated colistin-resistant extended-spectrum β-lactamase-producing Escherichia coli in a wild migratory bird from Asia. Int. J. Antimicrob. Agents 2016, 4, 463–464. [Google Scholar] [CrossRef]
- Mohsin, M.; Raza, S.; Roschanski, N.; Guenther, S.; Ali, A.; Schierack, P. Description of the first Escherichia coli clinical isolate harboring the colistin resistance gene mcr-1 from the Indian subcontinent. Antimicrob. Agents Chemother. 2017, 61, e01945-16. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Mohsin, M.; Lei, S.; Srinivas, S.; Wiqar, R.T.; Lin, J.; Feng, Y. Discovery of a mcr-1-bearing plasmid in commensal colistin-resistant Escherichia coli from healthy broilers in Faisalabad, Pakistan. Virulence 2018, 9, 994–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilal, H.; Rehman, T.U.; Khan, M.A.; Hameed, F.; Jian, Z.G.; Han, J.; Yang, X. Molecular Epidemiology of mcr-1, blaKPC-2, and blaNDM-1 Harboring Clinically Isolated Escherichia coli from Pakistan. Infect. Drug Resist. 2021, 14, 1467. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Singh, S.; Goyal, S.K. Effect of seasonal variation on bacterial inhabitants and diversity in drinking water of an office building, Delhi. Air Soil Water Res. 2019, 12, 1178622119882335. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Akhtar, Y.N.; Ali, S.S.; Ahmed, M.; Atiq, M.; Ansari, A.; Chaudhry, F.A.; Bashir, H.; Bangash, M.A.; Awais, A.; et al. Seasonal variation in bacterial pathogens isolated from stool samples in Karachi, Pakistan. JPMA 2003, 53, 125–129. [Google Scholar]
- Hudzicki, J. Kirby-Bauer disk diffusion susceptibility test protocol. ASM 2009, 15, 55–63. [Google Scholar]
- Salehi, T.Z.; Madani, S.A.; Karimi, V.; Khazaeli, F.A. Molecular genetic differentiation of avian Escherichia coli by RAPD-PCR. Braz. J. Microbiol. 2008, 39, 494–497. [Google Scholar] [CrossRef] [Green Version]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Bej, A.K.; Dicesare, J.L.; Haff, L.; Atlas, R.M. Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid. Appl. Environ. Microbiol. 1991, 57, 1013–1017. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Poirel, L.; Carrër, A.; Toleman, M.A.; Walsh, T.R. How to detect NDM-1 producers. J. Clin. Microbiol. 2011, 49, 718–721. [Google Scholar] [CrossRef] [Green Version]
- Mostachio, A.K.; Heidjen, I.; Rossi, F.; Levin, A.S.; Costa, S.F. Multiplex PCR for rapid detection of genes encoding oxacillinases and metallo-β-lactamases in carbapenem-resistant Acinetobacter spp. J. Med. Microbiol. 2009, 58, 1522–1524. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Azizi, M.; Mortazavi, S.H.; Etemadimajed, M.; Gheini, S.; Vaziri, S.; Alvandi, A.; Kashef, M.; Ahmadi, K. Prevalence of extended-spectrum β-Lactamases and antibiotic resistance patterns in Acinetobacter baumannii isolated from clinical samples in Kermanshah, Iran. Jundishapur J. Microbiol. 2017, 10, e61522. [Google Scholar] [CrossRef] [Green Version]
- Lal, P.; Kapil, A.; Das, B.K.; Sood, S. Occurrence of TEM & SHV gene in extended spectrum b-lactamases (ESBLs) producing Klebsiella sp. isolated from a tertiary care hospital. Indian J. Med. Res. 2007, 125, 173. [Google Scholar] [PubMed]
- Cattoir, V.; Poirel, L.; Rotimi, V.; Soussy, C.-J.; Nordmann, P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother. 2007, 60, 394–397. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018, 23, 17-00672. [Google Scholar] [CrossRef]
Sewage Sampling in Different Seasons | ||||
---|---|---|---|---|
Site/Location | Fall | Winter | Spring | Summer |
C-type colony, QAU | – | – | – | + (n = 1) |
B-type colony, QAU | – | – | – | + (n = 2) |
QAU D-type colony entry point of filtration plant | – | – | – | + (n = 6) |
QAU D-type colony after filtration plant | – | – | – | – |
Bari imam Nullah 1 | + (n = 1) | – | – | + (n = 1) |
Bari imam Nullah 2 | – | – | – | + (n = 4) |
Sector G-5 Nullah | – | – | – | + (n = 2) |
Sector G-5 Fata house exit | + (n = 1) | – | – | – |
Ministry of water and power indoor | + (n = 1) | + (n = 1) | – | – |
Govt. hostel lodge 2 | – | – | – | + (n = 2) |
Federal lodge 1 | – | – | – | + (n = 1) |
MNA HOSTEL | – | – | + (n = 1) | + (n = 2) |
PM office indoor | – | – | + (n = 1) | |
PARC head office indoor | + (n = 1) | + (n = 6) | – | + (n = 1) |
Ambassador hotel | – | + (n = 1) | – | – |
Ministry of climate change indoor | – | + (n = 1) | + (n = 2) | + (n = 2) |
PHRC indoor | – | + (n = 2) | – | + (n = 3) |
Sector G-5 Comsats indoor | – | + (n = 2) | + (n = 4) | + (n = 2) |
Sector G-6 Nullah 1 | – | + (n = 1) | + (n = 1) | |
Sector G-6 Nullah 2 | – | – | – | – |
ICB Islamabad indoor | + (n = 6) | – | + (n = 1) | + (n = 2) |
CDA indoor | – | + (n = 3) | – | – |
Masjid road Nullah | – | – | – | – |
Lal masjid indoor | – | – | – | + (n = 1) |
G-6 girls Govt. School | – | – | – | – |
G6 Residential outdoor | – | – | – | + (n = 1) |
Sector F-6 Nullah | – | – | – | – |
Sector F-5 Nullah | + (n = 1) | – | – | + (n = 1) |
Baluchistan house indoor | – | – | + (n = 1) | – |
PTV office indoor | – | – | – | – |
FPSC office indoor | – | – | – | + (n = 1) |
KPK house indoor | – | – | + (n = 1) | + (n = 1) |
Sindh house indoor | + (n = 1) | – | – | + (n = 1) |
Punjab house indoor | + (n = 2) | – | – | + (n = 2) |
F-6/3 primary school | – | – | – | |
F-6/3 masjid | – | – | – | |
Poly clinic outdoor | + (n = 11) | – | – | – |
Poly clinic emergency | + (n = 2) | – | – | + (n = 1) |
Nullah F-7 | – | – | – | – |
GPO indoor | – | + (n = 2) | + (n = 1) | – |
Sector H8-sector Nullah | + (n = 3) | – | – | + (n = 1) |
Preston university indoor | – | – | – | – |
Nullah back side of Turk school | – | + (n = 1) | – | – |
Pak Turk school indoor | – | – | + (n = 2) | – |
Preston university front Nullah | – | – | – | + (n = 2) |
Shah-Abdul Latif auditorium indoor | – | – | + (n = 1) | + (n = 2) |
HEC indoor | – | – | – | – |
Institute of science and Tech. indoor | – | – | + (n = 6) | – |
Post graduate hostel | – | – | – | – |
Post graduate college outdoor | – | – | + (n = 1) | – |
AIOU indoor | – | – | – | – |
Red Crescent indoor | – | – | – | + (n = 1) |
Fire brigade | – | – | + (n = 2) | |
QAU.GH.2 | – | – | – | + (n = 1) |
QAU.BH 8 | – | – | – | – |
QAU.BH.3 | – | – | – | – |
QAU.BH.4 | – | – | – | – |
QAU.BH6.7 | – | – | – | + (n = 1) |
QAU.GH.5 | – | – | – | – |
QAU colony | – | – | – | + (n = 1) |
Sewage Water Samples in Different Seasons | |||||
---|---|---|---|---|---|
Antibiotic Resistance Genes | Fall, n = 93 | Winter, n = 64 | Spring, n = 87 | Summer, n = 164 | p-Value |
n (%) | n (%) | n (%) | n (%) | ||
qnrA | 1 (3) | 0 | 1 (4) | 2 (4) | 0.4 |
qnrB | 7 (23) | 0 | 4 (17) | 10 (20) | 0.6 |
qnrS | 5 (17) | 3 (15) | 11 (46) | 21 (42) | 0.7 |
blaOXA48 | 20 (66) | 17 (85) | 10 (42) | 34 (68) | 0.67 |
blaTEM | 15 (50) | 13 (65) | 18 (75) | 22 (44) | 0.56 |
blaSHV | 2 (7) | 2 (10) | 8 (33) | 6 (12) | 0.25 |
BlaCTX-M | 4 (13) | 12 (60) | 14 (58) | 27 (54) | 0.77 |
blaIMP | 14 (46) | 5 (25) | 8 (33) | 15 (30) | 0.65 |
blaNDM | 11 (36) | 2 (10) | 8 (33) | 10 (20) | 0.48 |
blaBIC | 0 (0) | 0 (0) | 0 (0) | 1 (2) | 0.32 |
blaKPC | 0 (0) | 0 (0) | 0 (0) | 1 (2) | 0.32 |
mcr-1 | 14 (47) | 10 (50) | 5 (21) | 15 (30) | 0.55 |
mcr-2 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - |
mcr-3 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - |
mcr-4 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - |
mcr-5 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - |
Phylogenic groups | |||||
B1 | 2 (7) | 0 (0) | 0 (0) | 0 (0) | 0.32 |
B2 | 7 (23) | 0 (0) | 0 (0) | 1 (2) | 0.4 |
Clad I/II | 7 (23) | 7 (35) | 6 (25) | 27 (54) | 0.7 |
Unknown | 14 (47) | 13 (65) | 12 (50) | 15 (30) | 0.5 |
E/clad II | 0 (0) | 0 (0) | 2 (8) | 1 (2) | 0.34 |
A/C | 0 (0) | 0 (0) | 4 (17) | 5 (10) | 0.33 |
F | 0 (0) | 0 (0) | 0 (0) | 1 (2) | 0.3 |
Primer | Primer Sequence 5′ to 3′ | Annealing Temperature | Product Size | Reference | |
---|---|---|---|---|---|
1. | uidA | F:5′-AAAACGGCAAGAAAAAGCAG-3′ | 55 °C | 147 bp | [31] |
R:5′-ACGCGTGGTTACAGTCTTGCG-3′ | |||||
2. | blaNDM | F:5′-GGTTTGGCGATCTGGTTTTC-3 | 52 °C | 621 bp | [32] |
R:5′-CGGAATGGCTCATCACGATC-3 | |||||
3. | blaIMP | F: 5′-GAATAGAATGGTTAACTCTC-3′ | 52 °C | 188 bp | [33] |
R:5′-CCAAACCACTAGGTTATC-3′ | |||||
4. | blaOXA-48 | F:5′-GCGTGGTTAAGGATGAACAC-3′ | 52 °C | 438 bp | [34] |
R:5′-CATCAAGTTCAACCCAACCG-3′ | |||||
5. | blaKPC | F:5′-CGTCTAGTTCTGCTGTCTTG-3′ | 52 °C | 798 bp | [34] |
R:5′-CTTGTCATCCTTGTTAGGCG-3′ | |||||
6. | blaBIC | F:5′-TATGCAGCTCCTTTAAGGGC-3′ | 52 °C | 537 bp | [34] |
R:5′-TCATTGGCGGTGCCGTACAC-3′ | |||||
7. | blaCTX-M | F:5′-ATGTGCAGTACCAGTAAGGT-3′ | 52 °C | 594 bp | [35] |
R:5′-TGGGTAAAGTAGGTCACCAGA-3′ | |||||
8. | blaTEM | F:5′-CTTCCTGTTTTTGCTCACCCA-3′ | 52 °C | 717 bp | [36] |
R:5′-TACGATACGGGAGGGCTTAC-3′ | |||||
9. | blaSHV | F:5′-TCAGCGAAAAACACCTTG-3′ | 52 °C | 471 bp | [36] |
R:5′-TCCCGCAGATAAATCACC-3′ | |||||
10. | qnrA | F:5′-AGAGGATTTCTCACGCCAGG-3′ | 54 °C | 580 bp | [37] |
R:5′-TGCCAGGCACAGATCTTGAC-3′ | |||||
11. | qnrB | F:5′-GGMATHGAAATTCGCCACTG-3′ | 54 °C | 264 bp | [37] |
R:5′-TTTGCYGYYCGCCAGTCGAA-3′ | |||||
12. | qnrS | F:5′-GCAAGTTCATTGAACAGGGT-3′ | 54 °C | 428 bp | [37] |
R:5′-TCTAAACCGTCGAGTTCGGCG-3′ | |||||
13. | mcr-1 | F:5′-AGTCCGTTTGTTCTTGTGGC-3′ | 55 °C | 320 bp | [38] |
R:5′-AGATCCTTGGTCTCGGCTTG-3′ | |||||
14. | mcr-2 | F:5′-CAAGTGTGTTGGTCGCAGTT-3′ | 55 °C | 715 bp | [38] |
R:5′-TCTAGCCCGACAAGCATACC-3′ | |||||
15. | mcr-3 | F:5′-AAATAAAAATTGTTCCCCGCTTATG-3′ | 55 °C | 929 bp | [38] |
R:5′-AATGGAGATCCCCGTTTTT-3′ | |||||
16. | mcr-4 | F:5′-TCACTTTCATCACTGCGTTG-3′ | 55 °C | 1116 bp | [38] |
R:5′-TTGGTCCATGACTACCAATG-3′ | |||||
17. | mcr-5 | F:5′-ATGCGGTTGTCTGCATTTATC-3′ | 55 °C | 1644 bp | [38] |
R:5′-CATTGTGGTTGTCCTTTTCTG-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasmin, S.; Karim, A.-M.; Lee, S.-H.; Zahra, R. Temporal Variation of Meropenem Resistance in E. coli Isolated from Sewage Water in Islamabad, Pakistan. Antibiotics 2022, 11, 635. https://doi.org/10.3390/antibiotics11050635
Yasmin S, Karim A-M, Lee S-H, Zahra R. Temporal Variation of Meropenem Resistance in E. coli Isolated from Sewage Water in Islamabad, Pakistan. Antibiotics. 2022; 11(5):635. https://doi.org/10.3390/antibiotics11050635
Chicago/Turabian StyleYasmin, Saba, Asad-Mustafa Karim, Sang-Hee Lee, and Rabaab Zahra. 2022. "Temporal Variation of Meropenem Resistance in E. coli Isolated from Sewage Water in Islamabad, Pakistan" Antibiotics 11, no. 5: 635. https://doi.org/10.3390/antibiotics11050635
APA StyleYasmin, S., Karim, A. -M., Lee, S. -H., & Zahra, R. (2022). Temporal Variation of Meropenem Resistance in E. coli Isolated from Sewage Water in Islamabad, Pakistan. Antibiotics, 11(5), 635. https://doi.org/10.3390/antibiotics11050635