Elevated Rates of Ventilator-Associated Pneumonia and COVID-19 Associated Pulmonary Aspergillosis in Critically Ill Patients with SARS-CoV2 Infection in the Second Wave: A Retrospective Chart Review
Abstract
:1. Background
2. Methods
- The first wave of COVID-19: This group was admitted from 15 March 2020 to 24 May 2020 (n = 55).
- The second wave of COVID-19: This group was admitted from 31 August 2020 to 13 February 2021 (n = 73).
- All influenza patients admitted from 23 February 2014 to 03 February 2020 (n = 60).
- All community-acquired pneumonia patients admitted from 11 January 2019 to 12 May 2021 (n = 88).
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maes, M.; Higginson, E.; Pereira-Dias, J.; Curran, M.D.; Parmar, S.; Khokhar, F.; Cuchet-Lourenço, D.; Lux, J.; Sharma-Hajela, S.; Ravenhill, B.; et al. Ventilator-associated pneumonia in critically ill patients with COVID-19. Crit. Care 2021, 25, 25, Erratum in Crit. Care 2021, 25, 130. [Google Scholar] [CrossRef] [PubMed]
- Rouzé, A.; Martin-Loeches, I.; Povoa, P.; Makris, D.; Artigas, A.; Bouchereau, M.; Lambiotte, F.; Metzelard, M.; Cuchet, P.; Geronimi, C.B.; et al. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: A European multicenter cohort study. Intensive Care Med. 2021, 47, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Rouzé, A.; Saura, O.; Nseir, S. High Incidence of Nosocomial Infections in COVID-19 Patients: Is SARS-CoV-2 the Culprit? Chest 2021, 160, e315. [Google Scholar] [CrossRef] [PubMed]
- Vacheron, C.-H.; Lepape, A.; Savey, A.; Machut, A.; Timsit, J.F.; Vanhems, P.; Le, Q.V.; Egbeola, J.; Martin, M.; Maxime, V.; et al. Increased Incidence of Ventilator-Acquired Pneumonia in Coronavirus Disease 2019 Patients. Crit. Care Med. 2021, 50, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Szarpak, L.; Wisco, J.; Boyer, R. How healthcare must respond to ventilator-associated pneumonia (VAP) in invasively mechanically ventilated COVID-19 patients. Am. J. Emerg. Med. 2021, 48, 361–362. [Google Scholar] [CrossRef]
- Meawed, T.E.; Ahmed, S.M.; Mowafy, S.M.; Samir, G.M.; Anis, R.H. Bacterial and fungal ventilator associated pneumonia in critically ill COVID-19 patients during the second wave. J. Infect. Public Health 2021, 14, 1375–1380. [Google Scholar] [CrossRef]
- Machado, M.; Valerio, M.; Álvarez-Uría, A.; Olmedo, M.; Veintimilla, C.; Padilla, B.; De La Villa, S.; Guinea, J.; Escribano, P.; Ruiz-Serrano, M.J.; et al. Invasive pulmonary aspergillosis in the COVID-19 era: An expected new entity. Mycoses 2020, 64, 132–143. [Google Scholar] [CrossRef]
- Fumagalli, J.; Panigada, M.; Klompas, M.; Berra, L. Ventilator-associated pneumonia among SARS-CoV-2 acute respiratory distress syndrome patients. Curr. Opin. Crit. Care 2021, 28, 74–82. [Google Scholar] [CrossRef]
- Ippolito, M.; Misseri, G.; Catalisano, G.; Marino, C.; Ingoglia, G.; Alessi, M.; Consiglio, E.; Gregoretti, C.; Giarratano, A.; Cortegiani, A. Ventilator-Associated Pneumonia in Patients with COVID-19: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 545. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratala, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111, Correction in 2017, 64, 1298; Correction in 2017, 65, 1435; Correction in 2017, 65, 2161. [Google Scholar] [CrossRef]
- Limen, R.Y.; Sedono, R.; Sugiarto, A.; Hariyanto, T.I. Janus kinase (JAK)-inhibitors and coronavirus disease 2019 (COVID-19) outcomes: A systematic review and meta-analysis. Expert Rev. Anti-Infect. Ther. 2021, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.V.A.O.; et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients with Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA 2020, 324, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Moretti, M.; Van Laethem, J.; Minini, A.; Pierard, D.; Malbrain, M.L. Ventilator-associated bacterial pneumonia in coronavirus 2019 disease, a retrospective monocentric cohort study. J. Infect. Chemother. 2021, 27, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science 2020, 368, 473–474. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Ren, L.; Zhang, L.; Zhong, J.; Xiao, Y.; Jia, Z.; Guo, L.; Yang, J.; Wang, C.; Jiang, S.; et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe 2020, 27, 883–890.e2. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J.; Netea, M.G.; Rovina, N.; Akinosoglou, K.; Antoniadou, A.; Antonakos, N.; Damoraki, G.; Gkavogianni, T.; Adami, M.-E.; Katsaounou, P.; et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe 2020, 27, 992–1000.e3. [Google Scholar] [CrossRef]
- Luyt, C.-E.; Bouadma, L.; Morris, A.C.; Dhanani, J.A.; Kollef, M.; Lipman, J.; Martin-Loeches, I.; Nseir, S.; Ranzani, O.T.; Roquilly, A.; et al. Pulmonary infections complicating ARDS. Intensive Care Med. 2020, 46, 2168–2183. [Google Scholar] [CrossRef]
- Tsitsiklis, A.; Zha, B.S.; Byrne, A.; Devoe, C.; Levan, S.; Rackaityte, E.; Sunshine, S.; Mick, E.; Ghale, R.; Jauregui, A.; et al. Impaired antibacterial immune signaling and changes in the lung microbiome precede secondary bacterial pneumonia in COVID-19. medRxiv 2021. [Google Scholar] [CrossRef]
- De Pascale, G.; De Maio, F.; Carelli, S.; De Angelis, G.; Cacaci, M.; Montini, L.; Bello, G.; Cutuli, S.L.; Pintaudi, G.; Tanzarella, E.S.; et al. Staphylococcus aureus ventilator-associated pneumonia in patients with COVID-19: Clinical features and potential inference with lung dysbiosis. Crit. Care 2021, 25, 1–12. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Leisman, D.E.; Deutschman, C.S.; Legrand, M. Facing COVID-19 in the ICU: Vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med. 2020, 46, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Wicky, P.-H.; Niedermann, M.S.; Timsit, J.-F. Ventilator-associated pneumonia in the era of COVID-19 pandemic: How common and what is the impact? Crit. Care 2021, 25, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Gandet, F.F.; et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.S.; Peyvandi, F.; Martin-Loeches, I. Pulmonary immuno-thrombosis in COVID-19 ARDS pathogenesis. Intensive Care Med. 2021, 47, 899–902. [Google Scholar] [CrossRef]
- Rouzé, A.; Lemaitre, E.; Martin-Loeches, I.; Povoa, P.; Diaz, E.; Nyga, R.; Torres, A.; Metzelard, M.; Du Cheyron, D.; Lambiotte, F.; et al. Invasive pulmonary aspergillosis among intubated patients with SARS-CoV-2 or influenza pneumonia: A European multicenter comparative cohort study. Crit. Care 2022, 26, 11. [Google Scholar] [CrossRef]
- Koehler, P.; Bassetti, M.; Chakrabarti, A.; Chen, S.C.A.; Colombo, A.L.; Hoenigl, M.; Klimko, N.; Lass-Flörl, C.; Oladele, R.O.; Vinh, D.C.; et al. Defining and managing COVID-19-associated pulmonary aspergillosis: The 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect. Dis. 2021, 21, e149–e162. [Google Scholar] [CrossRef]
- Ippolito, M.; Ramanan, M.; Bellina, D.; Catalisano, G.; Iozzo, P.; Di Guardo, A.; Moscarelli, A.; Grasselli, G.; Giarratano, A.; Bassetti, M.; et al. Personal protective equipment use by healthcare workers in intensive care unit during the early phase of COVID-19 pandemic in Italy: A secondary analysis of the PPE-SAFE survey. Ther. Adv. Infect. Dis. 2021, 8. [Google Scholar] [CrossRef]
- Cona, A.; Tavelli, A.; Renzelli, A.; Varisco, B.; Bai, F.; Tesoro, D.; Za, A.; Biassoni, C.; Battaglioli, L.; Allegrini, M.; et al. Incidence, Risk Factors and Impact on Clinical Outcomes of Bloodstream Infections in Patients Hospitalised with COVID-19: A Prospective Cohort Study. Antibiotics 2021, 10, 1031. [Google Scholar] [CrossRef]
- Gragueb-Chatti, I.; Lopez, A.; Hamidi, D.; Guervilly, C.; Loundou, A.; Daviet, F.; Cassir, N.; Papazian, L.; Forel, J.-M.; Leone, M.; et al. Impact of dexamethasone on the incidence of ventilator-associated pneumonia and blood stream infections in COVID-19 patients requiring invasive mechanical ventilation: A multicenter retrospective study. Ann. Intensive Care 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Battaglini, D.; Ball, L.; Brunetti, I.; Bruzzone, B.; Codda, G.; Crea, F.; de Maria, A.; Dentone, C.; di Biagio, A.; et al. Bloodstream infections in critically ill patients with COVID-19. Eur. J. Clin. Investig. 2020, 50, e13319. [Google Scholar] [CrossRef] [PubMed]
- The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.T.; Spiga, F.; Savović, J.; Tierney, J.; Baron, G.; et al. Association between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19: A Meta-analysis. JAMA 2021, 326, 499–518. [Google Scholar] [CrossRef] [PubMed]
- Kadri, S.S.; Sun, J.; Lawandi, M.A.; Strich, J.R.; Busch, L.M.; Keller, M.; Babiker, M.A.; Yek, C.; Malik, S.; Krack, J.; et al. Association between Caseload Surge and COVID-19 Survival in 558 U.S. Hospitals, March to August 2020. Ann. Intern. Med. 2021, 174, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Meyer, E.; Geffers, C.; Gastmeier, P. Understaffing, overcrowding, inappropriate nurse:ventilated patient ratio and nosocomial infections: Which parameter is the best reflection of deficits? J. Hosp. Infect. 2012, 80, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Reyes, L.F.; Murthy, S.; Garcia-Gallo, E.; Irvine, M.; Merson, L.; Martin-Loeches, I.; Rello, J.; Taccone, F.S.; Fowler, R.A.; Docherty, A.B.; et al. Clinical characteristics, risk factors and outcomes in patients with severe COVID-19 registered in the International Severe Acute Respiratory and Emerging Infection Consortium WHO clinical characterisation protocol: A prospective, multinational, multicentre, observational study. ERJ Open Res. 2021, 8, 1. [Google Scholar] [CrossRef]
- Grasselli, G.; Scaravilli, V.; Di Bella, S.; Biffi, S.; Bombino, M.; Patroniti, N.; Bisi, L.; Peri, A.M.; Pesenti, A.; Gori, A.; et al. Nosocomial Infections during Extracorporeal Membrane Oxygenation. Crit. Care Med. 2017, 45, 1726–1733. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Khanna, P.; Sarkar, S. Comparative evaluation of ventilator-associated pneumonia in critically ill COVID-19 and patients infected with other corona viruses: A systematic review and meta-analysis. Monaldi Arch. Chest Dis. 2021. [Google Scholar] [CrossRef]
- Nseir, S.; Martin-Loeches, I.; Povoa, P.; Metzelard, M.; Du Cheyron, D.; Lambiotte, F.; Tamion, F.; Labruyere, M.; Makris, D.; Geronimi, C.B.; et al. Relationship between ventilator-associated pneumonia and mortality in COVID-19 patients: A planned ancillary analysis of the coVAPid cohort. Crit. Care 2021, 25, 1–11. [Google Scholar] [CrossRef]
- Mohamed, A.; Rogers, T.R.; Talento, A.F. COVID-19 Associated Invasive Pulmonary Aspergillosis: Diagnostic and Therapeutic Challenges. J. Fungi 2020, 6, 115. [Google Scholar] [CrossRef]
- Wahidi, M.M.; Shojaee, S.; Lamb, C.R.; Ost, D.; Maldonado, F.; Eapen, G.; Caroff, D.A.; Stevens, M.P.; Ouellette, D.R.; Lilly, C.; et al. The Use of Bronchoscopy during the Coronavirus Disease 2019 Pandemic. Chest 2020, 158, 1268–1281. [Google Scholar] [CrossRef]
- Fagon, J.-Y.; Chastre, J.; Wolff, M.; Gervais, C.; Parer-Aubas, S.; Stéphan, F.; Similowski, T.; Mercat, A.; Diehl, J.-L.; Sollet, J.-P.; et al. Invasive and Noninvasive Strategies for Management of Suspected Ventilator-Associated Pneumonia. Ann. Intern. Med. 2000, 132, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Meersseman, W.; Lagrou, K.; Maertens, J.; Wilmer, A.; Hermans, G.; Vanderschueren, S.; Spriet, I.; Verbeken, E.; Van Wijngaerden, E. Galactomannan in Bronchoalveolar Lavage Fluid. Am. J. Respir. Crit. Care Med. 2008, 177, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talento, A.F.; Dunne, K.; Joyce, E.A.; Palmer, M.; Johnson, E.; White, P.L.; Springer, J.; Loeffler, J.; Ryan, T.; Collins, D.; et al. A prospective study of fungal biomarkers to improve management of invasive fungal diseases in a mixed specialty critical care unit. J. Crit. Care 2017, 40, 119–127. [Google Scholar] [CrossRef]
- Verweij, P.E.; Brüggemann, R.J.M.; Azoulay, E.; Bassetti, M.; Blot, S.; Buil, J.B.; Calandra, T.; Chiller, T.; Clancy, C.J.; Cornely, O.A.; et al. Taskforce report on the diagnosis and clinical management of COVID-19 associated pulmonary aspergillosis. Intensive Care Med. 2021, 47, 819–834. [Google Scholar] [CrossRef]
N = 276 | COVID-19 Wave 1 (n = 55) | COVID-19 Wave 2 (n = 73) | Influenza (n = 60) | Community-Acquired Pneumonia (n = 88) | p-Value |
---|---|---|---|---|---|
Male (n, %) | 38 (69.09%) | 48 (65.75%) | 33 (55.00%) | 56 (63.64%) | 0.381 |
Female (n, %) | 17 (30.91%) | 25 (34.25%) | 27 (45.00%) | 32 (36.36%) | 0.381 |
Age (years) (mean, [SD]) | 60.38 [13.65] | 64.33 [12.21] | 61.70 [16.58] | 62.33 [15.13] | 0.476 |
CCF (n, %) | 6 (10.90%) | 5 (6.85%) | 6 (10.00%) | 10 (11.36%) | 0.791 |
IHD (n, %) | 13 (23.63%) | 9 (12.32%) | 25 (41.67%) | 10 (11.36%) | <0.001 |
HTN (n, %) | 17 (30.90%) | 37 (50.68%) | 19 (31.67%) | 24 (27.27%) | 0.012 |
DM (n, %) | 12 (21.82%) | 17(23.29%) | 11 (18.33%) | 8 (9.09%) | 0.079 |
COPD (n, %) | 6 (10.90%) | 15 (20.55%) | 22 (36.67%) | 30 (34.09%) | 0.003 |
Asthma (n, %) | 7 (12.73%) | 9 (12.32%) | 7 (11.67%) | 7 (7.95%) | 0.757 |
CKD (n, %) | 7 (12.73%) | 3 (4.11%) | 3 (5.00%) | 4 (4.55%) | 0.160 |
Cirrhosis (n, %) | 0 (0%) | 2 (2.74%) | 1 (1.67%) | 2 (2.27%) | 0.687 |
Cancer (n, %) | 1 (1.82%) | 10 (13.70%) | 7 (11.67%) | 13 (14.77%) | 0.092 |
Immunosuppressed * (n, %) | 5 (9.09%) | 12 (16.44%) | 9 (15.00%) | 15 (17.05%) | 0.558 |
BMI (kg/m2) (mean, [SD]) | 29.80 [16.28] | 29.18 [6.58] | 27.08 [9.62] | 25.79 [9.55] | 0.412 |
SAPSII (mean, [SD]) | 49.75 [18.63] | 41.63 [17.63] | 55.73 [17.26] | 48.92 [18.83] | <0.001 |
SOFA worst throughout admission (mean, [SD]) | 9.18 [4.32] | 8.94 [4.77] | 11.13 [4.49] | 9.76 [4.15] | 0.029 |
Steroids (n, %) | 16 (29.09%) | 67 (91.78%) | 37 (61.67%) | 52 (59.09%) | <0.001 |
Treated with antifungals (n, %) | 14 (25.45%) | 35 (47.95%) | 17 (28.33%) | 28 (31.80%) | <0.001 |
CPIS (mean [SD]) | 2.00 [0] | 4.46 [3.15] | 1.52 [2.62] | 6.67 [4.16] | <0.001 |
N = 276 | COVID-19 Wave 1 (n = 55) | COVID-19 Wave 2 (n = 73) | Influenza (n = 60) | Community-Acquired Pneumonia (n = 88) | p-Value |
---|---|---|---|---|---|
ICU LOS (median, [IQR]) | 12.00 [5.00, 26.00] | 14.00 [6.00, 32.50] | 9.00 [3.25, 20.00] | 10.00 [4.00, 18.75] | 0.010 |
MV (median, [IQR]) | 8.00 [0.00, 17.00] | 11.00 [0.50, 25.00] | 7.00 [1.00, 14.75] | 5.00 [0.25, 14.00] | 0.009 |
ICU Mortality (n, %) | 9 (16.36%) | 28 (38.36%) | 20 (33.33%) | 23 (26.14%) | 0.047 |
VAP (n, %) | 3 (5.45%) | 20 (27.40%) | 10 (16.67%) | 3 (3.41%) | <0.001 |
IPA (n, %) | 0 (0%) | 7 (9.59%) | 8 (13.33%) | 6 (6.82%) | <0.001 |
N = 276 | COVID-19 Wave 1 (n = 55) | COVID-19 Wave 2 (n = 73) | Influenza (n = 60) | Community-Acquired Pneumonia (n = 88) | p-Value |
---|---|---|---|---|---|
Acinetobacter baumannii (n, %) | 0 (0%) | 0 (0%) | 1 (1.67%) | 0 (0%) | |
Berkholderia (n, %) | 1 (1.81%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Citrobacter (n, %) | 0 (0%) | 1 (1.37%) | 0 (0%) | 0 (0%) | |
Enterobacter cloacae (n, %) | 0 (0%) | 1 (1.37%) | 2 (3.33%) | 0 (0%) | |
Escherichia coli (n, %) | 1 (1.81%) | 2 (2.74%) | 1 (1.67%) | 1 (1.14%) | |
Klebsiella (n, %) | 1 (1.81%) | 7 (9.59%) | 0 (0%) | 1 (1.14%) | |
Pseudomonas (n, %) | 0 (0%) | 2 (2.74%) | 0 (0%) | 1 (1.14%) | |
Staphylococcus aureus (n, %) | 0 (0%) | 0 (0%) | 1 (1.67%) | 1 (1.14%) | |
Stenotrophomonas Maltophilia (n, %) | 0 (0%) | 2 (2.74%) | 2 (3.33%) | 0 (0%) | |
Streptococcus (n, %) | 0 (0%) | 1 (1.37%) | 0 (0%) | 0 (0%) | |
Galactomannan (serum) (mean, [SD]) | 0.089 [0.047] | 0.179 [0.306] | 0.240 [0.318] | 0.108 [0.210] | 0.238 |
Galactomannan (BAL) (mean, [SD]) | 0.100 [0.082] | 0.897 [1.903] | 0.730 [1.708] | 0.607 [1.510] | 0.829 |
B D glucan (pg/mL) (mean, [SD]) | 74.62 [51.68] | 85.97 [119.38] | 178.60 [202.19] | 117.37 [150.07] | 0.247 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyd, S.; Sheng Loh, K.; Lynch, J.; Alrashed, D.; Muzzammil, S.; Marsh, H.; Masoud, M.; Bin Ihsan, S.; Martin-Loeches, I. Elevated Rates of Ventilator-Associated Pneumonia and COVID-19 Associated Pulmonary Aspergillosis in Critically Ill Patients with SARS-CoV2 Infection in the Second Wave: A Retrospective Chart Review. Antibiotics 2022, 11, 632. https://doi.org/10.3390/antibiotics11050632
Boyd S, Sheng Loh K, Lynch J, Alrashed D, Muzzammil S, Marsh H, Masoud M, Bin Ihsan S, Martin-Loeches I. Elevated Rates of Ventilator-Associated Pneumonia and COVID-19 Associated Pulmonary Aspergillosis in Critically Ill Patients with SARS-CoV2 Infection in the Second Wave: A Retrospective Chart Review. Antibiotics. 2022; 11(5):632. https://doi.org/10.3390/antibiotics11050632
Chicago/Turabian StyleBoyd, Sean, Kai Sheng Loh, Jessie Lynch, Dhari Alrashed, Saad Muzzammil, Hannah Marsh, Mustafa Masoud, Salman Bin Ihsan, and Ignacio Martin-Loeches. 2022. "Elevated Rates of Ventilator-Associated Pneumonia and COVID-19 Associated Pulmonary Aspergillosis in Critically Ill Patients with SARS-CoV2 Infection in the Second Wave: A Retrospective Chart Review" Antibiotics 11, no. 5: 632. https://doi.org/10.3390/antibiotics11050632
APA StyleBoyd, S., Sheng Loh, K., Lynch, J., Alrashed, D., Muzzammil, S., Marsh, H., Masoud, M., Bin Ihsan, S., & Martin-Loeches, I. (2022). Elevated Rates of Ventilator-Associated Pneumonia and COVID-19 Associated Pulmonary Aspergillosis in Critically Ill Patients with SARS-CoV2 Infection in the Second Wave: A Retrospective Chart Review. Antibiotics, 11(5), 632. https://doi.org/10.3390/antibiotics11050632